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Lemma A.1. If the durations t; — t;,—1 form a stationary ergodic sequence with finite
moment of order 2p + 1, if P(t;1 > 0) = 1 and if the associated point process has finite
intensity, then

sup E[(t; n,(s)+1 — 8)P] < 00 .
s>0

Proof of Lemma A.1. We omit the index i. Let 6; denote the shift operator and let A(t)
be the forward recurrence time. Then A(s) = tn(s)+1 — s = t1 0 f,. Since the sequence {r:}
is stationary under PP, there exists a probability law P* such that N is a stationary ergodic

point process under P*, see ( , Section 1.3.5). Applying
( , Formula 1.3.3), we obtain
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Since N is stationary under P*, the last term does not depend on s, and by the Ryll-
Nardzewski inversion formula ( ( , Formula 1.2.25)), we have

E*[(tn(st1y+1 — 8)P] = E*[(t; + 1)*] = )\IFﬂ[/Ot1 (t1 +1—5)2ds < AE[(1 +t,)%H]

By ( , Property 1.6.3), the point process N is stationary and
ergodic under P* since the sequence of durations 73 is stationary and ergodic. Thus, By

( , Theorem 3.5.I1T), E*[N(0,1)?] < co. Plugging the last two
bounds into (A.1), we obtain that E[A?(s)] is uniformly bounded. O

Lemma A.2. Assume that there exists an increasing sequence {s,,n > 0} such that sg =0

and

(a) f is either constant or strictly increasing and differentiable on (s, Sn+1) and the jumps
of f occur at some (but not necessarily all) of the s,;

(b) if f is either constant or increasing on both intervals (S, Spy1) and (Spi1, Sniz2), then
f has a jump at s,11.

Assume moreover that

e (minimum duration of trading and nontrading periods) there exists g > 0 such that
Spi1l — Sp = 0 for allm > 0;

e (maximum duration of nontrading periods) there ezists Cy such that for alln > 0, if
f is constant on (Sn, Spi1), then s — 8, < Co;

e (non stoppage of time during trading periods) there ezists 5 > 0 such that for all
n >0, f is either constant on (S, Spy1), or f'(t) > 81 for allt € (sp, Spi1)-

Let N be a point process with event times {t,} and let N be the point process de-
fined by N(-) = N(f(-)) with event times {t}. If sup,q E[(EN(S)H — $)P] < oo, then
sup,so E[(tn(s)+1 — 5)7] < 00.

Proof of Lemma A.2. Define the nondecreasing left-continuous inverse f of a nondecreas-
ing cadlag function f by

S (u) = inf{t | f(t) = u} .
Note first that f<(u) <t if only if u < f(¢) and f<(f(¢t)) <t. Thus we see that
fot) <tet, < f(t)
& N(f(1) 2 n
< N(t)>n.

This characterizes the sequence {¢,}, thus we obtain that t,, = f(,). The assumptions
on f imply the following properties of f< .



e The jumps of f correspond to the intervals (s, s,1) where f is constant. More
precisely, if f is constant on (s, s,11), then f has a jump at f(s,) of size s, 11 — S,.
Since f* is left continuous, it holds that

“(f(sn)) = Sp » lim = Spil -
fFo(f(s0)) = S

Thus the jumps of f are of size Cj at most.

e If f is increasing on an interval (s,, S,4+1), then f is differentiable on (f(s,), f(s,,))

and (<) (t) < 07! for all t € (f(sn), f(55)).

e The jumps of f create no singularity in f<. If f(s,) > f(s;,), then f* is constant
on the interval (f(s;,), f(sn))-

Let [z] denote the smallest integer greater than or equal to the real number x. Then, for
0<s<t,

0SS0~ F () < G

W+5ﬁ@—sy

0

Thus, there exits constants c;, ¢y such that for all s <,
0<f(t) = f(s) Sertealt—s).

