Supplementary material on "Limit Laws in Transaction-Level Asset Price Models"

Alexander Aue* Lajos Horváth ${ }^{\dagger}$ Clifford Hurvich ${ }^{\ddagger}$ Philippe Soulier ${ }^{\S}$

Lemma A.1. If the durations $t_{i, k}-t_{i, k-1}$ form a stationary ergodic sequence with finite moment of order $2 p+1$, if $\mathbb{P}\left(t_{i, 1}>0\right)=1$ and if the associated point process has finite intensity, then

$$
\sup _{s \geq 0} \mathbb{E}\left[\left(t_{i, N_{i}(s)+1}-s\right)^{p}\right]<\infty
$$

Proof of Lemma A.1. We omit the index i. Let θ_{t} denote the shift operator and let $A(t)$ be the forward recurrence time. Then $A(s)=t_{N(s)+1}-s=t_{1} \circ \theta_{s}$. Since the sequence $\left\{\tau_{i}\right\}$ is stationary under \mathbb{P}, there exists a probability law P^{*} such that N is a stationary ergodic point process under P^{*}, see Baccelli and Brémaud (2003, Section 1.3.5). Applying Baccelli and Brémaud (2003, Formula 1.3.3), we obtain

$$
\begin{align*}
\mathbb{E}\left[A^{p}(s)\right] & =\lambda^{-1} \mathbb{E}^{*}\left[\sum_{k=1}^{N(1)} t_{1}^{p} \circ \theta_{s} \circ \theta_{t_{k}}\right]=\lambda^{-1} \mathbb{E}^{*}\left[\sum_{k=1}^{N(1)} A^{p}\left(s+t_{k}\right)\right] \\
& =\lambda^{-1} \mathbb{E}^{*}\left[\sum_{k=1}^{N(1)}\left\{t_{N\left(s+t_{k}\right)+1}-s-t_{k}\right\}^{p}\right] \leq \lambda^{-1} \mathbb{E}^{*}\left[\sum_{k=1}^{N(1)}\left\{t_{N(s+1)+1}-s\right\}^{p}\right] \\
& =\lambda^{-1} \mathbb{E}^{*}\left[N(1)\left\{t_{N(s+1)+1}-s\right\}^{p}\right] \leq \lambda^{-1}\left\{\mathbb{E}^{*}\left[N(1)^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}^{*}\left[\left(t_{N(s+1)+1}-s\right)^{2 p}\right]\right\}^{1 / 2} . \tag{A.1}
\end{align*}
$$

[^0]Since N is stationary under P^{*}, the last term does not depend on s, and by the RyllNardzewski inversion formula (Baccelli and Brémaud (2003, Formula 1.2.25)), we have

$$
\mathbb{E}^{*}\left[\left(t_{N(s+1)+1}-s\right)^{2 p}\right]=\mathbb{E}^{*}\left[\left(t_{1}+1\right)^{2 p}\right]=\lambda \mathbb{E}\left[\int_{0}^{t_{1}}\left(t_{1}+1-s\right)^{2 p} \mathrm{~d} s \leq \lambda \mathbb{E}\left[\left(1+t_{1}\right)^{2 p+1}\right]\right.
$$

By Baccelli and Brémaud (2003, Property 1.6.3), the point process N is stationary and ergodic under P^{*} since the sequence of durations τ_{k} is stationary and ergodic. Thus, By Daley and Vere-Jones (2003, Theorem 3.5.III), $\mathbb{E}^{*}\left[N(0,1)^{2}\right]<\infty$. Plugging the last two bounds into (A.1), we obtain that $\mathbb{E}\left[A^{p}(s)\right]$ is uniformly bounded.
Lemma A.2. Assume that there exists an increasing sequence $\left\{s_{n}, n \geq 0\right\}$ such that $s_{0}=0$ and
(a) f is either constant or strictly increasing and differentiable on $\left(s_{n}, s_{n+1}\right)$ and the jumps of f occur at some (but not necessarily all) of the s_{n};
(b) if f is either constant or increasing on both intervals $\left(s_{n}, s_{n+1}\right)$ and $\left(s_{n+1}, s_{n+2}\right)$, then f has a jump at s_{n+1}.

