%2multibyte Version: 5.50.0.2960 CodePage: 936 \documentclass[final,notitlepage]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{rotating} \usepackage{graphicx} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsmath} \usepackage{latexsym} \usepackage{endnotes} \setcounter{MaxMatrixCols}{10} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.50.0.2960} %TCIDATA{Codepage=936} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{Created=Wed May 15 17:28:15 2002} %TCIDATA{LastRevised=Friday, March 14, 2014 14:00:35} %TCIDATA{} %TCIDATA{} %TCIDATA{Language=American English} %TCIDATA{CSTFile=LaTeX article (bright).cst} %TCIDATA{PageSetup=65,65,72,72,0} %TCIDATA{} %TCIDATA{AllPages= %H=36 %F=29,\PARA{038

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } %} \newtheorem{theorem}{Theorem}[section] \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \textwidth=16cm \oddsidemargin=0cm \evensidemargin=0cm \topmargin=-20pt \leftmargin=20pt \numberwithin{equation}{section} \baselineskip=100pt \textheight=22cm \def \baselinestretch{1.5} \input{tcilatex} \let\footnote=\endnote \begin{document} \title{Supplementary Material on \textquotedblleft Adaptive Nonparametric Regression with Conditional Heteroskedasticity\textquotedblright } \author{Sainan Jin$^{a}$, Liangjun Su$^{a},$ Zhijie Xiao$^{b}$ \\ %EndAName $^{a\text{ }}$\textit{School of Economics, Singapore Management University }% \\ $^{b}$ \textit{Department of Economics,} \textit{Boston College}} \date{} \maketitle \setcounter{page}{1} \renewcommand\thesection{\Alph{section}} % \setcounter{section}{2} This appendix provides proofs for all technical lemmas in the above paper.\ \section{Proofs of the Technical Lemmas} To facilitate the proof, we define an $N\times N$ matrix $M_{n}(x)$ and $% N\times 1$ vectors $\Psi _{s,n}(x)$ ($s=1,2$) as:% \begin{equation} M_{n}\left( x\right) \equiv \left[ \begin{array}{cccc} M_{n,0,0}(x) & M_{n,0,1}(x) & ... & M_{n,0,p}(x) \\ M_{n,1,0}(x) & M_{n,1,1}(x) & ... & M_{n,1,p}(x) \\ \vdots & \vdots & \ddots & \vdots \\ M_{n,p,0}(x) & M_{n,p,1}(x) & ... & M_{t,p,p}(x)% \end{array}% \right] ,\text{ }\Psi _{s,n}(x)\equiv \left[ \begin{array}{c} \Psi _{s,n,0}(x) \\ \Psi _{s,n,1}(x) \\ \vdots \\ \Psi _{s,n,p}(x)% \end{array}% \right] , \label{A1} \end{equation}% where $M_{n,\left\vert j\right\vert ,\left\vert k\right\vert }(x)$ is an $% N_{\left\vert j\right\vert }\times N_{\left\vert k\right\vert }$ submatrix with the $\left( l,r\right) $ element given by \begin{equation*} \left[ M_{n,\left\vert j\right\vert ,\left\vert k\right\vert }\left( x\right) \right] _{l,r}\equiv \frac{1}{nh^{d}}\sum_{i=1}^{n}\left( \frac{% X_{i}-x}{h_{1}}\right) ^{\phi _{\left\vert j\right\vert }(l)+\phi _{\left\vert k\right\vert }(r)}K\left( \frac{X_{i}-x}{h_{1}}\right) , \end{equation*}% $\Psi _{1,n,\left\vert j\right\vert }(x)$ is an $N_{\left\vert j\right\vert }\times 1$ subvector whose $r$-th element is given by% \begin{equation*} \left[ \Psi _{1,n,\left\vert j\right\vert }(x)\right] _{r}\equiv \frac{1}{% nh^{d}}\sum_{i=1}^{n}\left( \frac{X_{i}-x}{h_{1}}\right) ^{\phi _{\left\vert j\right\vert }(r)}K\left( \frac{X_{i}-x}{h_{1}}\right) Y_{i}, \end{equation*}% and $\Psi _{2,n,\left\vert j\right\vert }(x)$ is an $N_{\left\vert j\right\vert }\times 1$ subvector whose $r$-th element is given by% \begin{equation*} \left[ \Psi _{2,n,\left\vert j\right\vert }(x)\right] _{r}\equiv \frac{1}{% nh^{d}}\sum_{i=1}^{n}\left( \frac{X_{i}-x}{h_{1}}\right) ^{\phi _{\left\vert j\right\vert }(r)}K\left( \frac{X_{i}-x}{h_{1}}\right) u_{i}^{2}. \end{equation*}% Define $\widetilde{\Psi }_{2,n}(x)$ analogously as $\Psi _{2,n}(x)$ with $% u_{i}^{2}$ being replaced by $\tilde{u}_{i}^{2},$ where $\tilde{u}_{i}\equiv Y_{i}-\tilde{m}\left( X_{i}\right) .$ The $p$-th order local polynomial estimates of $m\left( x\right) $ and $\sigma ^{2}\left( x\right) $ are given respectively by \begin{equation*} \tilde{m}\left( x\right) =e_{1}^{^{\top }}M_{n}^{-1}\left( x\right) \Psi _{1,n}(x)\text{ and }\tilde{\sigma}^{2}\left( x\right) =e_{1}^{^{\top }}M_{n}^{-1}\left( x\right) \widetilde{\Psi }_{2,n}(x)\text{.} \end{equation*} For $s=1,2,$ let% \begin{equation*} U_{s,n}\left( x\right) \equiv \left[ \begin{array}{c} U_{s,n,0}(x) \\ U_{s,n,1}(x) \\ : \\ U_{1,n,p}(x)% \end{array}% \right] ,\text{ }B_{s,n}\left( x\right) \equiv \left[ \begin{array}{c} B_{s,n,0}(x) \\ B_{s,n,1}(x) \\ : \\ B_{s,n,p}(x)% \end{array}% \right] ,\text{ } \end{equation*}% where $U_{s,n,l}\left( x\right) $ and $B_{s,n,l}\left( x\right) $ are defined analogously as $\Psi _{s,n,l}(x)$ so that $U_{s,n,\left\vert j\right\vert }\left( x\right) $ and $B_{s,n,\left\vert j\right\vert }\left( x\right) $ are $N_{\left\vert j\right\vert }\times 1$ subvectors whose $r$% -th elements are given by% \begin{eqnarray*} \left[ U_{s,n,\left\vert j\right\vert }\left( x\right) \right] _{r} &=&\frac{% 1}{nh_{1}^{d}}\sum_{i=1}^{n}\left( \frac{X_{i}-x}{h_{1}}\right) ^{\phi _{\left\vert j\right\vert }(r)}K\left( \frac{X_{i}-x}{h_{1}}\right) u_{s,i}, \\ \left[ B_{s,n,\left\vert j\right\vert }\left( x\right) \right] _{r} &=&\frac{% 1}{nh_{1}^{d}}\sum_{i=1}^{n}\left( \frac{X_{i}-x}{h_{1}}\right) ^{\phi _{\left\vert j\right\vert }(r)}K\left( \frac{X_{i}-x}{h_{1}}\right) \Delta _{s,i}\left( x\right) , \end{eqnarray*}% where $u_{1,i}\equiv u_{i},$ $u_{2,i}\equiv u_{i}^{2}-E(u_{i}^{2}|X_{i})=\sigma ^{2}\left( X_{i}\right) (\varepsilon _{i}^{2}-1),$ and $\Delta _{s,i}\left( x\right) \equiv \beta _{s}\left( X_{i}\right) -\sum_{0\leq \left\vert \mathbf{j}\right\vert \leq p}\beta _{s% \mathbf{j}}\left( x\right) $ $\times \left( X_{i}-x\right) ^{\mathbf{j}}.$ We further define $\tilde{U}_{2,n}\left( x\right) $ analogously as $% U_{2,n}\left( x\right) $ but with $u_{2,i}$ being replaced by $\tilde{u}% _{2,i}\equiv \tilde{u}_{i}^{2}-E\left( u_{i}^{2}|X_{i}\right) .$ Then% \begin{eqnarray} \tilde{m}(x)-m\left( x\right) &=&e_{1}^{^{\top }}M_{n}^{-1}(x)U_{1,n}\left( x\right) +e_{1}^{^{\top }}M_{n}^{-1}(x)B_{1,n}\left( x\right) ,\text{ and } \label{A2} \\ \tilde{\sigma}^{2}(x)-\sigma ^{2}\left( x\right) &=&e_{1}^{^{\top }}M_{n}^{-1}(x)\tilde{U}_{2,n}\left( x\right) +e_{1}^{^{\top }}M_{n}^{-1}(x)B_{2,n}\left( x\right) . \notag \end{eqnarray}% By Masry 1996(a), we can readily show that \begin{equation} \tilde{m}(x)-m\left( x\right) =e_{1}^{^{\top }}\left[ f_{X}\left( x\right) M% \right] ^{-1}\frac{1}{n}\sum_{i=1}^{n}K_{h_{1}}\left( x-X_{i}\right) \mathbf{% Z}_{i}u_{i}+h_{1}^{p+1}e_{1}^{^{\top }}M^{-1}B\mathbf{m}^{\left( p+1\right) }\left( x\right) +o_{p}(h_{1}^{p+1}) \label{a1} \end{equation}% uniformly in $x.$ Furthermore, \begin{equation} \underset{x\in \mathcal{X}}{\sup }\left\vert M_{n}(x)-f_{X}\left( x\right) M\right\vert =O_{p}\left( \upsilon _{0n}\right) \text{ and }\underset{x\in \mathcal{X}}{\sup }\left\vert \tilde{m}(x)-m\left( x\right) \right\vert =O_{p}\left( \upsilon _{1n}\right) . \label{a2} \end{equation} The following lemma studies the asymptotic property of the local polynomial estimator $\tilde{\sigma}^{2}(x)$ of $\sigma ^{2}(x).$ \begin{lemma} \label{LemC1}Suppose Assumptions A1-A5 hold. Then $\tilde{\sigma}% ^{2}(x)-\sigma ^{2}(x)=e_{1}^{^{\top }}M_{n}^{-1}(x)U_{2,n}\left( x\right) +e_{1}^{^{\top }}M_{n}^{-1}(x)$ $\times B_{2,n}\left( x\right) +O_{p}\left( (\upsilon _{0n}+\upsilon _{1n})\upsilon _{1n}\right) $ uniformly in $x.$ \end{lemma} \noindent \textbf{Proof of Lemma \ref{LemC1}. }Let $K^{\ast }\left( X_{i},x\right) \equiv e_{1}^{^{\top }}M_{n}^{-1}(x)K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i}.$ Then $\tilde{\sigma}% ^{2}(x)=(nh_{1}^{d})^{-1}\sum_{i=1}^{n}K^{\ast }$ $(X_{i},x)\tilde{u}% _{i}^{2}.$ It follows from $M_{n}^{-1}(x)M_{n}(x)=I_{N}$ that% \begin{equation*} \frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) =\frac{1}{% nh_{1}^{d}}\sum_{i=1}^{n}e_{1}^{^{\top }}M_{n}^{-1}(x)K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i}=1, \end{equation*}% and% \begin{equation*} \frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \left( X_{i}-x\right) ^{\mathbf{j}}=\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}e_{1}^{^{\top }}M_{n}^{-1}(x)K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}% _{i}\left( X_{i}-x\right) ^{\mathbf{j}}=0, \end{equation*}% for $1\leq \left\vert \mathbf{j}\right\vert \leq p.$ Consequently, \begin{equation*} \tilde{\sigma}^{2}(x)-\sigma ^{2}(x)=e_{1}^{^{\top }}M_{n}^{-1}(x)\widetilde{% \Psi }_{2,n}(x)=\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \left\{ \tilde{u}_{i}^{2}-\overline{\sigma }^{2}\left( x,X_{i}\right) \right\} , \end{equation*}% where $\overline{\sigma }^{2}\left( x,X_{i}\right) \equiv \sum_{0\leq \left\vert \mathbf{j}\right\vert \leq p}\left( D^{(\mathbf{j})}\sigma ^{2}\right) (x)\left( X_{i}-x\right) ^{\mathbf{j}}.$ Noting that $\tilde{u}% _{i}^{2}=[Y_{i}-\tilde{m}(X_{i})]^{2}$ $=[\sigma (X_{i})\varepsilon _{i}+m\left( X_{i}\right) $ $-\tilde{m}(X_{i})]^{2}$ $=\sigma ^{2}(X_{i})\varepsilon _{i}^{2}+2\sigma (X_{i})\varepsilon _{i}[m\left( X_{i}\right) -\tilde{m}(X_{i})]+[m\left( X_{i}\right) -\tilde{m}(X_{i})]^{2}, $ we have \begin{eqnarray*} \tilde{\sigma}^{2}(x)-\sigma ^{2}(x) &=&\frac{1}{nh_{1}^{d}}% \sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \left\{ \sigma ^{2}(X_{i})-% \overline{\sigma }^{2}\left( x,X_{i}\right) \right\} \\ &&+\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \sigma ^{2}(X_{i})\left( \varepsilon _{i}^{2}-1\right) \\ &&+\frac{2}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \sigma (X_{i})\varepsilon _{i}\left[ m\left( X_{i}\right) -\tilde{m}(X_{i})\right] \\ &&+\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) \left[ m\left( X_{i}\right) -\tilde{m}(X_{i})\right] ^{2} \\ &\equiv &A_{1}\left( x\right) +A_{2}\left( x\right) +2A_{3}\left( x\right) +A_{4}\left( x\right) ,\text{ say.} \end{eqnarray*} Noting that $\Delta _{2,i}\left( x\right) =\sigma ^{2}(X_{i})-\overline{% \sigma }^{2}\left( x,X_{i}\right) ,$ we have $A_{1}\left( x\right) =e_{1}^{^{\top }}M_{n}^{-1}(x)B_{2,n}\left( x\right) .$ In addition $% A_{2}\left( x\right) =e_{1}^{^{\top }}M_{n}^{-1}(x)U_{2,n}\left( x\right) $ by the definition of $u_{2,i},$ and $\sup_{x\in \mathcal{X}}\left\vert A_{4}\left( x\right) \right\vert =\upsilon _{1n}^{2}$ by (\ref{a2}). For $% A_{3}\left( x\right) ,$ write $-A_{3}\left( x\right) =A_{31}\left( x\right) +A_{32}\left( x\right) ,$ where \begin{eqnarray*} A_{31}\left( x\right) &\equiv &\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}M_{n}^{-1}(X_{i})U_{1,n}\left( X_{i}\right) ,\text{ and } \\ A_{32}\left( x\right) &\equiv &\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}M_{n}^{-1}(X_{i})B_{1,n}\left( X_{i}\right) . \end{eqnarray*}% Note that% \begin{eqnarray*} A_{31}\left( x\right) &=&\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}U_{1,n}\left( X_{i}\right) \\ &&-\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}\left\{ M_{n}\left( x\right) ^{-1}-\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}\right\} U_{1,n}\left( X_{i}\right) \\ &\equiv &A_{31,1}\left( x\right) -A_{31,2}\left( x\right) ,\text{ say.} \end{eqnarray*}% We dispose $A_{31,2}\left( x\right) $ first. By (\ref{a2}), the facts that $% \sup_{x\in \mathcal{X}}\left\Vert U_{1,n}\left( x\right) \right\Vert =O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n})$ and $\sup_{x\in \mathcal{X}}\frac{% 1}{nh_{1}^{d}}\sum_{i=1}^{n}\left\vert K^{\ast }\left( X_{i},x\right) u_{i}\right\vert =O_{p}\left( 1\right) $, we have \begin{eqnarray*} \underset{x\in \mathcal{X}}{\sup }\left\vert A_{31,2}\left( x\right) \right\vert &\leq &\underset{x\in \mathcal{X}}{\sup }\left\Vert M_{n}\left( x\right) ^{-1}-\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}\right\Vert \underset{x\in \mathcal{X}}{\sup }\left\Vert U_{1,n}\left( x\right) \right\Vert \underset{x\in \mathcal{X}}{\sup }\frac{1}{nh_{1}^{d}}% \sum_{i=1}^{n}\left\vert K^{\ast }\left( X_{i},x\right) u_{i}\right\vert \\ &=&O_{p}(\upsilon _{0n})O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% )O_{p}(1)=O_{p}(\upsilon _{0n}n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}). \end{eqnarray*}% Using $U_{1,n}\left( x\right) =\frac{1}{nh_{1}^{d}}\sum_{j=1}^{n}K\left( \left( X_{j}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{j}u_{j}$ and $% K^{\ast }\left( X_{i},x\right) =e_{1}^{^{\top }}M_{n}^{-1}(x)K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i},$ we have% \begin{eqnarray*} A_{31,1}\left( x\right) &=&\frac{1}{n^{2}h_{1}^{2d}}e_{1}^{^{\top }}M_{n}^{-1}(x)\sum_{i=1}^{n}\sum_{j=1}^{n}K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}K\left( \left( X_{j}-X_{j}\right) /h_{1}\right) \mathbf{\tilde{Z}}_{j}u_{i}u_{j} \\ &=&\frac{1}{n^{2}h_{1}^{2d}}e_{1}^{^{\top }}M_{n}^{-1}(x)\sum_{1\leq i\neq j\leq n}K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}% _{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}K\left( \left( X_{j}-X_{j}\right) /h_{1}\right) \mathbf{\tilde{Z}}_{j}u_{i}u_{j} \\ &&+\frac{1}{n^{2}h_{1}^{2d}}e_{1}^{^{\top }}M_{n}^{-1}(x)\sum_{i=1}^{n}K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) % \right] ^{-1}K\left( 0\right) \mathbf{\tilde{Z}}_{i}u_{i}^{2} \\ &\equiv &A_{31,1a}\left( x\right) +A_{31,1b}\left( x\right) ,\text{ say.} \end{eqnarray*}% Let $\varsigma _{ij}\left( x\right) \equiv \{e_{1}^{^{\top }}\left[ Mf_{X}\left( x\right) \right] ^{-1}K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{\tilde{Z}}_{i}\}\{e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}K\left( \left( X_{j}-X_{i}\right) /h_{1}\right) \mathbf{\tilde{Z}}_{j}\}u_{i}u_{j}.$ Then by (\ref{a2}), $A_{31,1a}\left( x\right) =[1+O_{p}\left( \upsilon _{0n}\right) ]\bar{A}_{31,1a}\left( x\right) ,$ where \begin{equation*} \bar{A}_{31,1a}\left( x\right) =\frac{1}{n^{2}h_{1}^{2d}}\sum_{1\leq i\neq j\leq n}\varsigma _{ij}\left( x\right) . \end{equation*}% is a second order degenerate $U$-statistic. We can readily show that $\bar{A}% _{31,1a}\left( x\right) =O_{p}\left( n^{-1}h_{1}^{-d}\right) $ for each $x$ by Chebyshev inequality. By using Bickel's (1975) standard chaining argument, we can show $\sup_{x\in \mathcal{X}}\left\vert \bar{A}% _{31,1a}\left( x\right) \right\vert =O_{p}\left( n^{-1}h_{1}^{-d}\log n\right) .$ For $A_{31,1b}\left( x\right) ,$ we have \begin{eqnarray*} \sup_{x\in \mathcal{X}}\left\vert A_{31,1b}\left( x\right) \right\vert &\leq &\frac{1}{nh_{1}^{d}}\sup_{x\in \mathcal{X}}\left\Vert M_{n}^{-1}(x)\right\Vert \sup_{x\in \mathcal{X}}\left\Vert \frac{1}{% nh_{1}^{d}}\sum_{i=1}^{n}K\left( \left( X_{i}-x\right) /h_{1}\right) \mathbf{% \tilde{Z}}_{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}K\left( 0\right) \mathbf{\tilde{Z}}_{i}u_{i}^{2}\right\Vert \\ &=&O_{p}\left( n^{-1}h_{1}^{-d}\right) O_{p}\left( 1\right) O_{p}\left( 1\right) =O_{p}\left( n^{-1}h_{1}^{-d}\right) . \end{eqnarray*}% It follows that $\sup_{x\in \mathcal{X}}\left\vert A_{31,1}\left( x\right) \right\vert =O_{p}\left( n^{-1}h_{1}^{-d}\log n\right) $. Consequently, we have shown that $\sup_{x\in \mathcal{X}}\left\vert A_{31}\left( x\right) \right\vert =O_{p}(\upsilon _{0n}n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}).