Consider now the forward recurrence time of the point process N. Then

0 <tnyr =5 =F"(Exyn) = FTF(8) + FT(f(5) =5
< FWxgensn) = () < e+ eallgpans — f(8)} -

Thus, there exists constants c3 and ¢4 such that

sup E[(tnis)+1 — 5)] < s+ casup E[@N(S)H — 5)P]
520 520

]

Lemma A.3. Let {¢} be a sequence of i.i.d. positive random variables with finite mean
e Let {Yy} be a stationary standard Gaussian process such that

cov(Yp, Vi) = £(n)n* 2 (A.2)
for H € (1/2,1) and ¢ a slowly varying function. For k > 1, define
T = e’k

Then the sequence {1} is ergodic and Assumption 2.1 holds with X" = pe” /2. If P(e; >
0) = 1 the Assumption 2.2 holds with = X\ = p-'e=""/2. If moreover E[e!] < oo for all
q>1, then (5.3) and (3.5) hold.



Remark A.1. If instead of (A.2) we assume that

(e}

Z lcov (Yo, i) < o0 |

k=1

then the moment requirement can be relaxed to E[e}] < co to obtain (3.3) and E[€}] < oo
to obtain (3.5).

Proof of Lemma A.5. Note first that E[7] < oo as long as E[e]] < co. By Lemma A.1,
in order to check condition (3.3), we must only prove that the induced point process has

finite intensity, i.e. there exists ¢ > 0 such that E[N(t)] < co. See
( , Section 1.3.5). Note that

E[N(z)] =) P(N(z) > k) =Y Pty <x).

Thus, it suffices to prove that the series on the righthand side is summable. Denote
w = E[r] and p,, = cov(Yp, Y,,). Applying ( , Proposition 1), we have

n P
g Tk — N
k=1

with v, = nflé(n). If E[€]] < oo for p such that p(1 — H) > 1, for n such that nu > z, it
holds that

E = O(up)

P(t, <z) = O(a:”le)
and this series is summable. O]

Lemma A.4. Assume that {7} and {&} are mutually independent stationary sequences
such that E[¢] = 0, E[r] < co and E[§}] < co. Assume that the sequence of durations is
weakly stationary and that cov(to, 7,) = 0(n™°) for some § > 0 and sup,~o Eltys41 — s] <
00. Assume that cov(£y,&,) ~ en®=2 with H € (1/2,1) and ¢ > 0, and that

[n]
n_H Z fk:>C/BH
k=1

for some ¢ > 0. Then
Tt

n [ &y ds=d"Bp(t)
0

for some " > 0.



Proof of Lemma A.4. Denote E[r] = p > 0.

T N(T)
/ Engs) ds = Z T 18k — (Envmy+1 — TN ()11
0 k=0
N(T) N(T)

= (T = W&+ 1Y & — (tvme — Ténery -
k= k=0

[en]

By independence of {7} and {&.}, we have (assuming without loss of generality that
2H — 0 > 1),

var (Z(Tk+1 - M)fk) = 0(n*7%).

Thus, n= S (7,11 — 1)€,=0. Hence by the continuous mapping theorem, it also holds
k=0

that n=# Ziv:(g‘)(m“ —11)&x=0. By independence and by assumption, (tn)+1—71)Enr) =

Op(1). By the continuous mapping theorem, n~# SN ¢, = By (n~1t). O

Lemma A.5. Let {r.}, {Vi} and {(} be sequences of random variables such that

o {(i} is an i.i.d. sequence of zero-mean and unit variance random variables; {7} and
{Vi} are sequences of positive random variables;

the sequences {(1x, Vi)} and {(.} are mutually independent;

. P
there exists s > 0 such that n=' Y0 | 72, V2 — s*;

[ ]
e sup,>o E[r7F V2] < oo for some € > 0;
o sup,o Elty(s+1 — 5] < o0.

Define &, = CxVi. Then T2 fOT' En(s) ds=cB for some ¢ > 0.