Assume moreover that

- (minimum duration of trading and nontrading periods) there exists $\delta_{0}>0$ such that $s_{n+1}-s_{n} \geq \delta_{0}$ for all $n \geq 0$;
- (maximum duration of nontrading periods) there exists C_{0} such that for all $n \geq 0$, if f is constant on $\left(s_{n}, s_{n+1}\right)$, then $s_{n+1}-s_{n} \leq C_{0}$;
- (non stoppage of time during trading periods) there exists $\delta_{1}>0$ such that for all $n \geq 0$, f is either constant on $\left(s_{n}, s_{n+1}\right)$, or $f^{\prime}(t) \geq \delta_{1}$ for all $t \in\left(s_{n}, s_{n+1}\right)$.

Let \tilde{N} be a point process with event times $\left\{\tilde{t}_{k}\right\}$ and let N be the point process defined by $N(\cdot)=\tilde{N}(f(\cdot))$ with event times $\left\{t_{k}\right\}$. If $\sup _{s \geq 0} \mathbb{E}\left[\left(\tilde{t}_{\tilde{N}(s)+1}-s\right)^{p}\right]<\infty$, then $\sup _{s \geq 0} \mathbb{E}\left[\left(t_{N(s)+1}-s\right)^{p}\right]<\infty$.

Proof of Lemma A.2. Define the nondecreasing left-continuous inverse $f \leftarrow$ of a nondecreasing càdlàg function f by

$$
f^{\leftarrow}(u)=\inf \{t \mid f(t) \geq u\} .
$$

Note first that $f \leftharpoondown(u) \leq t$ if only if $u \leq f(t)$ and $f^{\leftarrow}(f(t)) \leq t$. Thus we see that

$$
\begin{aligned}
f \leftarrow\left(\tilde{t}_{n}\right) \leq t & \Leftrightarrow \tilde{t}_{n} \leq f(t) \\
& \Leftrightarrow \tilde{N}(f(t)) \geq n \\
& \Leftrightarrow N(t) \geq n .
\end{aligned}
$$

This characterizes the sequence $\left\{t_{n}\right\}$, thus we obtain that $t_{n}=f \leftarrow\left(\tilde{t}_{n}\right)$. The assumptions on f imply the following properties of $f \leftarrow$.

- The jumps of $f \leftarrow$ correspond to the intervals $\left(s_{n}, s_{n+1}\right)$ where f is constant. More precisely, if f is constant on $\left(s_{n}, s_{n+1}\right)$, then $f \leftarrow$ has a jump at $f\left(s_{n}\right)$ of size $s_{n+1}-s_{n}$. Since $f \leftarrow$ is left continuous, it holds that

$$
f^{\leftarrow}\left(f\left(s_{n}\right)\right)=s_{n}, \quad \lim _{u \rightarrow f\left(s_{n}\right), u>f\left(s_{n}\right)}=s_{n+1}
$$

Thus the jumps of $f \leftarrow$ are of size C_{0} at most.

- If f is increasing on an interval $\left(s_{n}, s_{n+1}\right)$, then $f \leftarrow$ is differentiable on $\left(f\left(s_{n}\right), f\left(s_{n}^{-}\right)\right)$ and $\left(f^{\leftarrow}\right)^{\prime}(t) \leq \delta_{1}^{-1}$ for all $t \in\left(f\left(s_{n}\right), f\left(s_{n}^{-}\right)\right)$.
- The jumps of f create no singularity in $f \leftarrow$. If $f\left(s_{n}\right)>f\left(s_{n}^{-}\right)$, then $f \leftarrow$ is constant on the interval $\left(f\left(s_{n}^{-}\right), f\left(s_{n}\right)\right)$.