$ Note that% \begin{eqnarray*} A_{32}\left( x\right) &=&\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}B_{1,n}\left( X_{i}\right) \\ &&-\frac{1}{nh_{1}^{d}}\sum_{i=1}^{n}K^{\ast }\left( X_{i},x\right) u_{i}e_{1}^{^{\top }}\left\{ M_{n}\left( x\right) ^{-1}-\left[ Mf_{X}\left( X_{i}\right) \right] ^{-1}\right\} B_{1,n}\left( X_{i}\right) \\ &\equiv &A_{32,1}\left( x\right) -A_{32,2}\left( x\right) ,\text{ say.} \end{eqnarray*}% As in the study of $A_{31}\left( x\right) ,$ using (\ref{a2}) and the fact that $\sup_{x\in \mathcal{X}}\left\vert B_{1,n}\left( x\right) \right\vert =O_{p}(h_{1}^{p+1})$ we can readily show that $\sup_{x\in \mathcal{X}% }\left\vert A_{32,2}\left( x\right) \right\vert =O_{p}(\upsilon _{0n}h_{1}^{p+1})$ and that $\sup_{x\in \mathcal{X}}\left\vert A_{32,2}\left( x\right) \right\vert =O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% h_{1}^{p+1}).$ Hence $\sup_{x\in \mathcal{X}}\left\vert A_{32}\left( x\right) \right\vert =O_{p}(\upsilon _{0n}h_{1}^{p+1}).$ Consequently, $% \sup_{x\in \mathcal{X}}\left\vert A_{3}\left( x\right) \right\vert =O_{p}(\upsilon _{0n}\upsilon _{1n}).$ This completes the proof. ${\tiny % \blacksquare }$\medskip \noindent \textbf{Remark C.1.} Using the notation defined in the proof of Lemma \ref{LemC1}, we can also show that $A_{1}\left( x\right) $ $% =h_{1}^{p+1}e_{1}^{^{\top }}M^{-1}B\mathbf{\sigma }^{2}{}^{\left( p+1\right) }\left( x\right) +o_{p}(h_{1}^{p+1}),$ and $\sqrt{nh_{1}^{d}}A_{2}\left( x\right) \overset{d}{\rightarrow }N(0,\left( \sigma ^{4}(x)/f_{X}\left( x\right) \right) E\left( \varepsilon _{1}^{2}-1\right) ^{2}$ $e_{1}^{^{\top }}M^{-1}\Gamma M^{-1}e_{1}^{^{\top }}).$ By standard results on local polynomial estimators, Lemma A.1 implies% \begin{equation} \underset{x\in \mathcal{X}}{\sup }\left\vert \tilde{\sigma}^{2}(x)-\sigma ^{2}(x)\right\vert =O_{p}\left( \upsilon _{1n}\right) , \label{a3} \end{equation}% where $\upsilon _{1n}$ is the rate we can obtain even if the conditional mean function $m\left( x\right) $ is known. \medskip Let $\delta _{i}$ and $v_{ri}\left( x\right) $ be as defined in Appendix A. To prove Lemmas A.1-A.2, we will frequently use the facts that \begin{eqnarray} \delta _{i} &=&O_{p}\left( h^{p+1}\right) \text{ uniformly on the set }% \left\{ K_{ix}>0\right\} , \label{fact1} \\ v_{ri}\left( x\right) &=&O_{p}\left( (h_{1}^{p+1}+n^{-1/2}h_{1}^{-d/2})\left( 1+\left( h/h_{1}\right) ^{p}\right) \right) \text{ on the set }\left\{ K_{ix}>0\right\} ,\text{ }r=1,2, \label{fact2} \\ \underset{\left\{ K_{ix}>0\right\} }{\max }\left\vert v_{ri}\left( x\right) \right\vert &=&O_{p}\left( \upsilon _{2n}\right) ,\text{ }r=1,2. \label{fact3} \end{eqnarray}% To facilitate the asymptotic analysis, we also define the kernel density and derivative estimator based on the unobserved errors $\left\{ \varepsilon _{j}\right\} $:% \begin{equation*} \overline{f}_{i}\left( e_{i}\right) =\frac{1}{nh_{0}}\sum_{j\neq i}k_{0}\left( \frac{e_{i}-\varepsilon _{j}}{h_{0}}\right) ,\text{ and }% \overline{f}_{i}^{\left( s\right) }\left( e_{i}\right) =\frac{1}{nh_{0}^{1+s}% }\sum_{j\neq i}k_{0}^{\left( s\right) }\left( \frac{e_{i}-\varepsilon _{j}}{% h_{0}}\right) \text{ for }s=1,2,3. \end{equation*}% We will need the result in the following lemma which is adopted from Hansen (2008). \begin{lemma} \label{LemC2}Let $\varepsilon _{i},$ $i=1,...,n,$ be IID. Assume that $% \left( i\right) $ the PDF of $\varepsilon _{i},$ $f\left( \cdot \right) ,$ is uniformly bounded, and the $\left( p+1\right) $th derivative of $% f^{\left( s\right) }\left( \varepsilon \right) $ is uniformly continuous; $% \left( ii\right) $ there exists $q>0$ such that $\sup_{\varepsilon }\left\vert \varepsilon \right\vert ^{q}f\left( \varepsilon \right) <\infty $ and $|k_{0}^{\left( s\right) }\left( e\right) |\leq C\left\vert e\right\vert ^{-q}$ for $\left\vert e\right\vert $ large; $\left( iii\right) $ $% k_{0}\left( \cdot \right) $ is a ($p+1$)th order kernel and $\int \left\vert e\right\vert ^{p+s+1}\left\vert k_{0}\left( e\right) \right\vert de<\infty $% ; $\left( iv\right) $ $h_{0}\rightarrow 0$ and $nh_{0}^{1+2s}/\log n\rightarrow \infty $ as $n\rightarrow \infty .$ Then% \begin{equation*} \max_{1\leq i\leq n}\left\vert \overline{f}_{i}^{\left( s\right) }\left( \bar{\varepsilon}_{i}\right) -f^{\left( s\right) }\left( \bar{\varepsilon}% _{i}\right) \right\vert =O_{p}(h_{0}^{p+1}+n^{-1/2}h_{0}^{-1/2-s}\sqrt{\log n% }). \end{equation*} \end{lemma} \noindent \textbf{Proof of Lemma \ref{LemC2}. }The above result is essentially a special case of Theorem 6 in Hansen (2008) who allows for strong mixing processes. For an IID\ sequence, the parameters $\beta $ and $% \theta $ in Hansen (2008) correspond to $\infty $ and one, respectively. Another noticeable difference is that Hansen considers the usual kernel estimates whereas we consider the leave-one-out kernel estimates here. The difference between these two kernel estimates is uniformly $% (nh_{0}^{1+s})^{-1}k_{0}^{\left( s\right) }\left( 0\right) ,$ which is $% o(n^{-1/2}h_{0}^{-1/2-s}\sqrt{\log n})$ under condition $\left( iv\right) $ and thus does not contribute to the uniform convergence rate of $\overline{f}% _{i}^{\left( s\right) }\left( \bar{\varepsilon}_{i}\right) -f^{\left( s\right) }\left( \bar{\varepsilon}_{i}\right) $ to 0. ${\tiny \blacksquare }$% \medskip \medskip \noindent \textbf{Proof of Lemma A.1. }We only prove the lemma with $s=0$ as the other cases can be treated analogously. Write $\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) -f\left( \bar{\varepsilon}% _{i}\right) $ $=[\overline{f}\left( \bar{\varepsilon}_{i}\right) -f\left( \bar{\varepsilon}_{i}\right) ]+[\tilde{f}_{i}\left( \overrightarrow{% \varepsilon }_{i}\right) -\overline{f}\left( \bar{\varepsilon}_{i}\right) ].$ Noting that $k_{0}$ is a ($p+1$)-th order kernel with compact support by Assumption A6, the conditions on the kernel in Lemma \ref{LemC2} are satisfied. One can readily check that the other conditions in that lemma are also satisfied under Assumptions A1, A2, and A7. So we can apply Lemma \ref% {LemC2} to obtain $\max_{1\leq i\leq n}\left\vert \overline{f}_{i}\left( \bar{\varepsilon}_{i}\right) -f\left( \bar{\varepsilon}_{i}\right) \right\vert =O_{p}(h_{0}^{p+1}+n^{-1/2}h_{0}^{-1/2}\sqrt{\log n}).$ Let \begin{eqnarray} r_{1ij} &\equiv &\frac{\bar{\varepsilon}_{i}\left[ \varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{1/2}-\varphi (P_{i}(% \mathbf{\tilde{\beta}}_{2}))^{1/2}\right] }{\varphi (P_{i}(\mathbf{\tilde{% \beta}}_{2}))^{1/2}}-\frac{v_{1i}\left( x\right) }{\varphi (P_{i}(\mathbf{% \tilde{\beta}}_{2}))^{1/2}}+\frac{\tilde{m}\left( X_{j}\right) -m\left( X_{j}\right) }{\sigma \left( X_{j}\right) } \notag \\ &&+\left[ \varepsilon _{j}+\frac{m\left( X_{j}\right) -\tilde{m}\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\right] \frac{\tilde{\sigma}% \left( X_{j}\right) -\sigma \left( X_{j}\right) }{\tilde{\sigma}\left( X_{j}\right) }. \label{r1ij1} \end{eqnarray}% Then% \begin{equation} \overrightarrow{\varepsilon }_{i}-\tilde{\varepsilon}_{j}=\left( \bar{% \varepsilon}_{i}-\varepsilon _{j}\right) +r_{1ij}. \label{r1ij2} \end{equation}% By a first order Taylor expansion with an integral remainder, we have \begin{eqnarray} \tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) -\overline{f}% \left( \bar{\varepsilon}_{i}\right) &=&\frac{1}{nh_{0}}\sum_{j\neq i}\left[ k_{0}\left( \frac{\overrightarrow{\varepsilon }_{i}-\tilde{\varepsilon}_{j}}{% h_{0}}\right) -k_{0}\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{% h_{0}}\right) \right] \notag \\ &=&\frac{-1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{v_{1i}\left( x\right) }{\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{1/2}} \notag \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \bar{\varepsilon}_{i}\left[ \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{1/2}-\varphi (P_{i}(% \mathbf{\tilde{\beta}}_{2}))^{1/2}\right] \varphi (P_{i}(\mathbf{\tilde{\beta% }}_{2}))^{-1/2} \notag \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{\tilde{m}\left( X_{j}\right) -m\left( X_{j}\right) }{\sigma \left( X_{j}\right) } \notag \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \left[ \varepsilon _{j}+% \frac{m\left( X_{j}\right) -\tilde{m}\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\right] \frac{\tilde{\sigma}\left( X_{j}\right) -\sigma \left( X_{j}\right) }{\tilde{\sigma}\left( X_{j}\right) } \notag \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}\int_{0}^{1}\left[ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}+wr_{1ij}}{h_{0}}\right) -k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}% \right) \right] dwr_{1ij} \notag \\ &\equiv &-B_{1i}\left( x\right) +B_{2i}\left( x\right) +B_{3i}\left( x\right) +B_{4i}\left( x\right) +B_{5i}\left( x\right) ,\text{ say.} \label{A1_5x} \end{eqnarray}% We will establish the uniform probability order for $B_{ji}\left( x\right) ,$ $j=1,2,...,5,$ in order. For $B_{1i}\left( x\right) ,$ we apply Lemma \ref{LemC2} to obtain that, uniformly in $i,$ \begin{equation} \frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) =f^{\prime }\left( \bar{% \varepsilon}_{i}\right) +O_{p}\left( n^{-1/2}h_{0}^{-3/2}\sqrt{\log n}% +h_{0}^{p+1}\right) . \label{A4} \end{equation}% Then by (\ref{fact3}) and the uniform boundedness of $f^{\prime }\left( \varepsilon \right) $, we have \begin{equation} \max_{\left\{ K_{ix}>0\right\} }\left\vert B_{1i}\left( x\right) \right\vert =O_{p}\left( \upsilon _{2n}\right) . \label{A1x} \end{equation}% Similarly, by (\ref{A4}), (\ref{fact3}), and the uniform boundedness of $% f^{\prime }\left( \varepsilon \right) \varepsilon ,$ we have \begin{equation} \max_{\left\{ K_{ix}>0\right\} }\left\vert B_{2i}\left( x\right) \right\vert =O_{p}\left( \upsilon _{2n}\right) . \label{A2x} \end{equation}% Expanding $M_{n}^{-1}(x)$ around its probability limit $\left[ Mf_{X}\left( x\right) \right] ^{-1},$ we have% \begin{eqnarray*} B_{3i}\left( x\right) &=&\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) % \right] ^{-1}U_{1,n}\left( X_{j}\right) \\ &&-\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\overline{% \varepsilon }_{i}-\varepsilon _{j}}{h_{0}}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\alpha _{n}\left( X_{j}\right) M_{n}^{-1}\left( X_{j}\right) U_{1,n}\left( X_{j}\right) \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}B_{1,n}\left( X_{j}\right) \\ &&-\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\alpha _{n}\left( X_{j}\right) M_{n}^{-1}\left( X_{j}\right) B_{1,n}\left( X_{j}\right) \\ &\equiv &B_{31i}\left( x\right) -B_{32i}\left( x\right) +B_{33i}\left( x\right) -B_{34i}\left( x\right) , \end{eqnarray*}% where $\alpha _{n}\left( x\right) \equiv \left[ Mf_{X}\left( x\right) \right] ^{-1}[M_{n}\left( x\right) -Mf_{X}\left( x\right) ].$ Write \begin{eqnarray*} B_{31i}\left( x\right) &=&\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) % \right] ^{-1}U_{1,n}\left( X_{j}\right) \\ &=&\frac{1}{nh_{0}^{2}}\sum_{j\neq i}E_{j}\left[ k_{0}^{\prime }\left( \frac{% \bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \right] \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) % \right] ^{-1}U_{1,n}\left( X_{j}\right) \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}\left\{ k_{0}^{\prime }\left( \frac{% \bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) -E_{j}\left[ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}% \right) \right] \right\} \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}% \left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}U_{1,n}\left( X_{j}\right) \\ &&\equiv B_{31i,1}\left( x\right) +B_{31i,2}\left( x\right) ,\text{ say.} \end{eqnarray*} For $B_{31i,1}\left( x\right) ,$ we have% \begin{eqnarray*} \max_{1\leq i\leq n}\left\vert B_{31i,1}\left( x\right) \right\vert &\leq &\max_{1\leq i\leq n}\left\vert \frac{n-1}{nh_{0}^{2}}E_{j}\left[ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}% \right) \right] \right\vert \times \sup_{x\in \mathcal{X}}\left\Vert \sigma ^{-1}\left( x\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( x\right) \right] ^{-1}\right\Vert \sup_{x\in \mathcal{X}}\left\Vert U_{1,n}\left( x\right) \right\Vert \\ &=&O_{p}\left( 1\right) O_{p}\left( 1\right) O_{p}\left( n^{-1/2}h_{1}^{-d/2}% \sqrt{\log n}\right) =O_{p}\left( n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}\right) , \end{eqnarray*}% where we use the facts that $\sup_{x\in \mathcal{X}}\left\Vert U_{1,n}\left( x\right) \right\Vert =O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n})$ by Masry (1996a), $\max_{1\leq i\leq n}|h_{0}^{-2}$ $\times E_{j}[k_{0}^{\prime }((% \bar{\varepsilon}_{i}-\varepsilon _{j})/h_{0})]-f^{\prime }\left( \bar{% \varepsilon}_{i}\right) |=O(h_{0}^{p+1})$ by standard bias calculation for kernel estimates and $\max_{1\leq i\leq n}$ $\left\vert f^{\prime }\left( \bar{\varepsilon}_{i}\right) \right\vert \leq \sup_{\varepsilon }\left\vert f^{\prime }\left( \varepsilon \right) \right\vert \leq C<\infty .$ Let $v_{j}\left( \bar{\varepsilon}_{i}\right) =k_{0}^{\prime }\left( (\bar{% \varepsilon}_{i}-\varepsilon _{j})/h_{0}\right) -E[k_{0}^{\prime }\left( (% \bar{\varepsilon}_{i}-\varepsilon _{j})/h_{0}\right) ].$ Then% \begin{eqnarray*} B_{31i,2}\left( x\right) &=&\frac{1}{n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}\sum_{l}v_{j}\left( \bar{\varepsilon}_{i}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}% \mathbf{\tilde{Z}}_{l}K\left( \frac{X_{l}-X_{j}}{h_{1}}\right) u_{l} \\ &=&\frac{1}{n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}\sum_{l\neq j,i}v_{j}\left( \bar{\varepsilon}_{i}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}\mathbf{\tilde{% Z}}_{l}K\left( \frac{X_{l}-X_{j}}{h_{1}}\right) u_{l} \\ &&+\frac{1}{n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}v_{j}\left( \bar{% \varepsilon}_{i}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}% \left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}\mathbf{\tilde{Z}}_{j}K\left( 0\right) u_{j} \\ &&+\frac{1}{n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}v_{j}\left( \bar{% \varepsilon}_{i}\right) \sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}% \left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}\mathbf{\tilde{Z}}_{i}K\left( \frac{X_{i}-X_{j}}{h_{1}}\right) u_{i} \\ &\equiv &B_{31i,2a}\left( x\right) +B_{31i,2b}\left( x\right) +B_{31i,2c}\left( x\right) ,\text{ say.} \end{eqnarray*}% By construction, $B_{31i,2a}\left( x\right) $ is a second order degenerate $U $-statistic (see, e.g., Lee (1990)) and we can bound it by straightforward moment calculations. Let $\epsilon _{n}\equiv Cn^{-1/2}h_{1}^{-d/2}\sqrt{% \log n}$ for some $C>0.$ By the Boole and Markov inequalities, \begin{equation*} P\left( \max_{1\leq i\leq n}\left\vert B_{31i,2a}\left( x\right) \right\vert \geq \epsilon _{n}\right) \leq \sum_{i=1}^{n}P\left( \left\vert B_{31i,2a}\left( x\right) \right\vert \geq \epsilon _{n}\right) \leq \sum_{i=1}^{n}\frac{E\left[ \left\vert B_{31i,2a}\left( x\right) \right\vert ^{4}\right] }{\epsilon _{n}^{4}}. \end{equation*}% Let $a_{lj}=e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}% \mathbf{\tilde{Z}}_{l}K\left( (X_{l}-X_{j})/h_{1}\right) .