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Lemma A.1. If the durations ti,k − ti,k−1 form a stationary ergodic sequence with finite
moment of order 2p + 1, if P(ti,1 > 0) = 1 and if the associated point process has finite
intensity, then

sup
s≥0

E[(ti,Ni(s)+1 − s)p] <∞ .

Proof of Lemma A.1. We omit the index i. Let θt denote the shift operator and let A(t)
be the forward recurrence time. Then A(s) = tN(s)+1− s = t1 ◦ θs. Since the sequence {τi}
is stationary under P, there exists a probability law P ∗ such that N is a stationary ergodic
point process under P ∗, see Baccelli and Brémaud (2003, Section 1.3.5). Applying Baccelli
and Brémaud (2003, Formula 1.3.3), we obtain

E[Ap(s)] = λ−1E∗
N(1)∑
k=1

tp1 ◦ θs ◦ θtk

 = λ−1E∗
N(1)∑
k=1

Ap(s+ tk)


= λ−1E∗

N(1)∑
k=1

{tN(s+tk)+1 − s− tk}p
 ≤ λ−1E∗

N(1)∑
k=1

{tN(s+1)+1 − s}p


= λ−1E∗[N(1){tN(s+1)+1 − s}p] ≤ λ−1{E∗[N(1)2]}1/2{E∗[(tN(s+1)+1 − s)2p]}1/2 .
(A.1)
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Since N is stationary under P ∗, the last term does not depend on s, and by the Ryll-
Nardzewski inversion formula (Baccelli and Brémaud (2003, Formula 1.2.25)), we have

E∗[(tN(s+1)+1 − s)2p] = E∗[(t1 + 1)2p] = λE[

∫ t1

0

(t1 + 1− s)2p ds ≤ λE[(1 + t1)
2p+1]

By Baccelli and Brémaud (2003, Property 1.6.3), the point process N is stationary and
ergodic under P ∗ since the sequence of durations τk is stationary and ergodic. Thus, By
Daley and Vere-Jones (2003, Theorem 3.5.III), E∗[N(0, 1)2] < ∞. Plugging the last two
bounds into (A.1), we obtain that E[Ap(s)] is uniformly bounded.

Lemma A.2. Assume that there exists an increasing sequence {sn, n ≥ 0} such that s0 = 0
and

(a) f is either constant or strictly increasing and differentiable on (sn, sn+1) and the jumps
of f occur at some (but not necessarily all) of the sn;

(b) if f is either constant or increasing on both intervals (sn, sn+1) and (sn+1, sn+2), then
f has a jump at sn+1.

Assume moreover that

• (minimum duration of trading and nontrading periods) there exists δ0 > 0 such that
sn+1 − sn ≥ δ0 for all n ≥ 0;

• (maximum duration of nontrading periods) there exists C0 such that for all n ≥ 0, if
f is constant on (sn, sn+1), then sn+1 − sn ≤ C0;

• (non stoppage of time during trading periods) there exists δ1 > 0 such that for all
n ≥ 0, f is either constant on (sn, sn+1), or f ′(t) ≥ δ1 for all t ∈ (sn, sn+1).

Let Ñ be a point process with event times {t̃k} and let N be the point process de-
fined by N(·) = Ñ(f(·)) with event times {tk}. If sups≥0 E[(t̃Ñ(s)+1 − s)p] < ∞, then
sups≥0 E[(tN(s)+1 − s)p] <∞.

Proof of Lemma A.2. Define the nondecreasing left-continuous inverse f← of a nondecreas-
ing càdlàg function f by

f←(u) = inf{t | f(t) ≥ u} .

Note first that f←(u) ≤ t if only if u ≤ f(t) and f←(f(t)) ≤ t. Thus we see that

f←(t̃n) ≤ t⇔ t̃n ≤ f(t)

⇔ Ñ(f(t)) ≥ n

⇔ N(t) ≥ n .

This characterizes the sequence {tn}, thus we obtain that tn = f←(t̃n). The assumptions
on f imply the following properties of f←.
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• The jumps of f← correspond to the intervals (sn, sn+1) where f is constant. More
precisely, if f is constant on (sn, sn+1), then f← has a jump at f(sn) of size sn+1−sn.
Since f← is left continuous, it holds that

f←(f(sn)) = sn , lim
u→f(sn),u>f(sn)

= sn+1 .

Thus the jumps of f← are of size C0 at most.

• If f is increasing on an interval (sn, sn+1), then f← is differentiable on (f(sn), f(s−n ))
and (f←)′(t) ≤ δ−11 for all t ∈ (f(sn), f(s−n )).

• The jumps of f create no singularity in f←. If f(sn) > f(s−n ), then f← is constant
on the interval (f(s−n ), f(sn)).

Let dxe denote the smallest integer greater than or equal to the real number x. Then, for
0 ≤ s ≤ t,

0 ≤ f←(t)− f←(s) ≤ C0

⌈t− s
δ0

⌉
+ δ−11 (t− s) .

Thus, there exits constants c1, c2 such that for all s ≤ t,

0 ≤ f(t)− f(s) ≤ c1 + c2(t− s) .