Let $\lceil x\rceil$ denote the smallest integer greater than or equal to the real number x. Then, for $0 \leq s \leq t$,

$$
0 \leq f \leftarrow(t)-f \leftarrow(s) \leq C_{0}\left\lceil\frac{t-s}{\delta_{0}}\right\rceil+\delta_{1}^{-1}(t-s)
$$

Thus, there exits constants c_{1}, c_{2} such that for all $s \leq t$,

$$
0 \leq f(t)-f(s) \leq c_{1}+c_{2}(t-s)
$$

Consider now the forward recurrence time of the point process N. Then

$$
\begin{aligned}
0 & \left.\leq t_{N(s)+1}-s=f^{\leftarrow} \tilde{t}_{\tilde{N}(s)+1}\right)-f^{\leftarrow}(f(s))+f^{\leftarrow}(f(s))-s \\
& \leq f^{\leftarrow\left(\tilde{t}_{\tilde{N}(f(s))+1}\right)-f^{\leftarrow}(f(s)) \leq c_{1}+c_{2}\left\{\tilde{t}_{\tilde{N}(f(s))+1}-f(s)\right\}} .
\end{aligned}
$$

Thus, there exists constants c_{3} and c_{4} such that

$$
\sup _{s \geq 0} \mathbb{E}\left[\left(t_{N(s)+1}-s\right)^{p}\right] \leq c_{3}+c_{4} \sup _{s \geq 0} \mathbb{E}\left[\left(\tilde{t}_{\tilde{N}(s)+1}-s\right)^{p}\right]
$$

Lemma A.3. Let $\left\{\epsilon_{k}\right\}$ be a sequence of i.i.d. positive random variables with finite mean μ_{ϵ}. Let $\left\{Y_{k}\right\}$ be a stationary standard Gaussian process such that

$$
\begin{equation*}
\operatorname{cov}\left(Y_{0}, Y_{k}\right)=\ell(n) n^{2 H-2} \tag{A.2}
\end{equation*}
$$

for $H \in(1 / 2,1)$ and ℓ a slowly varying function. For $k \geq 1$, define

$$
\tau_{k}=\epsilon_{k} \mathrm{e}^{\sigma Y_{k}}
$$

Then the sequence $\left\{\tau_{k}\right\}$ is ergodic and Assumption 2.1 holds with $\lambda^{-1}=\mu_{\epsilon} \mathrm{e}^{\sigma^{2} / 2}$. If $\mathbb{P}\left(\epsilon_{1}>\right.$ $0)=1$ the Assumption 2.2 holds with $\mu=\lambda=\mu_{\epsilon}^{-1} \mathrm{e}^{-\sigma^{2} / 2}$. If moreover $\mathbb{E}\left[\epsilon_{1}^{q}\right]<\infty$ for all $q \geq 1$, then (3.3) and (3.5) hold.

Remark A.1. If instead of (A.2) we assume that

$$
\sum_{k=1}^{\infty}\left|\operatorname{cov}\left(Y_{0}, Y_{k}\right)\right|<\infty
$$

then the moment requirement can be relaxed to $\mathbb{E}\left[\epsilon_{1}^{3}\right]<\infty$ to obtain (3.3) and $\mathbb{E}\left[\epsilon_{1}^{5}\right]<\infty$ to obtain (3.5).