$ Note that \begin{eqnarray*} E\left[ \left\vert B_{31i,2}\left( x\right) \right\vert ^{4}\right] &=&% \frac{1}{\left( n^{2}h_{1}^{d}h_{0}^{2}\right) ^{4}}\sum_{j_{s}\neq l_{s}\neq i\text{ for }s=1,2,3,4} \\ &&\times E\left\{ a_{l_{1}j_{1}}a_{l_{2}j_{2}}a_{l_{3}j_{3}}a_{l_{4}j_{4}}v_{j_{1}}\left( \bar{% \varepsilon}_{i}\right) u_{l_{1}}v_{j_{2}}\left( \bar{\varepsilon}% _{i}\right) u_{l_{2}}v_{j_{3}}\left( \bar{\varepsilon}_{i}\right) u_{l_{3}}v_{j_{4}}\left( \bar{\varepsilon}_{i}\right) u_{l_{4}}\right\} , \end{eqnarray*}% where the summations are only taken with respect to $j$ and $l$'s. Consider the index set\ $S\equiv \{j_{s},l_{s},s=1,$ $2,$ $3,$ $4\}.$ If the number of distinct elements in $S$ is larger than $4,$ then the expectation in the last expression is zero by the IID condition in Assumption A1. We can readily show that $E\left[ \left\vert B_{31i,2}\left( x\right) \right\vert ^{4}\right] =O(n^{-4}h_{1}^{-2d}h_{0}^{-6}).$ It follows that \begin{eqnarray*} P\left( \max_{1\leq i\leq n}\left\vert B_{31i,2a}\left( x\right) \right\vert \geq \epsilon _{n}\alpha _{n,0}\right) &\leq &\frac{% nO(n^{-4}h_{1}^{-2d}h_{0}^{-6})}{Cn^{-2}h_{1}^{-2d}\left( \log n\right) ^{2}\alpha _{n,0}^{4}}=\frac{O\left( n^{-1}h_{0}^{-6}\left( \log n\right) ^{-2}\right) }{\alpha _{n}^{4}} \\ &=&O\left( n^{-1}h^{-(2p+1)-d}\right) =O\left( 1\right) . \end{eqnarray*}% where recall $\alpha _{n,s}=h^{[(2p+d)/4-(s+1)]}(\log n)^{s+1}.$ Then $% \max_{1\leq i\leq n}\left\vert B_{31i,2a}\left( x\right) \right\vert =O_{p}(\alpha _{n,0}n^{-1/2}h_{1}^{-d/2}\sqrt{\log n})$ by the Markov inequality. Analogously, we can show that $\max_{1\leq i\leq n}\left\vert B_{31i,2c}\left( x\right) \right\vert $ $=o(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% ).$ For $B_{31i,2b}\left( x\right) ,$ we continue to decompose it as follows% \begin{eqnarray*} B_{31i,2b}\left( x\right) &=&\frac{K\left( 0\right) }{% n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}\sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}\mathbf{\tilde{% Z}}_{j}\left\{ v_{j}\left( \bar{\varepsilon}_{i}\right) u_{j}-E_{j}\left[ v_{j}\left( \bar{\varepsilon}_{i}\right) u_{j}\right] \right\} \\ &&+\frac{K\left( 0\right) }{n^{2}h_{1}^{d}h_{0}^{2}}\sum_{j\neq i}\sigma ^{-1}\left( X_{j}\right) e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) % \right] ^{-1}\mathbf{\tilde{Z}}_{j}E_{j}\left[ v_{j}\left( \bar{\varepsilon}% _{i}\right) u_{j}\right] \\ &\equiv &B_{31i,2b1}\left( x\right) +B_{31i,2b2}\left( x\right) , \end{eqnarray*}% where $E_{j}$ denotes expectation with respect to the variable indexed by $j. $ We bound the second term first:% \begin{eqnarray*} \max_{1\leq i\leq n}\left\vert B_{31i,2b2}\left( x\right) \right\vert &\leq &\max_{1\leq i\leq n}\left\vert h_{0}^{-1}E_{j}\left[ v_{j}\left( \bar{% \varepsilon}_{i}\right) u_{j}\right] \right\vert \frac{K\left( 0\right) }{% n^{2}h_{1}^{d}h_{0}}\sum_{j=1}^{n}\sigma ^{-1}\left( X_{j}\right) \left\vert e_{1}^{^{\top }}\left[ Mf_{X}\left( X_{j}\right) \right] ^{-1}\mathbf{\tilde{% Z}}_{j}\right\vert \\ &=&O_{p}\left( 1\right) O(n^{-1}h_{1}^{-d}h_{0}^{-1})=O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1}). \end{eqnarray*}% By the Boole and Markov inequalities,% \begin{eqnarray*} P\left( \max_{1\leq i\leq n}\left\vert B_{31i,2b1}\left( x\right) \right\vert \geq \epsilon _{n}\right) &\leq &\sum_{i=1}^{n}\frac{E\left[ \left\vert B_{31i,2b1}\left( x\right) \right\vert ^{4}\right] }{\epsilon _{n}^{4}}=\frac{nO(n^{-6}h_{1}^{-4d}h_{0}^{-6})}{Cn^{-2}h_{1}^{-2d}\left( \log n\right) ^{2}} \\ &=&O(n^{-3}h_{1}^{-2d}h_{0}^{-6}\left( \log n\right) ^{-2})=o\left( 1\right) , \end{eqnarray*}% implying that $\max_{1\leq i\leq n}\left\vert B_{31i,2b1}\left( x\right) \right\vert =o_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}).$ Hence $\max_{1\leq i\leq n}\left\vert B_{31i,2}\left( x\right) \right\vert =O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1})$ $+o_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% ).$ Consequently, we have shown that \begin{equation*} \max_{1\leq i\leq n}\left\vert B_{31i}\left( x\right) \right\vert =O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1})+\left( \alpha _{n,0}+o\left( 1\right) \right) O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}). \end{equation*} By (\ref{a2}), the fact that $\sup_{x\in \mathcal{X}}\left\Vert U_{1,n}\left( x\right) \right\Vert =O_{p}(n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}), $ and the fact that $\max_{1\leq i\leq n}\frac{1}{nh_{0}^{2}}\sum_{j\neq i}$ $\left\vert k_{0}^{\prime }\left( (\overline{\varepsilon }_{i}-\varepsilon _{j})/h_{0}\right) \right\vert =O(h_{0}^{-1}),$ we can readily show that $% \max_{1\leq i\leq n}\left\vert B_{32i}\left( x\right) \right\vert =O_{p}(\upsilon _{0n}n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}h_{0}^{-1}).$ For the other terms, we have $\max_{1\leq i\leq n}\left\vert B_{33i}\left( x\right) \right\vert $ $=O_{p}(h_{1}^{p+1}),$ and $\max_{1\leq i\leq n}\left\vert B_{34i}\left( x\right) \right\vert =O_{p}(h_{1}^{p+1})O_{p}\left( \upsilon _{0n}\right) $ $O_{p}\left( h_{0}^{-1}\right) =O_{p}(\upsilon _{0n}h_{1}^{p+1}h_{0}^{-1}).$ Consequently, \begin{equation} \underset{1\leq i\leq n}{\max }\left\vert B_{3i}\left( x\right) \right\vert =O_{p}\left( n^{-1}h_{1}^{-d}h_{0}^{-1}+\upsilon _{1n}+\upsilon _{0n}\upsilon _{1n}h_{0}^{-1}+\alpha _{n,0}n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% \right) . \label{A3x} \end{equation} Now write% \begin{eqnarray*} B_{4i}\left( x\right) &=&\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \varepsilon _{j}\frac{\tilde{\sigma}\left( X_{j}\right) -\sigma \left( X_{j}\right) }{\tilde{\sigma}\left( X_{j}\right) } \\ &&+\frac{1}{nh_{0}^{2}}\sum_{j\neq i}k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{m\left( X_{j}\right) -% \tilde{m}\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\frac{\tilde{% \sigma}\left( X_{j}\right) -\sigma \left( X_{j}\right) }{\tilde{\sigma}% \left( X_{j}\right) } \\ &\equiv &B_{41i}\left( x\right) +B_{42i}\left( x\right) . \end{eqnarray*}% By (\ref{a2}) and Lemma \ref{LemC1}, it is easy to show that $\max_{1\leq i\leq n}\left\vert B_{42i}\left( x\right) \right\vert =O_{p}\left( \upsilon _{1n}^{2}h_{0}^{-1}\right) .$ Using analogous arguments as used in the analysis of $B_{3i}\left( x\right) $ and Lemma \ref{LemC1}, we can show that $\max_{1\leq i\leq n}\left\vert B_{41i}\left( x\right) \right\vert $ $% =O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1}+\upsilon _{0n}\upsilon _{1n}h_{0}^{-1}+h_{1}^{p+1}).$ Consequently, \begin{equation} \max_{1\leq i\leq n}\left\vert B_{4i}\left( x\right) \right\vert =O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1}+\upsilon _{0n}\upsilon _{1n}h_{0}^{-1}+h_{1}^{p+1}). \label{A4x} \end{equation}% where we use the fact that $\upsilon _{1n}^{2}h_{0}^{-1}=o_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1}+h_{1}^{p+1}).$ As argued by Hansen (2008, pp.740-741), under Assumption A6 there exists an integral function $k_{0}^{\ast }$ such that \begin{equation*} \left\vert k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}+wr_{1ij}}{h_{0}}\right) -k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \right\vert \leq wh_{0}^{-1}k_{0}^{\ast }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \left\vert r_{1ij}\right\vert . \end{equation*}% It follows that \begin{eqnarray} \max_{1\leq i\leq n}\left\vert B_{5i}\left( x\right) \right\vert &\leq &% \frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\ast }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) r_{1ij}^{2}=\frac{O_{p}\left( \upsilon _{2n}^{2}\right) }{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\ast }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \left( \bar{\varepsilon}% _{i}^{2}+\varepsilon _{j}^{2}\right) \notag \\ &=&O_{p}\left( \upsilon _{2n}^{2}h_{0}^{-2}\right) . \label{A5x} \end{eqnarray}% Combining (\ref{A1_5x}), (\ref{A1x}), (\ref{A2x}), (\ref{A3x}), (\ref{A4x}), and (\ref{A5x}) and using the facts that $n^{-1}h_{1}^{-d}h_{0}^{-1}=o\left( \upsilon _{1n}^{2}h_{0}^{-2}\right) $ and that $h_{1}^{p+1}=o(\upsilon _{2n}) $ yield the desired result for $s=0.$ When $s>0,$ we can decompose $\tilde{f}_{i}^{\left( s\right) }\left( \overrightarrow{\varepsilon }_{i}\right) -\overline{f}^{\left( s\right) }\left( \bar{\varepsilon}_{i}\right) $ as in (\ref{A1_5x}) with the corresponding terms denoted as $B_{ri}^{\left( s\right) }\left( x\right) $ for $r=1,2,...,5.$ The probability orders of $B_{1i}^{\left( s\right) }\left( x\right) $ and $B_{2i}^{\left( s\right) }\left( x\right) $ are the same as those of $B_{1i}\left( x\right) $ and $B_{2i}\left( x\right) ,$ those of $B_{3i}^{\left( s\right) }\left( x\right) \ $and $B_{4i}^{\left( s\right) }\left( x\right) $ become $O_{p}(n^{-1}h_{1}^{-d}h_{0}^{-1-s}+(% \upsilon _{0n}h_{0}^{-1-s}+\alpha _{n,s})n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}% +h_{1}^{p+1}),$ and the probability order of $B_{5i}^{\left( s\right) }\left( x\right) $ is $O_{p}(\upsilon _{2n}^{2}h_{0}^{-2-s})$. Consequently, $\max_{1\leq i\leq n}|\tilde{f}_{i}^{\left( s\right) }\left( \overrightarrow{% \varepsilon }_{i}\right) -\overline{f}^{\left( s\right) }\left( \bar{% \varepsilon}_{i}\right) |=O_{p}(\upsilon _{2n}+(\upsilon _{0n}h_{0}^{-1-s}+\alpha _{n,s})n^{-1/2}h_{1}^{-d/2}\sqrt{\log n}+\upsilon _{2n}^{2}h_{0}^{-2-s}).$ ${\tiny \blacksquare }$\medskip\ \medskip \noindent \textbf{Proof of Lemma A.2. }The proof is similar to but much simpler than that of Lemma A.1 and thus omitted. ${\tiny \blacksquare }$% \medskip \noindent \textbf{Proof of Lemma A.3. }The proof is analogous to that of Lemma USSLN in Gozalo and Linton (2000) and thus we only sketch the proof for the $r=1$ case. Let $\mathcal{C}_{n}=\left\{ q_{1n}\left( ^{.},\theta \right) :\theta \in \Theta \right\} $. Under the permissibility and envelope integrability of $\mathcal{C}_{n},$ the almost sure convergence of $% \sup_{\theta \in \Theta }\left\vert h^{-d}\left[ P_{n}q_{n,1}\left( Z,\theta \right) -Pq_{n,1}\left( Z_{i},\theta \right) \right] \right\vert $ is equivalent to its convergence in probability. By the boundedness of $\Theta $ and measurability of the $q_{n,1}$, the class $\mathcal{C}_{n}$ is permissible in the sense of Pollard (1984, p196). We now show the envelope integrability of $\mathcal{C}_{n}.$ By Assumption A1 and the compactness of $% K,$ $\left\vert \log \left( f\left( \varepsilon _{i}\left( \mathbf{\beta }% \right) \right) \right) \right\vert \leq D(Y_{i})$ on the set $K_{ix}>0.$ Consequently, we can take the dominance function $\overline{q}_{n}=D\left( Y\right) K\left( \left( x-X\right) /h\right) .$ Let $E\left[ D\left( Y\right) |X\right] =\bar{D}\left( X\right) .$ Assumptions A1 and A3 ensure that \begin{equation*} P\overline{q}_{n}=E\left[ \bar{D}\left( X\right) K\left( \left( x-X\right) /h\right) \right] =h^{d}\int \bar{D}\left( x-hu\right) f\left( x-hu\right) K\left( u\right) du=O\left( h^{d}\right) . \end{equation*} The envelope integrability allows us to truncate the functions to a finite range. Let $\alpha _{n}>1$ be a sequence of constants such that $\alpha _{n}\rightarrow \infty $ as $n\rightarrow \infty .$ Define% \begin{equation*} \mathcal{C}_{\alpha _{n}}^{\ast }=\left\{ q_{\alpha _{n}}^{\ast }=\alpha _{n}^{-1}q_{n,1}\mathbf{1}\left\{ \overline{q}_{n}\leq \alpha _{n}\right\} :q_{n}\in \mathcal{C}_{n}\right\} . \end{equation*}% Let $b_{n}$ be a non-increasing sequence of positive numbers for which $% nh^{d}b_{n}^{2}\gg \log n.$ By analysis similar to that of Gozalo and Linton (2000) and Theorem II.37 of Pollard (1984, p.34), to show that $\underset{% \mathcal{C}_{n}}{\sup }\left\vert P_{n}q_{n,1}-Pq_{n,1}\right\vert =o_{p}\left( h^{d}b_{n}\right) ,$ it suffices to show% \begin{equation} \underset{\mathcal{C}_{\alpha _{n}}^{\ast }}{\sup }\left\vert P_{n}q_{\alpha _{n}}^{\ast }-Pq_{\alpha _{n}}^{\ast }\right\vert =o_{p}\left( h^{d}b_{n}\right) , \label{U3} \end{equation}% which holds provided \begin{equation} \underset{\mathcal{C}_{\alpha _{n}}^{\ast }}{\sup }\left\{ P\left[ q_{\alpha _{n}}^{\ast }\right] ^{2}\right\} ^{1/2}0\}$ is Euclidean for the constant envelope $\sup_{\varepsilon }\left\vert f\left( \varepsilon \right) \right\vert .$ It follows from Pakes and Pollard (1989, Lemmas 2.15) that $\mathcal{C}_{1}$ is also Euclidean. Similarly, $\mathcal{C}_{2}$ is Euclidean. By Nolan and Pollard (1987, Lemma 22) and the bounded variation of $K,$ $\mathcal{C}_{3}$ forms a Euclidean class with constant envelope $\sup_{x}\left\vert K\left( x\right) \right\vert .$ Finally, by Pollard (1984, Lemma II.25) and the Euclidean property of $\mathcal{C}_{j},$ $j=1,2,3,$ $\mathcal{C}_{4}$ is Euclidean. Consequently \begin{equation*} \sup_{\theta }\left\vert \frac{1}{nh^{d}}\sum_{i=1}^{n}q_{1n}\left( Z_{i},\theta \right) -Eq_{1n}\left( Z_{i},\theta \right) \right\vert =o_{a.s.}\left( b_{n}\right) . \end{equation*}% Since Pollard's Theorem requires that $b_{n}\gg n^{-1/2}h^{-d/2}\sqrt{\log n}% ,$ we can take $b_{n}=n^{-1/2}h^{-d/2}\sqrt{\log n}$ to obtain the desired result. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma A.4. }The proof is analogous to that of Newey (1991, Corollary 3.2). We first show $\bar{P}_{n,1}\left( \theta \right) $ is equicontinuous. Let $D_{n,i}\left( S\right) =\mathbf{1}\left\{ Y_{i}\notin S\right\} D\left( Y_{i}\right) K_{h}\left( x-X_{i}\right) $ for a compact set $S$ on $\mathbb{R}$. By the H\"{o}lder inequality and the law of iterated expectations,% \begin{eqnarray} ED_{n,i}\left( S\right) &=&EE\left[ D_{n,i}\left( S\right) |X_{i}\right] \notag \\ &\leq &E\left[ \left\{ P\left( Y_{i}\notin S|X_{i}\right) \right\} ^{\left( \gamma -1\right) /\gamma }\left\{ E\left[ D^{\gamma }\left( Y_{i}\right) |X_{i}\right] \right\} ^{1/\gamma }K_{h}\left( x-X_{i}\right) \right] \notag \\ &=&E\left[ \left\{ P\left( Y_{i}\notin S|X_{i}\right) \right\} ^{\left( \gamma -1\right) /\gamma }\left[ \bar{D}\left( X_{i}\right) \right] ^{1/\gamma }K_{h}\left( x-X_{i}\right) \right] . \label{EC1} \end{eqnarray}% Note that \begin{equation} E\left[ \left[ \bar{D}\left( X_{i}\right) \right] ^{1/\gamma }K_{h}\left( x-X_{i}\right) \right] =\int \left[ \bar{D}\left( x-hv\right) \right] ^{1/\gamma }f\left( x-hv\right) K\left( v\right) dv\leq C\int K\left( v\right) dv. \label{EC2} \end{equation}% Consider $\epsilon ,\eta >0.$ By Assumption A2, we can choose $S$ large enough such that $P\left( Y_{i}\notin S|X_{i}\right) $ is arbitrary small to ensure $ED_{n,i}\left( S\right) <\epsilon \eta /4$. Also, $q_{n}\left( z,\theta \right) $ is uniformly continuous on $(\mathcal{X}\times S)\times \Theta $ for each compact set $\mathcal{X}\times S,$ implying that for any $% \theta \in \Theta $ there exists $\mathcal{N\equiv N}\left( \theta \right) $ such that $\sup_{\left( z,\theta ^{\prime }\right) \in (\mathcal{X}\times S)\times \mathcal{N}}|p_{1}\left( z,\theta ^{\prime }\right) -p_{1}(z,$ $% \theta )|<\epsilon /2.$ Consequently% \begin{equation} \sup_{\theta ^{\prime }\in \mathcal{N}}\left\vert p_{1}\left( Z_{i},\theta ^{\prime }\right) -p_{1}\left( Z_{i},\theta \right) \right\vert <\epsilon /2+2\cdot \mathbf{1}\left\{ Y_{i}\notin S\right\} D\left( Y_{i}\right) K_{h}\left( x-X_{i}\right) . \label{EC3} \end{equation}% Let $\triangle _{n}\left( \epsilon ,\eta \right) =\epsilon /2+2\bar{D}% _{n}\left( S\right) ,$ where $\bar{D}_{n}\left( S\right) =n^{-1}\sum_{i=1}^{n}D_{n,i}\left( S\right) .