Consider now the forward recurrence time of the point process N . Then

0 ≤ tN(s)+1 − s = f←(t̃Ñ(s)+1)− f
←(f(s)) + f←(f(s))− s

≤ f←(t̃Ñ(f(s))+1)− f
←(f(s)) ≤ c1 + c2{t̃Ñ(f(s))+1 − f(s)} .

Thus, there exists constants c3 and c4 such that

sup
s≥0

E[(tN(s)+1 − s)p] ≤ c3 + c4 sup
s≥0

E[(t̃Ñ(s)+1 − s)
p]

Lemma A.3. Let {εk} be a sequence of i.i.d. positive random variables with finite mean
µε. Let {Yk} be a stationary standard Gaussian process such that

cov(Y0, Yk) = `(n)n2H−2 (A.2)

for H ∈ (1/2, 1) and ` a slowly varying function. For k ≥ 1, define

τk = εke
σYk .

Then the sequence {τk} is ergodic and Assumption 2.1 holds with λ−1 = µεe
σ2/2. If P(ε1 >

0) = 1 the Assumption 2.2 holds with µ = λ = µ−1ε e−σ
2/2. If moreover E[εq1] < ∞ for all

q ≥ 1, then (3.3) and (3.5) hold.

3



Remark A.1. If instead of (A.2) we assume that

∞∑
k=1

|cov(Y0, Yk)| <∞ ,

then the moment requirement can be relaxed to E[ε31] <∞ to obtain (3.3) and E[ε51] <∞
to obtain (3.5).

Proof of Lemma A.3. Note first that E[τ pk ] < ∞ as long as E[εp1] < ∞. By Lemma A.1,
in order to check condition (3.3), we must only prove that the induced point process has
finite intensity, i.e. there exists t > 0 such that E[N(t)] < ∞. See Baccelli and Brémaud
(2003, Section 1.3.5). Note that

E[N(x)] =
∞∑
k=1

P(N(x) ≥ k) =
∞∑
k=1

P(tk ≤ x) .

Thus, it suffices to prove that the series on the righthand side is summable. Denote
µ = E[τk] and ρn = cov(Y0, Yn). Applying Deo et al. (2009, Proposition 1), we have

E

[∣∣∣∣∣
n∑
k=1

τk − nµ

∣∣∣∣∣
p]

= O(vpn)

with vn = nH`(n). If E[εp1] < ∞ for p such that p(1 −H) > 1, for n such that nµ > x, it
holds that

P(tk ≤ x) = O(x−1vpk)

and this series is summable.

Lemma A.4. Assume that {τk} and {ξk} are mutually independent stationary sequences
such that E[ξk] = 0, E[τ 2k ] < ∞ and E[ξ2k] < ∞. Assume that the sequence of durations is
weakly stationary and that cov(τ0, τn) = 0(n−δ) for some δ > 0 and sups≥0 E[tN(s)+1− s] <
∞. Assume that cov(ξ1, ξn) ∼ cn2H−2, with H ∈ (1/2, 1) and c > 0, and that

n−H
[n·]∑
k=1

ξk⇒c′BH

for some c′ > 0. Then

n−H
∫ Tt

0

ξN(s) ds⇒c′′BH(t)

for some c′′ > 0.
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Proof of Lemma A.4. Denote E[τk] = µ > 0.∫ T

0

ξN(s) ds =

N(T )∑
k=0

τk+1ξk − (tN(T )+1 − T )ξN(T )+1

=

N(T )∑
k=0

(τk+1 − µ)ξk + µ

N(T )∑
k=0

ξk − (tN(T )+1 − T )ξN(T )+1 .

By independence of {τk} and {ξk}, we have (assuming without loss of generality that
2H − δ > 1),

var

(
n∑
k=0

(τk+1 − µ)ξk

)
= O(n2H−δ) .

Thus, n−H
∑[n·]

k=0(τk+1− µ)ξk⇒0. Hence by the continuous mapping theorem, it also holds

that n−H
∑N(T ·)

k=0 (τk+1−µ)ξk⇒0. By independence and by assumption, (tN(t)+1−T )ξN(T ) =

OP (1). By the continuous mapping theorem, n−H
∑N(Tt)

k=0 ξk⇒c′BH(µ−1t).

Lemma A.5. Let {τk}, {Vk} and {ζk} be sequences of random variables such that

• {ζk} is an i.i.d. sequence of zero-mean and unit variance random variables; {τk} and
{Vk} are sequences of positive random variables;

• the sequences {(τk, Vk)} and {ζk} are mutually independent;

• there exists s > 0 such that n−1
∑n

k=1 τ
2
k+1V

2
k

P→ s2;

• supk≥0 E[τ 2+εk+1V
2+ε
k ] <∞ for some ε > 0;

• sups≥0 E[tN(s)+1 − s] <∞.

Define ξk = ζkVk. Then T−1/2
∫ T ·
0
ξN(s) ds⇒cB for some c > 0.