Proof of Lemma A.3. Note first that $\mathbb{E}\left[\tau_{k}^{p}\right]<\infty$ as long as $\mathbb{E}\left[\epsilon_{1}^{p}\right]<\infty$. By Lemma A.1, in order to check condition (3.3), we must only prove that the induced point process has finite intensity, i.e. there exists $t>0$ such that $\mathbb{E}[N(t)]<\infty$. See Baccelli and Brémaud (2003, Section 1.3.5). Note that

$$
\mathbb{E}[N(x)]=\sum_{k=1}^{\infty} \mathbb{P}(N(x) \geq k)=\sum_{k=1}^{\infty} \mathbb{P}\left(t_{k} \leq x\right)
$$

Thus, it suffices to prove that the series on the righthand side is summable. Denote $\mu=\mathbb{E}\left[\tau_{k}\right]$ and $\rho_{n}=\operatorname{cov}\left(Y_{0}, Y_{n}\right)$. Applying Deo et al. (2009, Proposition 1), we have

$$
\mathbb{E}\left[\left|\sum_{k=1}^{n} \tau_{k}-n \mu\right|^{p}\right]=O\left(v_{n}^{p}\right)
$$

with $v_{n}=n^{H} \ell(n)$. If $\mathbb{E}\left[\epsilon_{1}^{p}\right]<\infty$ for p such that $p(1-H)>1$, for n such that $n \mu>x$, it holds that

$$
\mathbb{P}\left(t_{k} \leq x\right)=O\left(x^{-1} v_{k}^{p}\right)
$$

and this series is summable.
Lemma A.4. Assume that $\left\{\tau_{k}\right\}$ and $\left\{\xi_{k}\right\}$ are mutually independent stationary sequences such that $\mathbb{E}\left[\xi_{k}\right]=0, \mathbb{E}\left[\tau_{k}^{2}\right]<\infty$ and $\mathbb{E}\left[\xi_{k}^{2}\right]<\infty$. Assume that the sequence of durations is weakly stationary and that $\operatorname{cov}\left(\tau_{0}, \tau_{n}\right)=0\left(n^{-\delta}\right)$ for some $\delta>0$ and $\sup _{s \geq 0} \mathbb{E}\left[t_{N(s)+1}-s\right]<$ ∞. Assume that $\operatorname{cov}\left(\xi_{1}, \xi_{n}\right) \sim c n^{2 H-2}$, with $H \in(1 / 2,1)$ and $c>0$, and that

$$
n^{-H} \sum_{k=1}^{[n \cdot]} \xi_{k} \Rightarrow c^{\prime} B_{H}
$$

for some $c^{\prime}>0$. Then

$$
n^{-H} \int_{0}^{T t} \xi_{N(s)} \mathrm{d} s \Rightarrow c^{\prime \prime} B_{H}(t)
$$

for some $c^{\prime \prime}>0$.

Proof of Lemma A.4. Denote $\mathbb{E}\left[\tau_{k}\right]=\mu>0$.

$$
\begin{aligned}
\int_{0}^{T} \xi_{N(s)} \mathrm{d} s & =\sum_{k=0}^{N(T)} \tau_{k+1} \xi_{k}-\left(t_{N(T)+1}-T\right) \xi_{N(T)+1} \\
& =\sum_{k=0}^{N(T)}\left(\tau_{k+1}-\mu\right) \xi_{k}+\mu \sum_{k=0}^{N(T)} \xi_{k}-\left(t_{N(T)+1}-T\right) \xi_{N(T)+1}
\end{aligned}
$$

By independence of $\left\{\tau_{k}\right\}$ and $\left\{\xi_{k}\right\}$, we have (assuming without loss of generality that $2 H-\delta>1$),

$$
\operatorname{var}\left(\sum_{k=0}^{n}\left(\tau_{k+1}-\mu\right) \xi_{k}\right)=O\left(n^{2 H-\delta}\right)
$$

Thus, $n^{-H} \sum_{k=0}^{[n \cdot]}\left(\tau_{k+1}-\mu\right) \xi_{k} \Rightarrow 0$. Hence by the continuous mapping theorem, it also holds that $n^{-H} \sum_{k=0}^{N(T .)}\left(\tau_{k+1}-\mu\right) \xi_{k} \Rightarrow 0$. By independence and by assumption, $\left(t_{N(t)+1}-T\right) \xi_{N(T)}=$ $O_{P}(1)$. By the continuous mapping theorem, $n^{-H} \sum_{k=0}^{N(T t)} \xi_{k} \Rightarrow c^{\prime} B_{H}\left(\mu^{-1} t\right)$.