$ By (\ref{EC3}) and the triangle inequality \begin{equation*} \sup_{\theta ^{\prime }\in \mathcal{N}}\left\vert P_{n}p_{1}\left( Z,\theta ^{\prime }\right) -P_{n}p_{1}\left( Z,\theta \right) \right\vert <\triangle _{n}\left( \epsilon ,\eta \right) . \end{equation*}% Also,% \begin{equation*} P\left( \triangle _{n}\left( \epsilon ,\eta \right) >\epsilon \right) =P\left( \bar{D}_{n}\left( S\right) >\epsilon /4\right) \leq \frac{E\left[ D_{n,i}\left( S\right) \right] }{\epsilon /4}<\eta . \end{equation*}% Consequently \begin{eqnarray*} \sup_{\theta ^{\prime }\in \mathcal{N}}\left\vert \bar{P}_{n,1}\left( \theta ^{\prime }\right) -\bar{P}_{n,1}\left( \theta \right) \right\vert &=&\sup_{\theta ^{\prime }\in \mathcal{N}}\left\vert E\left[ P_{n}p_{1}\left( Z,\theta ^{\prime }\right) -P_{n}p_{1}\left( Z,\theta \right) \right] \right\vert \\ &\leq &E\left[ \sup_{\theta ^{\prime }\in \mathcal{N}}\left\vert P_{n}p_{1}\left( Z,\theta ^{\prime }\right) -P_{n}p_{1}\left( Z,\theta \right) \right\vert \right] \leq E\left[ \triangle _{n}\left( \epsilon ,\eta \right) \right] <\eta . \end{eqnarray*}% That is, $\left\{ \bar{P}_{n,1}\left( \theta \right) \right\} $ is equicontinuous. Notice that under our assumption on the compactness of $\mathcal{B}$ and the support of $K$, $P_{i}\left( \mathbf{\beta }_{2}\right) $ is bounded. So the proof for the equicontinuity of $\bar{P}_{n,2}\left( \theta \right) $ is simpler than that of $\bar{P}_{n,1}\left( \theta \right) $ and thus omitted. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.1. }We only prove the case $\left( r,s\right) =\left( 1,1\right) \ $as the other cases are similar. For notational simplicity, write $T_{1n\mathbf{j}}=T_{1n\mathbf{j}}\left( 1,1\right) .$ By the fact that $\varphi (P_{i}(\mathbf{\tilde{\beta}}% _{2}))^{-1/2}-\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}=O_{p}\left( \upsilon _{2n}\right) $ uniformly in $i$ on the set $% \left\{ K_{ix}>0\right\} ,$ we can write \begin{eqnarray} \tilde{q}_{1,i}(\mathbf{\tilde{\beta}})-q_{1,i}\left( \mathbf{\beta }% ^{0}\right) &=&\frac{\tilde{f}_{i}^{\prime }\left( \overrightarrow{% \varepsilon }_{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }% _{i}\right) }\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{-1/2}-\frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2} \notag \\ &=&\left[ \frac{\tilde{f}_{i}^{\prime }\left( \overrightarrow{\varepsilon }% _{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) }-% \frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{% \varepsilon}_{i}\right) }\right] \varphi (P_{i}(\mathbf{\tilde{\beta}}% _{2}))^{-1/2}+\frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\left[ \varphi (P_{i}(\mathbf{\tilde{\beta}}% _{2}))^{-1/2}-\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}% \right] \notag \\ &=&\left[ \frac{\tilde{f}_{i}^{\prime }\left( \overrightarrow{\varepsilon }% _{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) }-% \frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{% \varepsilon}_{i}\right) }\right] \left[ \varphi (P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) )^{-1/2}+O_{p}\left( \upsilon _{2n}\right) \right] +\frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }O_{p}\left( \upsilon _{2n}\right) . \label{q11} \end{eqnarray}% Thus \begin{eqnarray*} \left\vert T_{1n\mathbf{j}}\right\vert &\leq &\frac{1}{nh^{d}}% \sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\tilde{G}_{i}q_{1,i}\left( \mathbf{% \beta }^{0}\right) \left[ \frac{\tilde{f}_{i}^{\prime }\left( \overrightarrow{\varepsilon }_{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) }-\frac{f^{\prime }\left( \bar{% \varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\right] \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\right\vert \\ &&+\frac{O_{p}\left( \upsilon _{2n}\right) }{nh^{d}}\sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\tilde{G}_{i}q_{1,i}\left( \mathbf{\beta }^{0}\right) \left[ \frac{\tilde{f}_{i}^{\prime }\left( \overrightarrow{\varepsilon }_{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) }-\frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\right] \right\vert \\ &&+\frac{O_{p}\left( \upsilon _{2n}\right) }{nh^{d}}\sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\tilde{G}_{i}q_{1,i}\left( \mathbf{\beta }^{0}\right) \frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\right\vert . \end{eqnarray*}% Since the last two terms are of smaller order, it suffices to show the first term (denoted as $|\bar{T}_{1n\mathbf{j}}|)$ is $O_{p}\left( h^{\epsilon }\right) .$ By Lemma A.1, the definition of $\tilde{G}_{i},$ and Assumption A7, \begin{eqnarray} &&\left\vert \frac{\tilde{f}_{i}^{_{\prime }}\left( \overrightarrow{% \varepsilon }_{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }% _{i}\right) }-\frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\right\vert \tilde{G}_{i}=\left\vert \frac{% \tilde{f}_{i}^{_{\prime }}\left( \overrightarrow{\varepsilon }_{i}\right) -f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) }+\frac{f^{\prime }\left( \bar{% \varepsilon}_{i}\right) \left[ f\left( \bar{\varepsilon}_{i}\right) -\tilde{f% }_{i}\left( \overrightarrow{\varepsilon }_{i}\right) \right] }{f\left( \bar{% \varepsilon}_{i}\right) \tilde{f}_{i}\left( \overrightarrow{\varepsilon }% _{i}\right) }\right\vert \tilde{G}_{i} \notag \\ &\leq &O_{p}\left( b^{-1}\nu _{3n,1}\right) +\left( f^{\prime }\left( \bar{% \varepsilon}_{i}\right) /f\left( \bar{\varepsilon}_{i}\right) \right) O_{p}\left( b^{-1}\nu _{3n,0}\right) =O_{p}\left( h^{\epsilon }\right) \left\{ 1+\left\vert f^{\prime }\left( \bar{\varepsilon}_{i}\right) /f\left( \bar{\varepsilon}_{i}\right) \right\vert \right\} . \label{q12} \end{eqnarray}% Therefore $\left\vert \bar{T}_{1n\mathbf{j}}\right\vert =\frac{O_{p}\left( h^{\epsilon }\right) }{nh^{d}}\sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}% }q_{1,i}\left( \mathbf{\beta }^{0}\right) \left( 1+\frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\right) \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\right\vert =O_{p}\left( h^{\epsilon }\right) $ by Markov inequality and the fact that% \begin{eqnarray*} \frac{1}{h^{d}}E\left\vert K_{ix,\mathbf{j}}q_{1,i}\left( \mathbf{\beta }% ^{0}\right) \left( 1+\frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{% f\left( \bar{\varepsilon}_{i}\right) }\right) \varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1/2}\right\vert &=&\frac{1}{h^{d}}E\left\vert K_{ix,\mathbf{j}}\frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{% f\left( \bar{\varepsilon}_{i}\right) }\left( 1+\frac{f^{\prime }\left( \bar{% \varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\right) \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1}\right\vert \\ &=&\frac{1}{h^{d}}E\left\vert K_{ix,\mathbf{j}}\sigma ^{-2}\left( X_{i}\right) \frac{f^{\prime }\left( \varepsilon _{i}\right) }{f\left( \varepsilon _{i}\right) }\left( 1+\frac{f^{\prime }\left( \varepsilon _{i}\right) }{f\left( \varepsilon _{i}\right) }\right) \right\vert \left\{ 1+o\left( 1\right) \right\} \\ &\leq &\frac{f_{X}\left( x\right) }{\sigma ^{2}\left( x\right) }\int \left\vert K\left( u\right) u^{^{\mathbf{j}}}\right\vert du\left\{ I^{1/2}\left( f\right) +I\left( f\right) \right\} =O\left( 1\right) , \end{eqnarray*}% where $I\left( f\right) \equiv E\left[ \psi ^{2}\left( \varepsilon _{i}\right) \right] $ and we use the fact that $\varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )$ is the $p$-th order Taylor expansion of $\sigma ^{2}\left( X_{i}\right) $ around $x.$ This completes the proof of the lemma. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.2. }We only prove the case $\left( r,s\right) =\left( 1,1\right) $ as the other cases are similar. For notational simplicity, write $T_{2n\mathbf{j}}=T_{2n\mathbf{j}}\left( 1,1\right) .$ That is, we will show% \begin{equation*} T_{2n\mathbf{j}}=\frac{1}{nh^{d}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\tilde{G}% _{i}\left\{ \tilde{q}_{1,i}(\mathbf{\tilde{\beta}})-q_{1}\left( Y_{i};P_{i}\left( \mathbf{\beta }_{1}^{0}\right) ,P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) \right\} ^{2}=O_{p}\left( h^{\epsilon }\right) . \end{equation*}% By (\ref{q11}) and (\ref{q12}) in the proof of Lemma B.1, we can write \begin{eqnarray*} &&\left\vert \tilde{q}_{1,i}(\mathbf{\tilde{\beta}})-q_{1}\left( Y_{i};P_{i}\left( \mathbf{\beta }_{1}^{0}\right) ,P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) \right\vert ^{2}\tilde{G}_{i} \\ &=&\left[ O_{p}\left( h^{\epsilon }\right) \left( 1+\left\vert \frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\right\vert \right) ^{2}\left[ \varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1/2}+O_{p}(\upsilon _{2n})\right] ^{2}+\left( \frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{% \varepsilon}_{i}\right) }\right) ^{2}O_{p}(\upsilon _{2n}^{2})\right] \tilde{% G}_{i} \\ &\leq &\left( 1+\left\vert \frac{f^{\prime }\left( \bar{\varepsilon}% _{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\right\vert \right) ^{2}% \left[ \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1}+1\right] \tilde{G}_{i}O_{p}\left( h^{\epsilon }\right) . \end{eqnarray*}% Thus \begin{equation*} T_{2n\mathbf{j}}\leq \frac{O_{p}\left( h^{\epsilon }\right) }{nh^{d}}% \sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\right\vert \left( 1+\left\vert \frac{f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{% \varepsilon}_{i}\right) }\right\vert \right) ^{2}\left[ \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1}+1\right] =O_{p}\left( h^{\epsilon }\right) \end{equation*}% by Markov inequality and the fact that \begin{eqnarray*} &&\frac{1}{h^{d}}E\left\vert K_{ix,\mathbf{j}}\left( 1+\left\vert \frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\right\vert \right) ^{2}\left[ \varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1}+1\right] \right\vert \\ &=&\frac{1}{h^{d}}E\left\vert K_{ix,\mathbf{j}}\left( 1+\left\vert \frac{% f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}% _{i}\right) }\right\vert \right) ^{2}\left[ \sigma ^{-2}\left( X_{i}\right) +1+o\left( 1\right) \right] \right\vert \left\{ 1+o\left( 1\right) \right\} \\ &\leq &f_{X}\left( x\right) \left[ \sigma ^{-2}\left( x\right) +1\right] \int \left\vert K\left( u\right) u^{^{\mathbf{j}}}\right\vert du\left[ 1+I\left( f\right) +2I^{1/2}\left( f\right) \right] \left\{ 1+o\left( 1\right) \right\} =O\left( 1\right) . \end{eqnarray*}% This completes the proof of the lemma. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.3.} We only prove the case $\left( r,s\right) =\left( 1,1\right) $ as the other cases are similar. For notational simplicity, write $T_{3n\mathbf{j}}=T_{3n\mathbf{j}}\left( 1,1\right) .$ That is, we will show% \begin{equation*} T_{3n\mathbf{j}}=\frac{1}{nh^{d}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\left( 1-% \tilde{G}_{i}\right) q_{1,i}\left( \mathbf{\beta }^{0}\right) ^{2}=O_{p}\left( h^{\epsilon }\right) . \end{equation*}% We decompose $T_{3n\mathbf{j}}$ as follows \begin{eqnarray*} T_{3n\mathbf{j}} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\left[ 1-G_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) \right] \psi ^{2}\left( \bar{\varepsilon}_{i}\right) \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\left[ G_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) -G_{b}(\tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) )\right] \psi ^{2}\left( \bar{% \varepsilon}_{i}\right) \\ &\equiv &T_{3n\mathbf{j},1}+T_{3n\mathbf{j},2},\text{ say.} \end{eqnarray*}% By Lemma A.1, \begin{eqnarray} \max_{1\leq i\leq n}|\tilde{G}_{i}-G_{i}| &=&\max_{1\leq i\leq n}|G_{b}(% \tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) )-G_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) | \notag \\ &\leq &\frac{C}{b}\max_{1\leq i\leq n}|\tilde{f}_{i}\left( \overrightarrow{% \varepsilon }_{i}\right) -f\left( \bar{\varepsilon}_{i}\right) |=b^{-1}O_{p}\left( \upsilon _{3n,0}\right) =O_{p}\left( h^{\epsilon }\right) . \label{GG} \end{eqnarray}% With this, we can readily obtain $\left\vert T_{3n\mathbf{j},2}\right\vert \leq O_{p}\left( h^{\epsilon }\right) \frac{1}{nh^{d}}\sum_{i=1}^{n}\left% \vert K_{ix,\mathbf{j}}\right\vert \psi ^{2}\left( \bar{\varepsilon}% _{i}\right) $ $=O_{p}\left( h^{\epsilon }\right) $ by Markov inequality. For $T_{3n\mathbf{j},1},$ we have \begin{eqnarray*} E\left\vert T_{3n\mathbf{j},1}\right\vert &\leq &E\left[ \frac{1}{h^{d}}% \left\vert K_{ix,\mathbf{j}}\right\vert \left[ 1-G_{b}\left( f\left( \bar{% \varepsilon}_{i}\right) \right) \right] \psi ^{2}\left( \bar{\varepsilon}% _{i}\right) \right] \\ &=&\frac{1}{h^{d}}E\left[ \left\vert K_{ix,\mathbf{j}}\right\vert \right] E\left\{ \left[ 1-G_{b}\left( f\left( \varepsilon _{i}\right) \right) \right] \psi ^{2}\left( \varepsilon _{i}\right) \right\} \left\{ 1+o\left( 1\right) \right\} . \end{eqnarray*}% By the H\"{o}lder inequality, \begin{eqnarray*} E\left\{ \left[ 1-G_{b}\left( f\left( \varepsilon _{i}\right) \right) \right] \psi ^{2}\left( \varepsilon _{i}\right) \right\} &\leq &E\left[ \psi ^{2}\left( \varepsilon _{i}\right) \text{ }\mathbf{1}\left\{ f\left( \varepsilon \right) \leq 2b\right\} \right] \\ &\leq &\left\{ E\left[ \psi ^{2\gamma }\left( \varepsilon _{i}\right) \right] \right\} ^{1/\gamma }\left[ P\left( f\left( \varepsilon _{i}\right) \leq 2b\right) \right] ^{\left( \gamma -1\right) /\gamma } \\ &\leq &C\left[ P\left( f\left( \varepsilon _{i}\right) \leq 2b\right) \right] ^{\left( \gamma -1\right) /\gamma }=O\left( b^{\left( \gamma -1\right) /(2\gamma )}\right) =O\left( h^{\epsilon }\right) , \end{eqnarray*}% where the last line follows from Lemma 6 of Robinson (1988) and the Markov inequality because by taking $\overline{B}=b^{-1/2},$ we have $P\left( f\left( \varepsilon _{i}\right) \leq 2b\right) \leq 2b\int_{\left\vert \varepsilon _{i}\right\vert \leq \overline{B}}dz+P\left( \left\vert \varepsilon _{i}\right\vert >\overline{B}\right) $ $\leq 2b2b^{-1/2}+E\left\vert \varepsilon _{i}\right\vert b^{1/2}$ $=O\left( b^{1/2}\right) =O\left( h^{\epsilon }\right) .$ This, in conjunction with the fact that $\frac{1}{h^{d}}E\left[ \left\vert K_{ix,\mathbf{j}% }\right\vert \right] =O\left( 1\right) ,$ implies that $T_{3n\mathbf{j}% ,1}=O_{p}\left( h^{\epsilon }\right) $ by Markov inequality. Consequently, we have shown that $T_{3n\mathbf{j}}=O_{p}\left( h^{\epsilon }\right) $. $% {\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.4. }Let $\tilde{f}_{i}=\tilde{f}% _{i}\left( \overrightarrow{\varepsilon }_{i}\right) $ and\textbf{\ }$% f_{i}=f\left( \bar{\varepsilon}_{i}\right) .$Note that $\tilde{f}_{i}^{-1}=$ $f_{i}^{-1}-(\tilde{f}_{i}-f_{i})/f_{i}^{2}+R_{2i},$ where $R_{2i}\equiv (% \tilde{f}_{i}-f_{i})^{2}/\{(f_{i}^{2}\tilde{f}_{i}).$ First, we expand the trimming function to the second order: \begin{equation} G_{b}(\tilde{f}_{i})-G_{b}\left( f_{i}\right) =g_{b}\left( f_{i}\right) \left( \tilde{f}_{i}-f_{i}\right) +\frac{1}{2}g_{b}^{\prime }\left( f_{i}^{\ast }\right) \left( \tilde{f}_{i}-f_{i}\right) ^{2}, \label{Gb} \end{equation}% where $f_{i}^{\ast }$ is an intermediate value between $\tilde{f}_{i}$ and $% f_{i}.