Proof. Let Fj, be the sigma-field generated by random variables {7;41,(;,V;,j < k}. Then
El¢eTis1 | Fro1] = me1VEE[G] = 0. Thus, {mx11&} is a martingale difference sequence.
Under the stated assumptions, the martingale invariance principle ( ,
Theorem 4.1) yields that n=!/2 Ei]l Ter1&p=>cB for some ¢ > 0. As in the proof of

Lemma A.4, denote E[r] = p > 0 and write

T N(T)
/ En(s) ds = Z Trp1&k + (v — T)énr) -
0 k=0

By the continuous mapping theorem, we have that 7-1/2 fov:(f) T€_1=AcB. As previ-
ously, the last term is a negligible edge effect. This concludes the proof. ]

bt



Lemma A.6. Let N be a stationary point process under P with intensity X\ and let P°
denote the Palm probability associated to P. Let v > 0. Assume that there exist § € (0,1)
and g > 0 such that

sup k= PR[|t;, — A k|9) < oo . (A.3)

k>1

If (A.3) holds with ¢ > v+ 1, then

(Nz-t(t)>_7 1 {NZ,(M}] <. (A.4)

If (A.3) holds with ¢ > 14 ~/(1 —0), then E[N7(1)] < occ.

sup E
t>2

Proof. For k > 2, define ¢, = (k—1)""—k™7. Then, Y .-, ¢t = 1 and applying summation
by parts, we have

E[N 7 (t)1n()>0)] Z EP(N(E) =k) =Y k{P(N(t) > k) —P(N(t) > k + 1)}
= - ch]P)
P(t, < t) — ch]P’tk<t P(t; > t) chIP’tk>t

Without loss of generality, assume that the intensity of the point process is A = 1. Then,
by definition of ¢, we have, for ¢t > 2,

Y Pt > t) <£([t/2) 7 = 0(1) .

k>[t/2]+1
For k < [t/2], we have, by Markov’s inequality,
Pty >t) =Pty —k>t—k) <Pty — k> t/2) < ct 7 E||t, — k"]

Applying the Ryll-Nardzewski inversion formula ( ( , Formula
1.2.25)), we have

Elltx — k") = E°[tafte — K[7] < {E[ty PO HE b — kPO

Thus, applying Condition (A.3), we obtain that P(t, > t) < ¢t~k and thus

7 Z aP(ty >t) < Z ek < ¢ Z k7101 = O(1) .

2<k<[t/2] 2<k<[t/2] 2<k<[t/2]



This concludes the proof of (A.4). We now consider the positive moments of N(1). Ap-
plying summation by part, we have

Z{m —1)"}P(N Z{k”’ — )Pt < 1) .

For k > 2 and ¢ > 0, we have, still assuming that A =1,
Pty <1) <Pty — k < —k/2) < E[|t), — k|1]k™1
Applying again the Ryll-Narzewski formula and Condition (A.3), we obtain, for k > 2,
Pty < 1) < ck™1079)

Thus,
BIN(1)] < 14 e K — (k- 1)7Hhe00

The series is convergent as long as ¢(1 — §) > . ]

Proof of (3.4) for the LMSD model. Consider the LMSD model of Example 2.1. It is
proved in ( , Proposition 1) that (A.3) holds with ¢ = H, if E[e]] < oo
for all p > 1. Actually, a close inspection of the first lines of the proof shows that only ¢
finite moments of ¢, are needed. Thus (3.4) holds if E°[ej~*] < 0o, and E[N*(1)] < oo if

E°[el] < oo for some ¢ > 1+4/(1 — H,). O
Proof of (3.4) for the ACD model. Under the assumptions of Example 2.2, the sequence
{7} is geometrically f-mixing ( , Proposition 17). Denote m =
E°[7;]. The sequence {t;} is geometrically mixing, hence geometrically strong mixing.
Thus, by ( , Theorem 2.5), for ¢ > 2, if E°[r7'"] < oo for some € > 0, then
E°(|t, — mn|itl] = O( (@+1)/2) Thus (A.3) holds with § = 1/2. O
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