Lemma A.5. Let $\left\{\tau_{k}\right\},\left\{V_{k}\right\}$ and $\left\{\zeta_{k}\right\}$ be sequences of random variables such that

- $\left\{\zeta_{k}\right\}$ is an i.i.d. sequence of zero-mean and unit variance random variables; $\left\{\tau_{k}\right\}$ and $\left\{V_{k}\right\}$ are sequences of positive random variables;
- the sequences $\left\{\left(\tau_{k}, V_{k}\right)\right\}$ and $\left\{\zeta_{k}\right\}$ are mutually independent;
- there exists $s>0$ such that $n^{-1} \sum_{k=1}^{n} \tau_{k+1}^{2} V_{k}^{2} \xrightarrow{\mathbb{P}} s^{2}$;
- $\sup _{k \geq 0} \mathbb{E}\left[\tau_{k+1}^{2+\varepsilon} V_{k}^{2+\varepsilon}\right]<\infty$ for some $\varepsilon>0$;
- $\sup _{s \geq 0} \mathbb{E}\left[t_{N(s)+1}-s\right]<\infty$.

Define $\xi_{k}=\zeta_{k} V_{k}$. Then $T^{-1 / 2} \int_{0}^{T .} \xi_{N(s)} \mathrm{d} s \Rightarrow c B$ for some $c>0$.
Proof. Let \mathcal{F}_{k} be the sigma-field generated by random variables $\left\{\tau_{j+1}, \zeta_{j}, V_{j}, j \leq k\right\}$. Then $\mathbb{E}\left[\xi_{k} \tau_{k+1} \mid \mathcal{F}_{k-1}\right]=\tau_{k+1} V_{k} \mathbb{E}\left[\zeta_{k}\right]=0$. Thus, $\left\{\tau_{k+1} \xi_{k}\right\}$ is a martingale difference sequence. Under the stated assumptions, the martingale invariance principle Hall and Heyde (1980, Theorem 4.1) yields that $n^{-1 / 2} \sum_{k=1}^{[n \cdot]} \tau_{k+1} \xi_{k} \Rightarrow c B$ for some $c>0$. As in the proof of Lemma A.4, denote $\mathbb{E}\left[\tau_{k}\right]=\mu>0$ and write

$$
\int_{0}^{T} \xi_{N(s)} \mathrm{d} s=\sum_{k=0}^{N(T)} \tau_{k+1} \xi_{k}+\left(t_{N(T)+1}-T\right) \xi_{N(T)}
$$

By the continuous mapping theorem, we have that $T^{-1 / 2} \sum_{k=1}^{N(T \cdot)} \tau_{k} \xi_{-1} \Rightarrow \lambda c B$. As previously, the last term is a negligible edge effect. This concludes the proof.

Lemma A.6. Let N be a stationary point process under P with intensity λ and let P^{0} denote the Palm probability associated to P. Let $\gamma>0$. Assume that there exist $\delta \in(0,1)$ and $q>0$ such that

$$
\begin{equation*}
\sup _{k \geq 1} k^{-q \delta} \mathbb{E}^{0}\left[\left|t_{k}-\lambda^{-1} k\right|^{q}\right]<\infty \tag{A.3}
\end{equation*}
$$

If (A.3) holds with $q \geq \gamma+1$, then

$$
\begin{equation*}
\sup _{t \geq 2} \mathbb{E}\left[\left(\frac{N_{i}(t)}{t}\right)^{-\gamma} 1_{\left\{N_{i}(t)>0\right\}}\right]<\infty \tag{A.4}
\end{equation*}
$$