$ Let $\rho _{i}\left( \mathbf{\beta }\right) \equiv \psi \left( \varepsilon _{i}\left( \mathbf{\beta }\right) \right) \varepsilon _{i}\left( \mathbf{\beta }\right) +1,$ $\bar{\rho}_{i}\equiv \rho _{i}\left( \mathbf{% \beta }^{0}\right) ,$ and $\rho _{i}\equiv \psi \left( \varepsilon _{i}\right) \varepsilon _{i}+1.$ Let $\varphi _{i}\equiv \varphi ^{\prime }(P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )/\varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) ).$ Then we have% \begin{eqnarray*} -\mathcal{S}_{1n\mathbf{j}} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\varphi _{i}\left\{ \bar{\rho}_{i}\left[ G_{b}(\tilde{f}_{i})-1% \right] +\log \left( f\left( \bar{\varepsilon}_{i}\right) \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}\right\} \\ &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\left\{ \bar{\rho}_{i}\left[ G_{b}\left( f_{i}\right) -1\right] +\log \left( f\left( \bar{\varepsilon}_{i}\right) \varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1/2}\right) g_{b}\left( f\left( \bar{\varepsilon}% _{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{% \varepsilon}_{i}\right\} \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\bar{% \rho}_{i}g_{b}\left( f_{i}\right) \left( \tilde{f}_{i}-f_{i}\right) \\ &&+\frac{1}{4\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\bar{% \rho}_{i}g_{b}^{\prime }\left( f_{i}^{\ast }\right) \left( \tilde{f}% _{i}-f_{i}\right) ^{2} \\ &\equiv &\mathcal{S}_{1n\mathbf{j},1}+\mathcal{S}_{1n\mathbf{j},2}+\mathcal{S% }_{1n\mathbf{j},3},\text{ say.} \end{eqnarray*}% Using a crude bound on the last term, we have $|\mathcal{S}_{1n\mathbf{j}% ,3}|=O_{p}\left( \upsilon _{3n,0}^{2}b^{-2}n^{1/2}h^{d/2}\right) =o_{p}\left( 1\right) \ $by Lemma A.1, the fact that $\sup_{s}\left\vert g_{b}^{\prime }\left( s\right) \right\vert =O(b^{-2}),$ and Assumption A7. To show the first term is $o_{p}\left( 1\right) ,$ write \begin{equation*} \mathcal{S}_{1n\mathbf{j},1}=\frac{-1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\xi _{1i}+\frac{1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}% }\xi _{2i}\equiv -\mathcal{S}_{1n\mathbf{j},11}+\mathcal{S}_{1n\mathbf{j}% ,12},\text{ say,} \end{equation*}% where $\xi _{1i}=\frac{1}{2}\bar{\rho}_{i}\varphi _{i}$ and $\xi _{2i}=\frac{% 1}{2}\left\{ \bar{\rho}_{i}G_{b}\left( f_{i}\right) +\log (f\left( \bar{% \varepsilon}_{i}\right) \varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2})g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}\right\} \varphi _{i}.$ Let $Q_{1n,i}\left( \mathbf{\beta }\right) \equiv \log \{f\left( \varepsilon _{i}\left( \mathbf{\beta }\right) \right) \varphi (P_{i}\left( \mathbf{\beta }_{2}\right) )^{-1/2}\}K_{h}\left( x-X_{i}\right) ,$ $Q_{2n,i}\left( \mathbf{% \beta }\right) \equiv \log \{f\left( \varepsilon _{i}\left( \mathbf{\beta }% \right) \right) \varphi (P_{i}\left( \mathbf{\beta }_{2}\right) )^{-1/2}\}$ $% \times G_{b}(f\left( \varepsilon _{i}\left( \mathbf{\beta }\right) \right) K_{h}\left( x-X_{i}\right) ,$ and $\varsigma _{n}\left( \mathbf{\beta }% \right) \equiv E\left[ Q_{2n,i}\left( \mathbf{\beta }\right) \right] -E\left[ Q_{1n,i}\left( \mathbf{\beta }\right) \right] .$ Then it is easy to show that (i) $\varsigma _{n}\left( \mathbf{\beta }^{0}\right) \rightarrow 0,$ (ii) $\varsigma _{n}\left( \mathbf{\beta }\right) $ is differentiable in a small $\epsilon _{0}$-neighborhood $N_{\epsilon _{0}}\left( \mathbf{\beta }% ^{0}\right) $ of $\mathbf{\beta }^{0}$ with $N_{\epsilon _{0}}\left( \mathbf{% \beta }^{0}\right) \equiv \{\mathbf{\beta }:\left\Vert \mathbf{\beta }-% \mathbf{\beta }^{0}\right\Vert \leq \epsilon _{0}\},$ (iii) $\varsigma _{n}^{\prime }\left( \mathbf{\beta }\right) $ converges uniformly on $% N_{\epsilon _{0}}\left( \mathbf{\beta }^{0}\right) .$ Then by Theorem 7.17 of Rudin (1976) and the fact that $h^{-\left\vert \mathbf{j}\right\vert }\partial Q_{1n,i}\left( \mathbf{\beta }^{0}\right) /\partial \mathbf{\beta }% _{2\mathbf{j}}=-h^{-d}\xi _{1i}K_{ix,\mathbf{j}}$ and $h^{-\left\vert \mathbf{j}\right\vert }\partial Q_{2n,i}\left( \mathbf{\beta }^{0}\right) /\partial \mathbf{\beta }_{2\mathbf{j}}$ $=-h^{-d}\xi _{2i}K_{ix,\mathbf{j}% }, $ we have% \begin{eqnarray*} E\left( \mathcal{S}_{1n\mathbf{j},12}\right) &=&-\sqrt{n}h^{d/2}h^{-\left% \vert \mathbf{j}\right\vert }E\left[ \frac{\partial Q_{2n,i}\left( \mathbf{% \beta }^{0}\right) }{\partial \mathbf{\beta }_{2\mathbf{j}}}\right] \\ &=&-\sqrt{n}h^{d/2}h^{-\left\vert \mathbf{j}\right\vert }E\left[ \frac{% \partial Q_{1n,i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }% _{2\mathbf{j}}}\right] \left\{ 1+o\left( 1\right) \right\} =E\left( \mathcal{% S}_{1n\mathbf{j},11}\right) \left\{ 1+o\left( 1\right) \right\} . \end{eqnarray*}% Consequently, $E\left( \mathcal{S}_{1n\mathbf{j},1}\right) =o\left( 1\right) E\left( \mathcal{S}_{1n\mathbf{j},11}\right) =o\left( 1\right) $ as $% \mathcal{S}_{1n\mathbf{j},11}=n^{1/2}h^{-d/2}E\left[ K_{ix,\mathbf{j}}\xi _{1i}\right] =O\left( n^{1/2}h^{d/2}h^{p+1}\right) $ $=O\left( 1\right) .$ By straightforward calculations and the IID assumption, we can readily show that Var$\left( \mathcal{S}_{1n\mathbf{j},1}\right) =o\left( 1\right) .$ Therefore, $\mathcal{S}_{1n\mathbf{j},1}=o_{p}\left( 1\right) $ by the Chebyshev inequality.\medskip\ Now, we show that $\mathcal{S}_{1n\mathbf{j},2}=o_{p}\left( 1\right) .$ Decompose $\mathcal{S}_{1n\mathbf{j},2}=\mathcal{S}_{1n\mathbf{j},21}+% \mathcal{S}_{1n\mathbf{j},22},$ where $\mathcal{S}_{1n\mathbf{j},21}\equiv \frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}$ $K_{ix,\mathbf{j}}\varphi _{i}q_{2,i}\left( \mathbf{\beta }^{0}\right) g_{b}\left( f_{i}\right) \left( \tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) -\overline{f}% \left( \bar{\varepsilon}_{i}\right) \right) ,$ and $\mathcal{S}_{1n\mathbf{j}% ,22}\equiv \frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}q_{2,i}\left( \mathbf{\beta }^{0}\right) g_{b}\left( f_{i}\right) \left( \overline{f}\left( \bar{\varepsilon}_{i}\right) -f\left( \bar{\varepsilon}% _{i}\right) \right) .$ It suffices to show that $\mathcal{S}_{1n\mathbf{j}% ,2s}=o_{p}\left( 1\right) ,$ $s=1,2.$ For $\mathcal{S}_{1n\mathbf{j},21},$ by a Taylor expansion and (\ref{r1ij1})-(\ref{r1ij2}), we have \begin{eqnarray*} \mathcal{S}_{1n\mathbf{j},21} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) \frac{1}{nh_{0}% }\sum_{j\neq i}\left[ k_{0}\left( \frac{\overrightarrow{\varepsilon }_{i}-% \tilde{\varepsilon}_{j}}{h_{0}}\right) -k_{0}\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \right] \\ &=&\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\varepsilon _{i}-\varepsilon _{j}}{h_{0}}\right) \left( \overrightarrow{\varepsilon }_{i}-\tilde{\varepsilon}_{j}-\bar{\varepsilon}% _{i}+\varepsilon _{j}\right) +o_{p}\left( 1\right) \\ &=&-\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{% v_{1i}\left( x\right) }{\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{1/2}} \\ &&+\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{% \tilde{m}\left( X_{j}\right) -m\left( X_{j}\right) }{\sigma \left( X_{j}\right) } \\ &&+\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \varepsilon _{j}\frac{\tilde{\sigma}\left( X_{j}\right) -\sigma \left( X_{j}\right) }{\tilde{\sigma}\left( X_{j}\right) } \\ &&+\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}K_{ix,% \mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{% u_{i}+\delta _{i}}{\varphi (P_{i}(\mathbf{\beta }_{2}^{0}))^{1/2}}\frac{% \varphi (P_{i}(\mathbf{\beta }_{2}^{0}))^{1/2}-\varphi (P_{i}(\mathbf{\tilde{% \beta}}_{2}))^{1/2}}{\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{1/2}} \\ &&+o_{p}\left( 1\right) \\ &\equiv &-\mathcal{S}_{1n\mathbf{j},211}+\mathcal{S}_{1n\mathbf{j},212}+% \mathcal{S}_{1n\mathbf{j},213}+\mathcal{S}_{1n\mathbf{j},214}+o_{p}\left( 1\right) . \end{eqnarray*}% For the first term, by Lemma A.2 and the fact that $v_{1i}\left( x\right) =O_{p}\left( \upsilon _{2n}\right) ,$ $\varphi (P_{i}(\mathbf{\tilde{\beta}}% _{2}))=\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )+O_{p}\left( \upsilon _{2n}\right) $ uniformly on the set $\left\{ K_{ix}>0\right\} $, we have% \begin{eqnarray*} \left\vert \mathcal{S}_{1n\mathbf{j},211}\right\vert &=&\left\vert \frac{1}{% 2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\bar{\rho}% _{i}g_{b}\left( f_{i}\right) \bar{f}_{i}^{\prime }\left( \varepsilon _{i}\right) \frac{v_{1i}\left( x\right) }{\varphi (P_{i}(\mathbf{\tilde{\beta% }}_{2}))^{1/2}}\right\vert \\ &=&\left\vert \frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\bar{\rho}_{i}g_{b}\left( f_{i}\right) f^{\prime }\left( \varepsilon _{i}\right) \frac{v_{1i}\left( x\right) }{\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{1/2}}\right\vert +o_{p}\left( 1\right) \\ &\leq &\underset{\left\{ K_{ix}>0\right\} }{\max }\left\vert v_{1i}\left( x\right) \right\vert \frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\left\vert K_{ix,% \mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\bar{\rho}_{i}g_{b}\left( f_{i}\right) f^{\prime }\left( \varepsilon _{i}\right) \right\vert +o_{p}\left( 1\right) . \end{eqnarray*}% The first term in the last expression is $o_{p}\left( 1\right) $ if $% n^{1/2}h^{-d/2}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\bar{\rho}_{i}g_{b}\left( f_{i}\right) f^{\prime }\left( \varepsilon _{i}\right) \right\vert =o\left( \upsilon _{2n}^{-1}\right) $ by Markov inequality. Note that \begin{equation} \bar{\varepsilon}_{i}-\varepsilon _{i}=\{\varepsilon _{i}[\sigma \left( X_{i}\right) -\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{1/2}]+\delta _{i}\}/\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{1/2}=\varepsilon _{i}d_{i}+\overline{\delta }_{i}. \label{epsilon1} \end{equation}% where $d_{i}\equiv \sigma \left( X_{i}\right) \varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1/2}-1=O_{p}\left( h^{p+1}\right) $ \ and $% \overline{\delta }_{i}\equiv \delta _{i}\varphi (P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) )^{-1/2}=O_{p}\left( h^{p+1}\right) $ uniformly on the set $% \left\{ K_{ix}>0\right\} $. Then by the triangle inequality, \begin{eqnarray*} &&h^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\bar{\rho}_{i}g_{b}\left( f_{i}\right) f^{\prime }\left( \varepsilon _{i}\right) \right\vert \\ &=&h^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\left[ \bar{\rho}_{i}g_{b}\left( f_{i}\right) f^{\prime }\left( \varepsilon _{i}\right) |X_{i}\right] \right\vert \\ &=&h^{-d}E\left\vert \frac{K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}}{d_{i}+1}\int_{b\leq f\left( \varepsilon \right) \leq 2b}[\psi \left( \varepsilon \right) \varepsilon +1]f^{\prime }\left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) f\left( \frac{\varepsilon -\overline{\delta }_{i}}{d_{i}+1}% \right) d\varepsilon \right\vert \\ &\leq &h^{-d}E\left\vert \frac{K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}}{d_{i}+1}\int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) f^{\prime }\left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) f\left( \varepsilon \right) d\varepsilon \right\vert \\ &&+h^{-d}E\left\vert \frac{K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}}{d_{i}+1}\int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) f^{\prime }\left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) % \left[ f\left( \frac{\varepsilon -\overline{\delta }_{i}}{d_{i}+1}\right) -f\left( \varepsilon \right) \right] d\varepsilon \right\vert \\ &\equiv &S_{n1}+S_{n2},\text{ say.} \end{eqnarray*}% For $S_{n1},$ we have% \begin{eqnarray*} S_{n1} &=&h^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\left( d_{i}+1\right) ^{-1}\int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) f^{\prime }\left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) f\left( \varepsilon \right) d\varepsilon \right\vert \\ &\leq &\underset{b\leq f\left( \varepsilon \right) \leq 2b}{\sup }[f\left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) ]h^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )^{-1/2}\left( d_{i}+1\right) ^{-1}\int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) f^{\prime }\left( \varepsilon \right) d\varepsilon \right\vert \\ &\leq &Ch^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\left( d_{i}+1\right) ^{-1}\right\vert \left\vert \int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) f^{\prime }\left( \varepsilon \right) d\varepsilon \right\vert \\ &\leq &Ch^{-d}E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{-1/2}\left( d_{i}+1\right) ^{-1}\right\vert \left\{ \int_{b\leq f\left( \varepsilon \right) \leq 2b}\rho \left( \varepsilon \right) ^{2}f\left( \varepsilon \right) d\varepsilon \int_{b\leq f\left( \varepsilon \right) \leq 2b}\psi \left( \varepsilon \right) f\left( \varepsilon \right) d\varepsilon \right\} ^{1/2} \\ &=&O\left( h^{\epsilon }\right) \end{eqnarray*}% where the third inequality follows from the H\"{o}lder inequality and the independence between $X_{i}$ and $\varepsilon _{i}$. By a Taylor expansion, $% f\left( \frac{\varepsilon -\overline{\delta }_{i}}{1+d_{i}}\right) -f\left( \varepsilon \right) $ $\simeq -f^{\prime }\left( \varepsilon \right) \left( \overline{\delta }_{i}+d_{i}\varepsilon \right) .$ With this, we can readily show that $S_{n2}=O\left( h^{\epsilon }\right) .$ Consequently, $\left\vert \mathcal{S}_{1n\mathbf{j},211}\right\vert =O_{p}(\upsilon _{2n}\sqrt{nh^{d}}% h^{\epsilon })=o_{p}\left( 1\right) .$ For $\mathcal{S}_{1n\mathbf{j},212},$ using (\ref{A2}) we can write \begin{eqnarray} \mathcal{S}_{1n\mathbf{j},212} &=&\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}% \sum_{i=1}^{n}\sum_{j\neq i}K_{ix,\mathbf{j}}\varphi _{i}\bar{\rho}% _{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \frac{\tilde{m}\left( X_{j}\right) -m\left( X_{j}\right) }{\sigma \left( X_{j}\right) } \notag \\ &=&\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}\frac{K_{ix,% \mathbf{j}}\varphi _{i}}{\sigma \left( X_{j}\right) }\bar{\rho}% _{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) U_{1,n}\left( X_{j}\right) \notag \\ &&-\frac{1}{2n^{3/2}h^{d/2}h_{0}^{2}}\sum_{i=1}^{n}\sum_{j\neq i}\frac{K_{ix,% \mathbf{j}}\varphi _{i}}{\sigma \left( X_{j}\right) }\bar{\rho}% _{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) B_{1,n}\left( X_{j}\right) \notag \\ &\equiv &\mathcal{S}_{1n\mathbf{j},212a}+\mathcal{S}_{1n\mathbf{j},212b}. \label{J12} \end{eqnarray}% Recall $\mathbf{\tilde{Z}}_{i}$ is defined analogously to $\mathbf{Z}_{i}$ with $h_{1}$ in place of $h.