Proof. Let Fk be the sigma-field generated by random variables {τj+1, ζj, Vj, j ≤ k}. Then
E[ξkτk+1 | Fk−1] = τk+1VkE[ζk] = 0. Thus, {τk+1ξk} is a martingale difference sequence.
Under the stated assumptions, the martingale invariance principle Hall and Heyde (1980,

Theorem 4.1) yields that n−1/2
∑[n·]

k=1 τk+1ξk⇒cB for some c > 0. As in the proof of
Lemma A.4, denote E[τk] = µ > 0 and write∫ T

0

ξN(s) ds =

N(T )∑
k=0

τk+1ξk + (tN(T )+1 − T )ξN(T ) .

By the continuous mapping theorem, we have that T−1/2
∑N(T ·)

k=1 τkξ−1⇒λcB. As previ-
ously, the last term is a negligible edge effect. This concludes the proof.
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Lemma A.6. Let N be a stationary point process under P with intensity λ and let P 0

denote the Palm probability associated to P . Let γ > 0. Assume that there exist δ ∈ (0, 1)
and q > 0 such that

sup
k≥1

k−qδE0[|tk − λ−1k|q] <∞ . (A.3)

If (A.3) holds with q ≥ γ + 1, then

sup
t≥2

E

[(
Ni(t)

t

)−γ
1{Ni(t)>0}

]
<∞ . (A.4)

If (A.3) holds with q > 1 + γ/(1− δ), then E[Nγ(1)] <∞.

Proof. For k ≥ 2, define ck = (k−1)−γ−k−γ. Then,
∑∞

k=2 ck = 1 and applying summation
by parts, we have

E[N−γ(t)1{N(t)>0}] =
∞∑
k=1

k−γP(N(t) = k) =
∞∑
k=1

k−γ{P(N(t) ≥ k)− P(N(t) ≥ k + 1)}

= P(N(t) ≥ 1)−
∞∑
k=2

ckP(N(t) ≥ k)

= P(t1 ≤ t)−
∞∑
k=2

ckP(tk ≤ t) = −P(t1 > t) +
∞∑
k=2

ckP(tk > t) .

Without loss of generality, assume that the intensity of the point process is λ = 1. Then,
by definition of ck, we have, for t ≥ 2,

tγ
∑

k≥[t/2]+1

ckP(tk > t) ≤ tγ([t/2])−γ = O(1) .

For k ≤ [t/2], we have, by Markov’s inequality,

P(tk > t) = P(tk − k > t− k) ≤ P(tk − k > t/2) ≤ ct−γE[|tk − k|γ]

Applying the Ryll-Nardzewski inversion formula (Baccelli and Brémaud (2003, Formula
1.2.25)), we have

E[|tk − k|γ] = E0[t1|tk − k|γ] ≤ {E0[t1+γ1 ]}1/(γ+1){E0[|tk − k|γ+1|]}γ/(γ+1) .

Thus, applying Condition (A.3), we obtain that P(tk > t) ≤ c′t−γkγδ and thus

tγ
∑

2≤k≤[t/2]

ckP(tk > t) ≤ c′
∑

2≤k≤[t/2]

ckk
γδ ≤ c′

∑
2≤k≤[t/2]

k−γ(1−δ)−1 = O(1) .
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This concludes the proof of (A.4). We now consider the positive moments of N(1). Ap-
plying summation by part, we have

E[Nγ(1)] =
∞∑
k=1

{kγ − (k − 1)γ}P(N(1) ≥ k) =
∞∑
k=1

{kγ − (k − 1)γ}P(tk ≤ 1) .

For k ≥ 2 and q > 0, we have, still assuming that λ = 1,

P(tk ≤ 1) ≤ P(tk − k ≤ −k/2) ≤ E[|tk − k|q]k−q .

Applying again the Ryll-Narzewski formula and Condition (A.3), we obtain, for k ≥ 2,

P(tk ≤ 1) ≤ ck−q(1−δ) .

Thus,

E[Nγ(1)] ≤ 1 + c
∞∑
k=1

{kγ − (k − 1)γ}k−q(1−δ) .

The series is convergent as long as q(1− δ) > γ.

Proof of (3.4) for the LMSD model. Consider the LMSD model of Example 2.1. It is
proved in Deo et al. (2009, Proposition 1) that (A.3) holds with δ = Hτ if E[εp0] < ∞
for all p ≥ 1. Actually, a close inspection of the first lines of the proof shows that only q
finite moments of ε0 are needed. Thus (3.4) holds if E0[ε9−4H0 ] <∞, and E[N4(1)] <∞ if
E0[εq0] <∞ for some q > 1 + 4/(1−Hτ ).

Proof of (3.4) for the ACD model. Under the assumptions of Example 2.2, the sequence
{τk} is geometrically β-mixing Carrasco and Chen (2002, Proposition 17). Denote m =
E0[τ1]. The sequence {tk} is geometrically mixing, hence geometrically strong mixing.
Thus, by Rio (2000, Theorem 2.5), for q ≥ 2, if E0[τ q+1+ε

1 ] < ∞ for some ε > 0, then
E0[|tn −mn|q+1] = O(n(q+1)/2). Thus (A.3) holds with δ = 1/2.
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