If (A.3) holds with $q>1+\gamma /(1-\delta)$, then $\mathbb{E}\left[N^{\gamma}(1)\right]<\infty$.
Proof. For $k \geq 2$, define $c_{k}=(k-1)^{-\gamma}-k^{-\gamma}$. Then, $\sum_{k=2}^{\infty} c_{k}=1$ and applying summation by parts, we have

$$
\begin{aligned}
\mathbb{E}\left[N^{-\gamma}(t) \mathbf{1}_{\{N(t)>0\}}\right] & =\sum_{k=1}^{\infty} k^{-\gamma} \mathbb{P}(N(t)=k)=\sum_{k=1}^{\infty} k^{-\gamma}\{\mathbb{P}(N(t) \geq k)-\mathbb{P}(N(t) \geq k+1)\} \\
& =\mathbb{P}(N(t) \geq 1)-\sum_{k=2}^{\infty} c_{k} \mathbb{P}(N(t) \geq k) \\
& =\mathbb{P}\left(t_{1} \leq t\right)-\sum_{k=2}^{\infty} c_{k} \mathbb{P}\left(t_{k} \leq t\right)=-\mathbb{P}\left(t_{1}>t\right)+\sum_{k=2}^{\infty} c_{k} \mathbb{P}\left(t_{k}>t\right)
\end{aligned}
$$

Without loss of generality, assume that the intensity of the point process is $\lambda=1$. Then, by definition of c_{k}, we have, for $t \geq 2$,

$$
t^{\gamma} \sum_{k \geq[t / 2]+1} c_{k} \mathbb{P}\left(t_{k}>t\right) \leq t^{\gamma}([t / 2])^{-\gamma}=O(1)
$$

For $k \leq[t / 2]$, we have, by Markov's inequality,

$$
\mathbb{P}\left(t_{k}>t\right)=\mathbb{P}\left(t_{k}-k>t-k\right) \leq \mathbb{P}\left(t_{k}-k>t / 2\right) \leq c t^{-\gamma} \mathbb{E}\left[\left|t_{k}-k\right|^{\gamma}\right]
$$

Applying the Ryll-Nardzewski inversion formula (Baccelli and Brémaud (2003, Formula 1.2.25)), we have

$$
\mathbb{E}\left[\left|t_{k}-k\right|^{\gamma}\right]=\mathbb{E}^{0}\left[t_{1}\left|t_{k}-k\right|^{\gamma}\right] \leq\left\{\mathbb{E}^{0}\left[t_{1}^{1+\gamma}\right]\right\}^{1 /(\gamma+1)}\left\{\mathbb{E}^{0}\left[\left|t_{k}-k\right|^{\gamma+1} \mid\right]\right\}^{\gamma /(\gamma+1)}
$$

Thus, applying Condition (A.3), we obtain that $\mathbb{P}\left(t_{k}>t\right) \leq c^{\prime} t^{-\gamma} k^{\gamma \delta}$ and thus

$$
t^{\gamma} \sum_{2 \leq k \leq[t / 2]} c_{k} \mathbb{P}\left(t_{k}>t\right) \leq c^{\prime} \sum_{2 \leq k \leq[t / 2]} c_{k} k^{\gamma \delta} \leq c^{\prime} \sum_{2 \leq k \leq[t / 2]} k^{-\gamma(1-\delta)-1}=O(1) .
$$

This concludes the proof of (A.4). We now consider the positive moments of $N(1)$. Applying summation by part, we have

$$
\mathbb{E}\left[N^{\gamma}(1)\right]=\sum_{k=1}^{\infty}\left\{k^{\gamma}-(k-1)^{\gamma}\right\} \mathbb{P}(N(1) \geq k)=\sum_{k=1}^{\infty}\left\{k^{\gamma}-(k-1)^{\gamma}\right\} \mathbb{P}\left(t_{k} \leq 1\right) .
$$