$ So $\mathcal{S}_{1n\mathbf{j},212a}$ can be written as% \begin{equation*} \mathcal{S}_{1n\mathbf{j},212a}=\sum_{i=1}^{n}\sum_{j\neq i}\varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) +\sum_{i=1}^{n}\sum_{j\neq i}\sum_{l\neq i,l\neq j}\varsigma _{3n}\left( \varepsilon _{i},\varepsilon _{j},\varepsilon _{l}\right) , \end{equation*}% where $\varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) =\frac{% 1}{2n^{5/2}h^{d/2}h_{1}^{d}h_{0}^{2}}\frac{K_{ix,\mathbf{j}}\varphi _{i}}{% \sigma \left( X_{j}\right) }\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}% \right) e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) \mathbf{\tilde{Z}}% _{i}K\left( \frac{X_{j}-X_{i}}{h_{1}}\right) u_{i}$ and $\varsigma _{3n}(\varepsilon _{i},\varepsilon _{j},\varepsilon _{l})$ $=\frac{1}{% 2n^{5/2}h^{d/2}h_{1}^{d}h_{0}^{2}}\frac{K_{ix,\mathbf{j}}\varphi _{i}}{% 2\sigma \left( X_{j}\right) }\bar{\rho}_{i}g_{b}\left( f_{i}\right) k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}% \right) e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) \mathbf{\tilde{Z}}% _{i}K\left( \frac{X_{j}-X_{l}}{h_{1}}\right) u_{l}$. Let $\mathbb{X}\equiv \{X_{1},...,X_{n}\}.$ Then $E[\mathcal{S}_{1n\mathbf{j},212a}|\mathbb{X}]=$ $% \sum_{i=1}^{n}\sum_{j\neq i}E\left[ \varsigma _{2n}\left( z_{i},z_{j}\right) |\mathbb{X}\right] =O_{p}\left( n^{-1/2}h^{d/2}b^{-1}\right) =o_{p}\left( 1\right) .$ For the variance of $\mathcal{S}_{1n\mathbf{j},212a},$ it is easy to show that \begin{eqnarray*} \text{Var}\left[ \sum_{i=1}^{n}\sum_{j\neq i}\varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) |\mathbb{X}\right] &=&O\left( n^{2}\right) E\left[ \varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) ^{2}+\varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) \varsigma _{2n}\left( \varepsilon _{j},\varepsilon _{i}\right) |% \mathbb{X}\right] \\ &&+O\left( n^{3}\right) E\left[ \varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) \varsigma _{2n}\left( \varepsilon _{l},\varepsilon _{j}\right) +\varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{j}\right) \varsigma _{2n}\left( \varepsilon _{i},\varepsilon _{i}\right) |\mathbb{X}\right] \\ &=&O_{p}\left( n^{-3}h^{-d-4}b^{-2}\right) +O_{p}\left( n^{-2}b^{-2}\right) =o_{p}\left( 1\right) . \end{eqnarray*}% Similarly, one can show that $E\left( \varsigma _{3n}\left( z_{i},z_{j},z_{l}\right) |\mathbb{X}\right) =0$ and Var$\left[ \sum_{i=1}^{n}\sum_{j\neq i}\sum_{l\neq i,l\neq j}\varsigma _{3n}\left( z_{i},z_{j},z_{l}\right) |\mathbb{X}\right] =o_{p}\left( 1\right) .$ Consequently, $\mathcal{S}_{1n\mathbf{j},212a}=o_{p}\left( 1\right) $ by the conditional Chebyshev inequality. For $\mathcal{S}_{1n\mathbf{j},212b},$ we have $\mathcal{S}_{1n\mathbf{j},212b}=O_{p}(n^{1/2}h^{d/2}h_{1}^{p+1})=o_{p}% \left( 1\right) .$ Thus we have shown that $\mathcal{S}_{1n\mathbf{j}% ,212}=o_{p}\left( 1\right) .$ By analogous arguments, Lemma A.1, and (\ref% {fact3}), we can show that $\mathcal{S}_{1n\mathbf{j},21s}=o_{p}\left( 1\right) $ for $s=3,4.$ It follows that $\mathcal{S}_{1n\mathbf{j}% ,21}=o_{p}\left( 1\right) .$ \medskip\ For $\mathcal{S}_{1n\mathbf{j},22},$ we make the following decomposition: \begin{equation*} \mathcal{S}_{1n\mathbf{j},22}=\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\varphi _{i}q_{2,i}\left( \mathbf{\beta }^{0}\right) g_{b}\left( f_{i}\right) \{\mathcal{V}\left( \bar{\varepsilon}_{i}\right) +\mathcal{B}% \left( \bar{\varepsilon}_{i}\right) \}\equiv \mathcal{S}_{1n\mathbf{j},221}+% \mathcal{S}_{1n\mathbf{j},222}, \end{equation*}% where \begin{eqnarray} \mathcal{V}\left( \bar{\varepsilon}_{i}\right) &=&\frac{1}{nh_{0}}% \sum_{j\neq i}\left\{ k_{0}\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) -E_{j}\left[ k_{0}\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \right] \right\} , \label{V1} \\ \mathcal{B}\left( \bar{\varepsilon}_{i}\right) &=&\frac{1}{nh_{0}}% \sum_{j\neq i}E_{j}\left[ k_{0}\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \right] -f\left( \bar{\varepsilon}% _{i}\right) , \label{B1} \end{eqnarray}% and $E_{j}$ indicates expectation with respect to the variable indexed by $% j. $ Writing $\mathcal{S}_{1n\mathbf{j},221}$ as a second order degenerate statistic we verify that $E\left[ \mathcal{S}_{1n\mathbf{j},221}\right] ^{2}=o\left( 1\right) $ and thus $\mathcal{S}_{1n\mathbf{j},221}=o_{p}\left( 1\right) .$ For $\mathcal{S}_{1n\mathbf{j},222},$ we verify that $\mathcal{S}% _{1n\mathbf{j},222}=O_{p}(n^{1/2}h^{d/2}h_{0}^{p+1})=o_{p}\left( 1\right) .$ Consequently, $\mathcal{S}_{1n\mathbf{j},22}=o_{p}\left( 1\right) .$ This concludes the proof of the lemma. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.5. }By a geometric expansion: $\tilde{f}% _{i}=f^{-1}-(\tilde{f}_{i}-f)/f^{2}+(\tilde{f}_{i}-f)^{2}/(f^{2}\tilde{f}% _{i})$ where $\tilde{f}_{i}=\tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ,$ we have% \begin{eqnarray*} \mathcal{S}_{2n\mathbf{j}} &=&\frac{1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\left\{ \tilde{G}_{i}\left[ \tilde{q}_{2,i}\left( \mathbf{\beta }% ^{0}\right) -q_{2,i}\left( \mathbf{\beta }^{0}\right) \right] \right\} \\ &=&-\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\frac{% \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) -f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }% \bar{\varepsilon}_{i}\tilde{G}_{i} \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\frac{% \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \left[ \tilde{f}% _{i}\left( \bar{\varepsilon}_{i}\right) -f\left( \bar{\varepsilon}% _{i}\right) \right] }{f\left( \bar{\varepsilon}_{i}\right) }\bar{\varepsilon}% _{i}\tilde{G}_{i} \\ &&-\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\frac{% \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \left[ \tilde{f}% _{i}\left( \bar{\varepsilon}_{i}\right) -f\left( \bar{\varepsilon}% _{i}\right) \right] ^{2}}{f^{2}\left( \bar{\varepsilon}_{i}\right) \tilde{f}% _{i}\left( \bar{\varepsilon}_{i}\right) }\bar{\varepsilon}_{i}\tilde{G}_{i} \\ &\equiv &-\mathcal{S}_{2n\mathbf{j},1}+\mathcal{S}_{2n\mathbf{j},2}-\mathcal{% S}_{2n\mathbf{j},3}. \end{eqnarray*}% where recall $\varphi _{i}\equiv \varphi ^{\prime }(P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) )/\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) ).$ It suffices to show that each of these three terms is $o_{p}\left( 1\right) .$ For $\mathcal{S}_{2n\mathbf{j},1},$ noticing that $G_{b}(\tilde{f% }_{i})-G_{b}\left( f_{i}\right) $ $=g_{b}\left( f_{i}\right) (\tilde{f}% _{i}-f_{i})+\frac{1}{2}g_{b}^{\prime }\left( f_{i}^{\ast }\right) (\tilde{f}% _{i}-f_{i})^{2}$, we can apply Lemma A.2 and show that \begin{eqnarray*} \mathcal{S}_{2n\mathbf{j},1} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\varphi _{i}\frac{\tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}% _{i}\right) -\overline{f}^{\prime }\left( \bar{\varepsilon}_{i}\right) }{% f\left( \bar{\varepsilon}_{i}\right) }\bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\frac{% \overline{f}^{\prime }\left( \bar{\varepsilon}_{i}\right) -f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\bar{% \varepsilon}_{i}G_{b}\left( f_{i}\right) +o_{p}\left( 1\right) \\ &\equiv &\mathcal{S}_{2n\mathbf{j},11}+\mathcal{S}_{2n\mathbf{j}% ,12}+o_{p}\left( 1\right) . \end{eqnarray*}% For the first term, we have \begin{eqnarray*} \mathcal{S}_{2n\mathbf{j},11} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{% K_{ix,\mathbf{j}}\varphi _{i}}{f\left( \bar{\varepsilon}_{i}\right) }\frac{1% }{nh_{0}^{2}}\sum_{j\neq i}\left[ k_{0}^{\prime }\left( \frac{\bar{% \varepsilon}_{i}-\tilde{\varepsilon}_{j}}{h_{0}}\right) -k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \right] \bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\prime \prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{% h_{0}}\right) \left( \tilde{\varepsilon}_{j}-\varepsilon _{j}\right) \bar{% \varepsilon}_{i}G_{b}\left( f_{i}\right) +o_{p}\left( 1\right) \\ &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\prime \prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{% h_{0}}\right) \frac{m\left( X_{j}\right) -\tilde{m}\left( X_{j}\right) }{% \sigma \left( X_{j}\right) }\bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\prime \prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{% h_{0}}\right) \varepsilon _{j}\frac{\sigma \left( X_{j}\right) -\tilde{\sigma% }\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\bar{\varepsilon}% _{i}G_{b}\left( f_{i}\right) +o_{p}\left( 1\right) \\ &\equiv &\mathcal{S}_{2n\mathbf{j},111}+\mathcal{S}_{2n\mathbf{j}% ,112}+o_{p}\left( 1\right) ,\text{ say.} \end{eqnarray*}% Write \begin{eqnarray*} \mathcal{S}_{2n\mathbf{j},111} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}% \frac{K_{ix,\mathbf{j}}\varphi _{i}}{f\left( \bar{\varepsilon}_{i}\right) }% \frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\prime \prime }\left( \frac{\bar{% \varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \frac{e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) U_{1,n}\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\frac{1}{nh_{0}^{3}}\sum_{j\neq i}k_{0}^{\prime \prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{% h_{0}}\right) \frac{e_{1}^{^{\top }}M_{n}^{-1}\left( X_{j}\right) B_{1,n}\left( X_{j}\right) }{\sigma \left( X_{j}\right) }\bar{\varepsilon}% _{i}G_{b}\left( f_{i}\right) \\ &\equiv &\mathcal{S}_{2n\mathbf{j},111a}+\mathcal{S}_{2n\mathbf{j},111b}. \end{eqnarray*}% Writing $\mathcal{S}_{2n\mathbf{j},111a}$ as a third order $U$-statistic, we can show that $\mathcal{S}_{2n\mathbf{j},111a}=O_{p}(h^{d/2})=$ $o_{p}\left( 1\right) $ by conditional moment calculations and conditional Chebyshev inequality. For $\mathcal{S}_{2n\mathbf{j},111b},$ we have $\mathcal{S}_{2n% \mathbf{j},111b}=O_{p}(\sqrt{nh^{d}}h_{1}^{p+1})=o_{p}\left( 1\right) .$ Similarly, we can verify that $\mathcal{S}_{2n\mathbf{j},112}=o_{p}\left( 1\right) .$ Consequently $\mathcal{S}_{2n\mathbf{j},11}=o_{p}\left( 1\right) .$ For $\mathcal{S}_{2n\mathbf{j},12},$ we have \begin{eqnarray*} \mathcal{S}_{2n\mathbf{j},12} &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{% K_{ix,\mathbf{j}}\varphi _{i}}{f\left( \bar{\varepsilon}_{i}\right) }\frac{% \overline{f}^{\prime }\left( \bar{\varepsilon}_{i}\right) -f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\bar{% \varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &=&\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\left\{ \frac{1}{nh_{0}^{2}}% \sum_{j\neq i}\left\{ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) -E_{j}\left[ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \right] \right\} \right\} \bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &&+\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{K_{ix,\mathbf{j}}\varphi _{i}% }{f\left( \bar{\varepsilon}_{i}\right) }\left\{ \frac{1}{nh_{0}^{2}}% \sum_{j\neq i}E_{j}\left[ k_{0}^{\prime }\left( \frac{\bar{\varepsilon}% _{i}-\varepsilon _{j}}{h_{0}}\right) \right] -f^{\prime }\left( \bar{% \varepsilon}_{i}\right) \right\} \bar{\varepsilon}_{i}G_{b}\left( f_{i}\right) \\ &=&\mathcal{S}_{2n\mathbf{j},121}+\mathcal{S}_{2n\mathbf{j},122}, \end{eqnarray*}% where $E_{j}$ indicates expectation with respect to the variable indexed by $% j.$ Noting $\mathcal{S}_{2n\mathbf{j},121}$ is a second order statistic, it is easy to verify that $E\left[ \mathcal{S}_{2n\mathbf{j},121}\right] ^{2}=O(h^{d})=o\left( 1\right) ,$ implying that $\mathcal{S}_{2n\mathbf{j}% ,121}=o_{p}\left( 1\right) .$ For $\mathcal{S}_{2n\mathbf{j},122},$ noticing that \begin{equation*} \frac{1}{nh_{0}^{2}}\sum_{j\neq i}E_{j}\left[ k_{0}^{\prime }\left( \frac{% \bar{\varepsilon}_{i}-\varepsilon _{j}}{h_{0}}\right) \right] -f^{\prime }\left( \bar{\varepsilon}_{i}\right) =h_{0}^{p+1}f^{\left( p+2\right) }\left( \bar{\varepsilon}_{i}\right) \int k_{0}\left( u\right) u^{p+1}du, \end{equation*}% we can show that $\mathcal{S}_{2n\mathbf{j},122}=O_{p}(\sqrt{nh^{d}}% h_{0}^{p+1})=o_{p}\left( 1\right) .$ Consequently, $\mathcal{S}_{2n\mathbf{j}% ,12}=o_{p}\left( 1\right) $ and $\mathcal{S}_{2n\mathbf{j},1}=o_{p}\left( 1\right) .$ For $\mathcal{S}_{2n\mathbf{j},2},$ we can easily show that \begin{equation*} \mathcal{S}_{2n\mathbf{j},2}=\frac{1}{2\sqrt{nh^{d}}}\sum_{i=1}^{n}\frac{% K_{ix,\mathbf{j}}\varphi _{i}f^{\prime }\left( \bar{\varepsilon}_{i}\right) }{f\left( \bar{\varepsilon}_{i}\right) }\left[ \tilde{f}_{i}\left( \bar{% \varepsilon}_{i}\right) -f\left( \bar{\varepsilon}_{i}\right) \right] \bar{% \varepsilon}_{i}G_{b}\left( f_{i}\right) +o_{p}\left( 1\right) . \end{equation*}% The rest of the proof is similar to that of $\mathcal{S}_{2n\mathbf{j},1}$ and thus omitted. For $\mathcal{S}_{2n\mathbf{j},3},$ by Lemma A.2, $% \mathcal{S}_{2n\mathbf{j},3}=O_{p}(\sqrt{nh^{d}}b^{-2}\nu _{3n}^{2})=o_{p}\left( 1\right) .$ This concludes the proof of the lemma. $% {\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.6. }Write $\mathcal{S}_{3n\mathbf{j}}=% \frac{1}{2}\{\mathcal{S}_{3n\mathbf{j,}1}-\mathcal{S}_{3n\mathbf{j,}2}+% \mathcal{S}_{3n\mathbf{j,}3}-\mathcal{S}_{3n\mathbf{j,}4}\},$ where% \begin{eqnarray*} \mathcal{S}_{3n\mathbf{j,}1} &\equiv &\frac{1}{\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\left\{ \log \left( \tilde{f}_{i}\left( \overrightarrow{\varepsilon }_{i}\right) \right) g_{b}\left( \tilde{f}% _{i}\left( \overrightarrow{\varepsilon }_{i}\right) \right) \tilde{f}% _{i}^{\prime }\left( \overrightarrow{\varepsilon }_{i}\right) \overrightarrow{\varepsilon }_{i}\varphi _{i}(\mathbf{\tilde{\beta}}% _{2})\right. \\ &&-\left. \log \left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) g_{b}\left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}\varphi _{i}\right\} , \\ \mathcal{S}_{3n\mathbf{j,}2} &\equiv &\frac{1}{2\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\left\{ \log \varphi \left( P_{i}(\mathbf{% \tilde{\beta}}_{2})\right) g_{b}\left( \tilde{f}_{i}\left( \overrightarrow{% \varepsilon }_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \overrightarrow{\varepsilon }_{i}\right) \overrightarrow{\varepsilon }% _{i}\varphi _{i}(\mathbf{\tilde{\beta}}_{2})\right. \\ &&-\left. \log \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) g_{b}\left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) \tilde{f% }_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}\varphi _{i}\right\} , \\ \mathcal{S}_{3n\mathbf{j,}3} &\equiv &\frac{1}{\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\left\{ \log \left( \tilde{f}_{i}\left( \bar{% \varepsilon}_{i}\right) \right) g_{b}\left( \tilde{f}_{i}\left( \bar{% \varepsilon}_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \bar{% \varepsilon}_{i}\right) -\log \left( f\left( \bar{\varepsilon}_{i}\right) \right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \right\} \bar{\varepsilon}_{i}\varphi _{i}, \\ \mathcal{S}_{3n\mathbf{j,}4} &\equiv &\frac{1}{2\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\log \varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) \left\{ g_{b}\left( \tilde{f}_{i}\left( \bar{% \varepsilon}_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \bar{% \varepsilon}_{i}\right) -g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \right\} \bar{% \varepsilon}_{i}\varphi _{i}. \end{eqnarray*}% where $\varphi _{i}\left( \mathbf{\beta }_{2}\right) \equiv \varphi ^{\prime }(P_{i}\left( \mathbf{\beta }_{2}\right) )/\varphi (P_{i}\left( \mathbf{% \beta }_{2}\right) )$ and $\varphi _{i}=\varphi _{i}\left( \mathbf{\beta }% _{2}^{0}\right) .$ We will only show that $\mathcal{S}_{3n\mathbf{j,}% 1}=o_{p}\left( 1\right) $ since the proofs of $\mathcal{S}_{3n\mathbf{j,}% s}=o_{p}\left( 1\right) $ for $s=2,3,4$ are similar. For $\mathcal{S}_{3n\mathbf{j,}1},$ noticing that $\tilde{v}_{2i}\left( x\right) =(\varphi (P_{i}\left( \mathbf{\beta }_{2}^{0}\right) )^{1/2}-\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{1/2})/\varphi (P_{i}(% \mathbf{\tilde{\beta}}_{2}))^{1/2}$ and $\tilde{v}_{1i}\left( x\right) =v_{1i}\left( x\right) $ $/\varphi (P_{i}(\mathbf{\tilde{\beta}}_{2}))^{1/2}$ are both $O_{p}\left( \upsilon _{2n}\right) $ uniformly in $i$ on the set $% \left\{ K_{ix}>0\right\} ,$ and $\overrightarrow{\varepsilon }_{i}-\bar{% \varepsilon}_{i}=\bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -\tilde{v% }_{1i}\left( x\right) ,$ we can show that \begin{eqnarray*} \mathcal{S}_{3n\mathbf{j,}1} &=&\frac{1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,% \mathbf{j}}\varphi _{i}\left\{ \tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) g_{b}\left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{% \varepsilon}_{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -% \tilde{v}_{1i}\left( x\right) \right\} \right. \\ &&+\frac{1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\log \left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) g_{b}^{\prime }\left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{% \varepsilon}_{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -% \tilde{v}_{1i}\left( x\right) \right\} \\ &&+\frac{1}{\sqrt{nh^{d}}}\sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\log \left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) g_{b}\left( \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) \right) \tilde{f}% _{i}^{\prime \prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -\tilde{v}% _{1i}\left( x\right) \right\} +o_{p}\left( 1\right) \\ &\equiv &\mathcal{S}_{3n\mathbf{j,}11}+\mathcal{S}_{3n\mathbf{j,}12}+% \mathcal{S}_{3n\mathbf{j,}13}+o_{p}\left( 1\right) . \end{eqnarray*}% By Lemma A.1, \ we can show% \begin{eqnarray} \mathcal{S}_{3n\mathbf{j,}11} &\simeq &\frac{1}{\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\psi \left( \bar{\varepsilon}% _{i}\right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -\tilde{v}_{1i}\left( x\right) \right\} , \label{J311} \\ \mathcal{S}_{3n\mathbf{j,}12} &\simeq &\frac{1}{\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\log \left( f\left( \bar{% \varepsilon}_{i}\right) \right) g_{b}^{\prime }\left( f\left( \bar{% \varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}% _{i}\right) \bar{\varepsilon}_{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}% _{2i}\left( x\right) -\tilde{v}_{1i}\left( x\right) \right\} , \label{J312} \\ \mathcal{S}_{3n\mathbf{j,}13} &\simeq &\frac{1}{\sqrt{nh^{d}}}% \sum_{i=1}^{n}K_{ix,\mathbf{j}}\varphi _{i}\log \left( f\left( \bar{% \varepsilon}_{i}\right) \right) g_{b}\left( f\left( \bar{\varepsilon}% _{i}\right) \right) f^{\prime \prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}\left\{ \bar{\varepsilon}_{i}\tilde{v}_{2i}\left( x\right) -\tilde{v}_{1i}\left( x\right) \right\} . \label{J313} \end{eqnarray}% The rest of the proof relies on the repeated applications of the dominated convergence arguments. For example, the right hand side of (\ref{J311}) is smaller than \begin{eqnarray*} &&\frac{1}{\sqrt{nh^{d}}}\underset{\left\{ K_{ix}>0\right\} }{\max }% \left\vert \tilde{v}_{2i}\left( x\right) \right\vert \sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\varphi _{i}\psi \left( \bar{% \varepsilon}_{i}\right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}^{2}\right\vert \\ &&+\frac{1}{\sqrt{nh^{d}}}\underset{\left\{ K_{ix}>0\right\} }{\max }% \left\vert \tilde{v}_{1i}\left( x\right) \right\vert \sum_{i=1}^{n}\left\vert K_{ix,\mathbf{j}}\varphi _{i}\psi \left( \bar{% \varepsilon}_{i}\right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}\right\vert . \end{eqnarray*}% Noting that% \begin{eqnarray*} E\left\vert K_{ix,\mathbf{j}}\varphi _{i}\psi \left( \bar{\varepsilon}% _{i}\right) g_{b}\left( f\left( \bar{\varepsilon}_{i}\right) \right) f^{\prime }\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}% _{i}^{r}\right\vert &=&E\left[ \left\vert \frac{K_{ix,\mathbf{j}}\varphi _{i}}{d_{i}+1}\int \psi \left( \varepsilon \right) g_{b}\left( f\left( \varepsilon \right) \right) f^{\prime }\left( \varepsilon \right) \varepsilon ^{r}\right\vert f\left( \frac{\varepsilon -\overline{\delta }_{i}% }{d_{i}+1}\right) d\varepsilon \right] \\ &\leq &\sup_{\varepsilon }\left[ g_{b}\left( f\left( \varepsilon \right) \right) f\left( \varepsilon \right) \right] E\left\vert \frac{K_{ix,\mathbf{j% }}\varphi _{i}}{d_{i}+1}\right\vert \int_{b\leq f\left( \varepsilon \right) \leq 2b}\frac{f^{\prime }\left( \varepsilon \right) ^{2}}{f\left( \varepsilon \right) }\left\vert \varepsilon ^{r}\right\vert d\varepsilon +O\left( h^{\epsilon }\right) \\ &\leq &Cf\left( \varepsilon \right) \int_{b\leq f\left( \varepsilon \right) \leq 2b}\left\vert \frac{f^{\prime }\left( \varepsilon \right) ^{2}}{f\left( \varepsilon \right) }\varepsilon ^{r}\right\vert d\varepsilon +O\left( h^{\epsilon }\right) \\ &\leq &C\int_{b\leq f\left( \varepsilon \right) \leq 2b}\left\vert \frac{% f^{\prime }\left( \varepsilon \right) ^{2}}{f\left( \varepsilon \right) }% \varepsilon ^{r}\right\vert d\varepsilon +O\left( h^{p+1}\right) =O\left( b^{\left( \gamma -1\right) /(2\gamma )}+h^{\epsilon }\right) , \end{eqnarray*}% where the last equality follows from similar argument to the proof of Lemma B.3, we have $\mathcal{S}_{3n\mathbf{j,}11}=O_{p}(\upsilon _{2n}\sqrt{nh^{d}}% (b^{\left( \gamma -1\right) /(2\gamma )}+h^{\epsilon }))=o_{p}\left( 1\right) .$ Similarly, we can show that $\mathcal{S}_{3n\mathbf{j,}% 1s}=o_{p}\left( 1\right) ,$ $s=2,3.$\textbf{\ }${\tiny \blacksquare }$% \medskip \noindent \textbf{Proof of Lemma B.7. }Observe that \begin{eqnarray*} \mathcal{R}_{1n} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}% \right) \bar{H}^{-1}[\tilde{G}_{i}\tilde{s}_{i}\left( \mathbf{\beta }% ^{0}\right) \tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) ^{\top }-G_{i}s_{i}\left( \mathbf{\beta }^{0}\right) s_{i}\left( \mathbf{\beta }% ^{0}\right) ^{\top }]\otimes (\mathbf{\tilde{X}}_{i}\mathbf{\tilde{X}}% _{i}^{\top })\bar{H}^{-1} \\ &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}G_{i}[\tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) \tilde{s}% _{i}\left( \mathbf{\beta }^{0}\right) ^{\top }-s_{i}\left( \mathbf{\beta }% ^{0}\right) s_{i}\left( \mathbf{\beta }^{0}\right) ^{\top }]\otimes (\mathbf{% \tilde{X}}_{i}\mathbf{\tilde{X}}_{i}^{\top })\bar{H}^{-1} \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}\left( \tilde{G}_{i}-G_{i}\right) s_{i}\left( \mathbf{\beta }% ^{0}\right) s_{i}\left( \mathbf{\beta }^{0}\right) ^{\top }\otimes (\mathbf{% \tilde{X}}_{i}\mathbf{\tilde{X}}_{i}^{\top })\bar{H}^{-1} \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}\left( \tilde{G}_{i}-G_{i}\right) [\tilde{s}_{i}\left( \mathbf{\beta }% ^{0}\right) \tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) ^{\top }-s_{i}\left( \mathbf{\beta }^{0}\right) s_{i}\left( \mathbf{\beta }% ^{0}\right) ^{\top }]\otimes (\mathbf{\tilde{X}}_{i}\mathbf{\tilde{X}}% _{i}^{\top })\bar{H}^{-1} \\ &\equiv &\mathcal{R}_{1n,1}+\mathcal{R}_{1n,2}+\mathcal{R}_{1n,3},\text{ say.% } \end{eqnarray*}% It suffices to prove the lemma by showing that $\mathcal{R}% _{1n,r}=o_{p}\left( 1\right) $ for $r=1,2,3.$ We only prove $\mathcal{R}% _{1n,1}=o_{p}\left( 1\right) $ and $\mathcal{R}_{1n,2}=o_{p}\left( 1\right) $ as $\mathcal{R}_{1n,3}$ is a smaller order term and can be studied analogously. First, we show that $\mathcal{R}_{1n,1}=o_{p}\left( 1\right) .$ Note that \begin{equation*} \tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) \tilde{s}_{i}\left( \mathbf{% \beta }^{0}\right) ^{^{\top }}=\left[ \begin{array}{cc} \frac{\tilde{\psi}_{i}^{2}\left( \bar{\varepsilon}_{i}\right) }{\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) } & \frac{\varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }_{2}\right) \right) \tilde{\psi}% _{i}\left( \bar{\varepsilon}_{i}\right) \left[ \tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] }{2\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{3/2}} \\ \frac{\varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }_{2}\right) \right) \tilde{\psi}_{i}\left( \bar{\varepsilon}_{i}\right) \left[ \tilde{% \psi}_{i}\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] }{2\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{3/2}} & \frac{\left[ \varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }% _{2}\right) \right) \right] ^{2}\left[ \tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] ^{2}}{4\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{2}}% \end{array}% \right] , \end{equation*}% and $s_{i}\left( \mathbf{\beta }^{0}\right) s_{i}\left( \mathbf{\beta }% ^{0}\right) ^{\top }$ has a similar expression with $\psi \left( \bar{% \varepsilon}_{i}\right) $ in the place of $\tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) .$ It follows that% \begin{eqnarray*} \mathcal{R}_{1n,1} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}% \right) G_{i} \\ &&\times \left[ \begin{array}{cc} \frac{\tilde{\psi}_{i}^{2}\left( \bar{\varepsilon}_{i}\right) -\psi ^{2}\left( \bar{\varepsilon}_{i}\right) }{\varphi \left( P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) \right) } & \frac{\varphi _{i}\left\{ \tilde{\psi}% _{i}\left( \bar{\varepsilon}_{i}\right) \left[ \tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] -\psi \left( \bar{% \varepsilon}_{i}\right) \left[ \psi \left( \bar{\varepsilon}_{i}\right) \bar{% \varepsilon}_{i}+1\right] \right\} }{2\varphi \left( P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) \right) ^{1/2}} \\ \frac{\varphi _{i}\left\{ \tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) \left[ \tilde{\psi}_{i}\left( \bar{\varepsilon}_{i}\right) \bar{% \varepsilon}_{i}+1\right] -\psi \left( \bar{\varepsilon}_{i}\right) \left[ \psi \left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] \right\} }{2\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{1/2}} & \frac{\varphi _{i}^{2}\left[ \tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] ^{2}-\left[ \psi \left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] ^{2}}{4}% \end{array}% \right] \otimes (\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top }) \\ &\equiv &\left[ \begin{array}{cc} \mathcal{R}_{1n,1,11} & \mathcal{R}_{1n,1,12} \\ \mathcal{R}_{1n,1,21} & \mathcal{R}_{1n,1,22}% \end{array}% \right] ,\text{ say,} \end{eqnarray*}% where recall $\varphi _{i}=\varphi ^{\prime }\left( P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) \right) /\varphi \left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ,$ $\mathcal{R}_{1n,1,21}=\mathcal{R}% _{1n,1,12}^{\top },$ and $\mathcal{R}_{1n,1,rs},$ $r,s=1,2,$ are all $% N\times N$ matrices. We need to show that $\mathcal{R}_{1n,1,11},$ $\mathcal{% R}_{1n,1,12}$ and $\mathcal{R}_{1n,1,22}$ are all $o_{p}\left( 1\right) .$ Noting that% \begin{eqnarray*} \tilde{\psi}_{i}^{2}\left( \bar{\varepsilon}_{i}\right) -\psi ^{2}\left( \bar{\varepsilon}_{i}\right) &=&\frac{\tilde{f}_{i}^{\prime }\left( \bar{% \varepsilon}_{i}\right) ^{2}f\left( \bar{\varepsilon}_{i}\right) ^{2}-\tilde{% f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{2}f^{\prime }\left( \bar{% \varepsilon}_{i}\right) ^{2}}{\tilde{f}_{i}\left( \bar{\varepsilon}% _{i}\right) ^{2}f\left( \bar{\varepsilon}_{i}\right) ^{2}} \\ &=&\frac{\left[ \tilde{f}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) ^{2}-f_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) ^{2}\right] f\left( \bar{\varepsilon}_{i}\right) ^{2}+\left[ f\left( \bar{\varepsilon}% _{i}\right) ^{2}-\tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{2}\right] f_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) ^{2}}{\tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{2}f\left( \bar{\varepsilon}_{i}\right) ^{2}}, \end{eqnarray*}% we have% \begin{eqnarray*} \mathcal{R}_{1n,1,11} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}% }{h}\right) G_{i}\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{-1}\left[ \tilde{\psi}_{i}^{2}\left( \bar{\varepsilon}_{i}\right) -\psi ^{2}\left( \bar{\varepsilon}_{i}\right) \right] \mathbf{Z}_{i}\mathbf{Z% }_{i}^{\top } \\ &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) G_{i}\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{-1}% \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{-2}\left[ \tilde{f}% _{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) ^{2}-f_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) ^{2}\right] \mathbf{Z}_{i}\mathbf{Z}_{i}^{\top } \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) G_{i}\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{-1}% \tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{-2}\psi \left( \bar{% \varepsilon}_{i}\right) ^{2}\left[ \tilde{f}_{i}\left( \bar{\varepsilon}% _{i}\right) ^{2}-f_{i}\left( \bar{\varepsilon}_{i}\right) ^{2}\right] \mathbf{Z}_{i}\mathbf{Z}_{i}^{\top } \\ &\equiv &\mathcal{R}_{1n,1,11,a}+\mathcal{R}_{1n,1,11,b}\text{ say.} \end{eqnarray*}% Noting that $G_{i}\tilde{f}_{i}\left( \bar{\varepsilon}_{i}\right) ^{-2}=O\left( b^{-2}\right) ,$ by Lemma A.2, we have \begin{eqnarray*} \left\Vert \mathcal{R}_{1n,1,11,a}\right\Vert &\leq &O_{p}\left( \upsilon _{3n,1}b^{-2}\right) \frac{1}{nh^{d}}\sum_{i=1}^{n}\left\Vert K\left( \frac{% x-X_{i}}{h}\right) G_{i}\varphi \left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ^{-1}\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top }\right\Vert \\ &=&O_{p}\left( \upsilon _{3n,1}b^{-2}\right) O_{p}\left( 1\right) =O_{p}\left( \upsilon _{3n,1}b^{-2}\right) =o_{p}\left( 1\right) . \end{eqnarray*}% By the same token, $\left\vert \mathcal{R}_{1n,1,11,b}\right\vert =o_{p}\left( 1\right) .$ Thus $\mathcal{R}_{1n,1,11}=o_{p}\left( 1\right) .$ Analogously, we can show $\mathcal{R}_{1n,1,12}=o_{p}\left( 1\right) $ and $% \mathcal{R}_{1n,1,22}=o_{p}\left( 1\right) .$ Hence we have shown that $% \mathcal{R}_{1n,1}=o_{p}\left( 1\right) .\medskip $ Now, we show that $\mathcal{R}_{1n,2}=o_{p}\left( 1\right) .$ By (\ref{GG}) and Markov inequality, we have% \begin{eqnarray*} \left\vert \mathcal{R}_{1n,2}\right\vert &\leq &O_{p}\left( h^{\epsilon }\right) \frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \left\Vert s_{i}\left( \mathbf{\beta }^{0}\right) s_{i}\left( \mathbf{\beta }% ^{0}\right) ^{\top }\otimes (\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top })\right\Vert \\ &=&O_{p}\left( h^{\epsilon }\right) O_{p}\left( 1\right) =O_{p}\left( 1\right) . \end{eqnarray*}% This completes the proof of the lemma. ${\tiny \blacksquare }$\medskip \noindent \textbf{Proof of Lemma B.8. }Observe that% \begin{eqnarray*} \mathcal{R}_{2n} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}% \right) \bar{H}^{-1}\left[ \tilde{G}_{i}\frac{\partial \tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }^{\top }}-G_{i}\frac{% \partial s_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }% ^{\top }}\right] \otimes \mathbf{\tilde{X}}_{i}\bar{H}^{-1} \\ &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}G_{i}\left\{ \left[ \frac{\partial \tilde{s}_{i}\left( \mathbf{\beta }% ^{0}\right) }{\partial \mathbf{\beta }^{\top }}-\frac{\partial s_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }^{\top }}\right] \otimes \mathbf{\tilde{X}}_{i}\right\} \bar{H}^{-1} \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}\left( \tilde{G}_{i}-G_{i}\right) \left\{ \frac{\partial s_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }^{\top }}\otimes \mathbf{\tilde{X}}_{i}\right\} \bar{H}^{-1} \\ &&+\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}\right) \bar{H}% ^{-1}\left( \tilde{G}_{i}-G_{i}\right) \left\{ \left[ \frac{\partial \tilde{s% }_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }^{\top }}-% \frac{\partial s_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{% \beta }^{\top }}\right] \otimes \mathbf{\tilde{X}}_{i}\right\} \bar{H}^{-1} \\ &\equiv &\mathcal{R}_{2n,1}+\mathcal{R}_{2n,2}+\mathcal{R}_{2n,3},\text{ say.