For $k \geq 2$ and $q>0$, we have, still assuming that $\lambda=1$,

$$
\mathbb{P}\left(t_{k} \leq 1\right) \leq \mathbb{P}\left(t_{k}-k \leq-k / 2\right) \leq \mathbb{E}\left[\left|t_{k}-k\right|^{q}\right] k^{-q}
$$

Applying again the Ryll-Narzewski formula and Condition (A.3), we obtain, for $k \geq 2$,

$$
\mathbb{P}\left(t_{k} \leq 1\right) \leq c k^{-q(1-\delta)}
$$

Thus,

$$
\mathbb{E}\left[N^{\gamma}(1)\right] \leq 1+c \sum_{k=1}^{\infty}\left\{k^{\gamma}-(k-1)^{\gamma}\right\} k^{-q(1-\delta)} .
$$

The series is convergent as long as $q(1-\delta)>\gamma$.
Proof of (3.4) for the LMSD model. Consider the LMSD model of Example 2.1. It is proved in Deo et al. (2009, Proposition 1) that (A.3) holds with $\delta=H_{\tau}$ if $\mathbb{E}\left[\epsilon_{0}^{p}\right]<\infty$ for all $p \geq 1$. Actually, a close inspection of the first lines of the proof shows that only q finite moments of ϵ_{0} are needed. Thus (3.4) holds if $E^{0}\left[\epsilon_{0}^{9-4 H}\right]<\infty$, and $\mathbb{E}\left[N^{4}(1)\right]<\infty$ if $E^{0}\left[\epsilon_{0}^{q}\right]<\infty$ for some $q>1+4 /\left(1-H_{\tau}\right)$.

Proof of (3.4) for the $A C D$ model. Under the assumptions of Example 2.2, the sequence $\left\{\tau_{k}\right\}$ is geometrically β-mixing Carrasco and Chen (2002, Proposition 17). Denote $m=$ $\mathbb{E}^{0}\left[\tau_{1}\right]$. The sequence $\left\{t_{k}\right\}$ is geometrically mixing, hence geometrically strong mixing. Thus, by Rio (2000, Theorem 2.5), for $q \geq 2$, if $E^{0}\left[\tau_{1}^{q+1+\epsilon}\right]<\infty$ for some $\epsilon>0$, then $E^{0}\left[\left|t_{n}-m n\right|^{q+1}\right]=O\left(n^{(q+1) / 2}\right)$. Thus (A.3) holds with $\delta=1 / 2$.

References

Baccelli, F. and Brémaud, P. (2003). Elements of queueing theory, volume 26 of Applications of Mathematics (New York). Springer-Verlag, Berlin, second edition.

Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory, 18(1):17-39.

Daley, D. J. and Vere-Jones, D. (2003). An introduction to the theory of point processes. Vol. I: Elementary theory and methods. 2nd ed. Probability and Its Applications. New York, NY: Springer.

Deo, R., Hurvich, C. M., Soulier, P., and Wang, Y. (2009). Conditions for the propagation of memory parameter from durations to counts and realized volatility. Econometric Theory, 25(3):764-792.

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its application. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Probability and Mathematical Statistics.

Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants, volume 31 of Mathématiques \& Applications (Berlin) [Mathematics 8 Applications]. Springer-Verlag, Berlin.

[^0]: *Department of Statistics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA, email: alexaue@wald.ucdavis.edu
 ${ }^{\dagger}$ Department of Mathematics, University of Utah, 155 South 1440 East, Salt Lake City, UT 84112, USA, email: horvath@math.utah.edu
 ${ }^{\ddagger}$ Stern School of Business, New York University, Henry Kaufman Management Center, 44 West Fourth Street, New York, NY 10012, USA, email: churvich@stern.nyu.edu
 ${ }^{\S}$ Université Paris X, 200 avenue de la République, 92001 Nanterre cedex, France, email: philippe.soulier@u-paris10.fr