% } \end{eqnarray*}% We prove the lemma by showing that $\mathcal{R}_{2n,s}=o_{P}\left( 1\right) $ for $s=1,2,3.$ We will only show that $\mathcal{R}_{2n,1}=o_{P}\left( 1\right) $ as the other two cases can be proved analogously. Recall $% c_{i\varphi }=\varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ^{2}-\varphi ^{\prime \prime }\left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) \varphi \left( P_{i}\left( \mathbf{% \beta }_{2}^{0}\right) \right) $ and $\varphi _{i}\equiv \varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) /\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) .$ Noting that% \begin{equation*} \frac{\partial \tilde{s}_{i}\left( \mathbf{\beta }^{0}\right) }{\partial \mathbf{\beta }^{^{\top }}}=\left( \begin{array}{cc} \frac{\tilde{\psi}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) }{% \varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) } & \frac{% \varphi _{i}\left[ \tilde{\psi}_{i}^{\prime }\left( \bar{\varepsilon}% _{i}\right) \bar{\varepsilon}_{i}+\tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) \right] }{2\varphi \left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ^{1/2}} \\ \frac{\varphi _{i}\left[ \tilde{\psi}_{i}^{\prime }\left( \bar{\varepsilon}% _{i}\right) \bar{\varepsilon}_{i}+\tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) \right] }{2\varphi \left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ^{1/2}} & \frac{2c_{i\varphi }\left[ \tilde{\psi}% _{i}\left( \bar{\varepsilon}_{i}\right) \bar{\varepsilon}_{i}+1\right] +\varphi ^{\prime }\left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{2}\bar{\varepsilon}_{i}\left[ \tilde{\psi}_{i}^{\prime }\left( \bar{% \varepsilon}_{i}\right) \bar{\varepsilon}_{i}+\tilde{\psi}_{i}\left( \bar{% \varepsilon}_{i}\right) \right] }{4\varphi \left( P_{i}\left( \mathbf{\beta }% _{2}^{0}\right) \right) ^{2}}% \end{array}% \right) \otimes \mathbf{\tilde{X}}_{i}^{\top }, \end{equation*}% and $\partial s_{i}\left( \mathbf{\beta }^{0}\right) /\partial \mathbf{\beta }^{\top }$ has similar expression with $\psi _{i}\left( \bar{\varepsilon}% _{i}\right) $ in the place of $\tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) ,$ we have% \begin{eqnarray*} \mathcal{R}_{2n,1} &=&\frac{1}{nh^{d}}\sum_{i=1}^{n}K\left( \frac{x-X_{i}}{h}% \right) G_{i} \\ &&\times \left( \begin{array}{cc} \frac{\tilde{\psi}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) -\psi ^{\prime }\left( \bar{\varepsilon}_{i}\right) }{\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) } & \frac{\varphi _{i}\left\{ \left[ \tilde{\psi}_{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) -\psi ^{\prime }\left( \bar{\varepsilon}_{i}\right) \right] \bar{\varepsilon}_{i}+\left[ \tilde{\psi}_{i}\left( \bar{\varepsilon}_{i}\right) -\psi \left( \bar{% \varepsilon}_{i}\right) \right] \right\} }{2\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{1/2}} \\ \frac{\varphi _{i}\left\{ \left[ \tilde{\psi}_{i}^{\prime }\left( \bar{% \varepsilon}_{i}\right) -\psi ^{\prime }\left( \bar{\varepsilon}_{i}\right) % \right] \bar{\varepsilon}_{i}+\left[ \tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) -\psi \left( \bar{\varepsilon}_{i}\right) \right] \right\} }{% 2\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{1/2}} & \frac{2c_{i\varphi }\left[ \tilde{\psi}_{i}\left( \bar{\varepsilon}% _{i}\right) -\psi \left( \bar{\varepsilon}_{i}\right) \right] \bar{% \varepsilon}_{i}}{4\varphi \left( P_{i}\left( \mathbf{\beta }_{2}^{0}\right) \right) ^{2}}+\frac{\tilde{d}_{i}}{4}% \end{array}% \right) \otimes (\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top }) \\ &\equiv &\left[ \begin{array}{cc} \mathcal{R}_{2n,1,11} & \mathcal{R}_{2n,1,12} \\ \mathcal{R}_{2n,1,12}^{\top } & \mathcal{R}_{2n,1,22}% \end{array}% \right] ,\text{ say,} \end{eqnarray*}% where $\tilde{d}_{i}\equiv \varphi _{i}^{2}\bar{\varepsilon}_{i}[\tilde{\psi}% _{i}^{\prime }\left( \bar{\varepsilon}_{i}\right) -\psi ^{\prime }\left( \bar{\varepsilon}_{i}\right) ]\bar{\varepsilon}_{i}+[\tilde{\psi}_{i}\left( \bar{\varepsilon}_{i}\right) -\psi \left( \bar{\varepsilon}_{i}\right) ]$. As in the analysis of $\mathcal{R}_{1n,1},$ using Lemma A.2, we can readily demonstrate that $\mathcal{R}_{2n,1,11}=o_{p}\left( 1\right) ,$ $\mathcal{R}% _{2n,1,12}=o_{p}\left( 1\right) $ and $\mathcal{R}_{2n,1,22}=o_{p}\left( 1\right) .$ It follows that $\mathcal{R}_{2n,1}=o_{p}\left( 1\right) .$ Similarly, we can show that $\mathcal{R}_{2n,s}=o_{P}\left( 1\right) $ for $% s=2,3.$ This completes the proof of the lemma. ${\tiny \blacksquare }$ \section{Derivative Matrices in the Proof of Proposition 2.1} In this appendix, we give explicit expressions for the elements of some derivative matrices of the log-likelihood function defined in the proof of Proposition 2.1. The elements of the Hessian matrix are% \begin{eqnarray*} q_{11}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}% \frac{1}{\varphi \left( \beta _{2}\right) }, \\ q_{12}\left( y;\beta _{1},\beta _{2}\right) &=&\left\{ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\varepsilon \left( \beta \right) +\frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }% \right\} \frac{\varphi ^{\prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) ^{3/2}}, \\ q_{22}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{-\varphi ^{\prime \prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) }\left[ \frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{% \partial \varepsilon }\varepsilon \left( \beta \right) +1\right] \\ &&+\frac{\varphi ^{\prime }\left( \beta _{2}\right) ^{2}}{4\varphi \left( \beta _{2}\right) ^{2}}\left\{ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\varepsilon \left( \beta \right) ^{2}+3\frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }\varepsilon \left( \beta \right) +2\right\} , \end{eqnarray*}% and $q_{21}\left( y;\beta _{1},\beta _{2}\right) =q_{12}\left( y;\beta _{1},\beta _{2}\right) $ by Young's theorem, where, e.g., $\frac{\partial ^{2}\log f\left( \varepsilon \right) }{\partial \varepsilon ^{2}}=\frac{% f^{\prime \prime }(\varepsilon )f(\varepsilon )-f^{\prime }(\varepsilon )^{2}% }{f^{2}(\varepsilon )}$ and $\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\equiv \left. \frac{% \partial ^{2}\log f\left( \varepsilon \right) }{\partial \varepsilon ^{2}}% \right\vert _{\varepsilon =\varepsilon \left( \beta \right) }.$ Note that when we restrict our attention to the case $\varphi \left( u\right) =u$ or $% \exp \left( u\right) ,$ the above formulae can be greatly simplified. In addition, in the proof of Proposition 2.1, we also need that $% q_{rst}\left( y;\beta _{1},\beta _{2}\right) \equiv \frac{\partial ^{3}}{% \partial \beta _{r}\partial \beta _{s}\partial \beta _{t}}\log \left( f\left( y;\beta _{1},\beta _{2}\right) \right) ,$ $r,s,t=1,2,$ should be well behaved. Using the expressions% \begin{equation*} \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta }=\left( \begin{array}{c} \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{1}} \\ \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}}% \end{array}% \right) =\left( \begin{array}{c} -\frac{1}{\varphi \left( \beta _{2}\right) ^{1/2}} \\ -\frac{\varphi ^{\prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) }\varepsilon \left( \beta \right) \end{array}% \right) \text{ and }\frac{\partial ^{2}\log f\left( \varepsilon \right) }{% \partial \varepsilon ^{2}}=\frac{f^{\prime \prime }(\varepsilon )f(\varepsilon )-f^{\prime }(\varepsilon )^{2}}{f^{2}(\varepsilon )} \end{equation*}% and by straightforward calculations, we have \begin{eqnarray*} q_{111}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{\partial ^{3}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{3}}% \frac{1}{\varphi \left( \beta _{2}\right) }, \\ q_{112}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{\partial ^{3}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{3}}% \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}}\frac{1% }{\varphi \left( \beta _{2}\right) }-\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\frac{% \varphi ^{\prime }\left( \beta _{2}\right) }{\varphi \left( \beta _{2}\right) ^{2}}, \\ q_{121}\left( y;\beta _{1},\beta _{2}\right) &=&\left\{ \frac{\partial ^{3}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{3}}\frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{1}}\varepsilon \left( \beta \right) +2\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}% \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{1}}% \right\} \frac{\varphi ^{\prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) ^{3/2}}=q_{112}\left( y;\beta _{1},\beta _{2}\right) , \\ q_{122}\left( y;\beta _{1},\beta _{2}\right) &=&\left\{ \frac{\partial ^{3}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{3}}\frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}}\varepsilon \left( \beta \right) +2\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}% \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}}% \right\} \frac{\varphi ^{\prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) ^{3/2}}, \\ &&+\left\{ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\varepsilon \left( \beta \right) +\frac{% \partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }\right\} \frac{\varphi ^{\prime \prime }\left( \beta _{2}\right) \varphi \left( \beta _{2}\right) ^{3/2}-\frac{3}{2}\varphi ^{\prime }\left( \beta _{2}\right) ^{2}\varphi \left( \beta _{2}\right) ^{1/2}}{2\varphi \left( \beta _{2}\right) ^{3}}, \\ q_{221}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{-\varphi ^{\prime \prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) }\left[ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{% \partial \varepsilon ^{2}}\varepsilon \left( \beta \right) +\frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }\right] \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{1}}+\frac{\varphi ^{\prime }\left( \beta _{2}\right) ^{2}}{4\varphi \left( \beta _{2}\right) ^{2}}\kappa \left( \beta \right) \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{1}} \\ &=&q_{122}\left( y;\beta _{1},\beta _{2}\right) \\ q_{222}\left( y;\beta _{1},\beta _{2}\right) &=&\frac{-\varphi ^{\prime \prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) }\left[ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{% \partial \varepsilon ^{2}}\varepsilon \left( \beta \right) +\frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }\right] \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}} \\ &&-\frac{\varphi ^{\prime \prime \prime }\left( \beta _{2}\right) \varphi \left( \beta _{2}\right) -\varphi ^{\prime \prime }\left( \beta _{2}\right) \varphi ^{\prime }\left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) ^{2}}\left[ \frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }\varepsilon \left( \beta \right) +1% \right] \\ &&+\frac{\varphi ^{\prime }\left( \beta _{2}\right) ^{2}}{4\varphi \left( \beta _{2}\right) ^{2}}\kappa \left( \beta \right) \frac{\partial \varepsilon \left( \beta \right) }{\partial \beta _{2}} \\ &&+\frac{\varphi ^{\prime }\left( \beta _{2}\right) \varphi ^{\prime \prime }\left( \beta _{2}\right) -\varphi ^{\prime }\left( \beta _{2}\right) ^{3}\varphi \left( \beta _{2}\right) }{2\varphi \left( \beta _{2}\right) ^{4}% }\left\{ \frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}\varepsilon \left( \beta \right) ^{2}+3% \frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{% \partial \varepsilon }\varepsilon \left( \beta \right) +2\right\} , \end{eqnarray*}% $q_{211}=q_{121}=q_{112},$ and $q_{212}=q_{122}=q_{221}$ by Young's Theorem, where $\kappa \left( \beta \right) \equiv \frac{\partial ^{3}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{3}}% \varepsilon \left( \beta \right) ^{2}$ $+2\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}% \varepsilon \left( \beta \right) +3\frac{\partial ^{2}\log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon ^{2}}% \varepsilon \left( \beta \right) +3\frac{\partial \log f\left( \varepsilon \left( \beta \right) \right) }{\partial \varepsilon }.$ Note that under our assumptions ($X_{i}$ has compact support, the parameter space is compact, $% \sigma ^{2}\left( x\right) $ is bounded away from 0) the terms associated with $\varphi \left( \cdot \right) $ or its derivatives are all well behaved when $\varphi \left( \cdot \right) $ is evaluated in the neighborhood of $% \beta _{2}^{0}\left( x\right) .$ \ \ \ \noindent \textit{REFERENCES }\setlength{\baselineskip}{10pt} \begin{description} \item Bickel, P. J. (1975) One-step Huber estimates in linear models. \textit{Journal of the American Statistical Association} 70, 428-433. \item Gozalo, P. \& O. Linton (2000) Local non-linear least squares: using parametric information in nonparametric regression. \textit{Journal of Econometrics }99, 63-106. \item Hansen, B. E. (2008) Uniform convergence rates for kernel regression. \textit{Econometric Theory}, 24, 726-748. \item Lee, A. J. (1990) \textit{U-statistics: Theory and Practice}. Marcel Dekker, New York and Basel. \item Linton, O., and Z. Xiao (2007) A nonparametric regression estimator that adapts to error distribution of unknown form. \textit{Econometric Theory }23, 371-413. \item Masry, E. (1996a) Multivariate regression estimation: local polynomial fitting for time series. \textit{Stochastic Processes and Their Applications }65, 81-101. \item Masry, E. (1996b) Multivariate local polynomial regression for time series: uniform strong consistency rates. \textit{Journal of Time Series Analysis }17, 571-599. \item Newey, W. K. (1991) Uniform convergence in probability and stochastic equicontinuity. \textit{Econometrica} 59, 1161-1167. \item Nolan, D. and D. Pollard (1987) \textit{U}-processes: rates of convergence. \textit{Annals of Statistics} 15, 780-799. \item Pakes, A. and D. Pollard (1989) Simulation and the asymptotics of optimization estimators. \textit{Econometrica} 57, 1027-1057. \item Pollard, D. (1984) \textit{Convergence of Stochastic Processes}. Springer, New York. \item Robinson, P. M. (1988) Root-\textit{N}-consistent semiparametric regression. \textit{Econometrica} 56, 931-954. \item Rudin, W. (1976) \textit{Principles of Mathematical Analysis}. 3rd ed., McGraw-Hill, London. \end{description} \end{document}