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S.1 Results on weighted empirical processes

In this supplement we need to work with a slightly more general version of Proposition A.1.
As in the Appendix of the paper, let FTt (T ∈ N, 1 ≤ t ≤ T ) be the σ-algebra gener-

ated by {y1, ..., yt} (y0, and ∆y0 of section 6, are assumed fixed constants). Consider an
array {ηt, ξTt, ψTt, ζTt, τTt, γTt}Tt=1 of r.v.’s such that ηt ∈ {1, εt, ε+

t , ε
−
t } (the same choice for

all t, T ), and (ξTt, ψTt, ζTt, τTt, γTt) is Ft−1-measurable and a.s. finite for all t, T . Define
m (θ, z) := E(η1I{|ε1−z|≤θ}),

UT (θ) := T−1/2
∑

γTt
[
ηtI{|εt−ξTt−ψTt|≤θ+ζTt+τTt} −m(θ + ζTt + τTt, ξTt + ψTt)

]
,

U∗T (θ) := T−1/2
∑

γTt
[
ηtI{|εt|≤θ} −m(θ, 0)

]
.

Proposition A.3 (generalized A.1) In addition to Assumptions E, and Y ′ or Y(k), let
the following hold:

T−1
∑

γ2
Tt

w→ γ <∞ a.s.,

T−1/2
∑

(|γTt|+ γ2
Tt)(|ψTt|+ |τTt|+ ψ2

Tt + τ2
Tt) = OP (1),

max
1≤t≤T

{|ξTt|+ |ζTt|+ T−1/2|γTt|(1 + |ψTt|+ |τTt|)} = oP (1).

Then the processes {UT } and {U∗T } are tight in the uniform metric of C[0, A] for all A > 0,
and

sup
θ∈[0,A]

|UT (θ)− U∗T (θ)| = oP (1).

Clearly, Proposition A.1 obtains by choosing ζTt = τTt = 0, all t, T.

Proof of Proposition A.3. It suffi ces to consider ηt ∈ {1, ε+
t , ε

−
t } ≥ 0, since for ηt = εt

the processes UT and U∗T can be decomposed additively using the identity εt = ε+
t − ε−t .

We propose a proof which mimics that of Theorem 1.1 in Koul and Ossiander (1994)
[hereafter KO94] and uses their notation, whenever notation is not defined here. Specifically,
we need the following adjustments. Instead of n, i, Un (x), x ∈ R, ξni, Ana, Bnb, Cnη and db,
we consider respectively T, t, UT (θ), θ ∈ [0, A] , (ξTt, ψTt, ζTt, τTt), ATa := {max1≤t≤T ΓTt ≤
T 1/2a} with ΓTt := 2|γTt|(1+A+|ξTt|+|ζTt|+|ψTt|+|τTt|), BTb := {max1≤t≤T (|ξTt|+|ζTt|) ≤
b}, CTη := {T−1

∑
γ2
Tt ≤ η/2} and

ρb (θ1, θ2) := sup
0≤|z|,w≤b

{|V0 (θ1 + w, z)− V0 (θ2 + w, z) |1/2, |V1 (θ1 + w, z)− V1 (θ2 + w, z)|1/2}
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for θ1, θ2 ∈ [0, A], where Vi (θ, z) := E(η2i
1 I{|εt−z|≤θ}) (i = 0, 1; 00 := 1). For repeated use

below, notice that for all θ ∈ [0, A], i = 0, 1 and outcomes in BTb, it holds that

|Vi(θ + ζTt ± |ψTt| ± |τTt|, ξTt)− Vi(θ + ζTt, ξTt)|
≤ (|ψTt|+ |τTt|){‖f‖∞ + (θ + |ξTt|+ |ζTt|+ |ψTt|+ |τTt|)‖id× f‖∞}
≤ χTtq (S.1)

with χTt := |ψTt| + |τTt| + ψ2
Tt + τ2

Tt and q := ‖f‖∞ + (A + b + 2)‖id × f‖∞ < ∞, and
similarly,

|Vi(θ + ε{|ζTt|+ |ξTt|+ |ψTt|+ |τTt|}, 0)− Vi(θ + ε{|ζTt|+ |ξTt|}, 0)| ≤ χTtq, ε ∈ {−1, 1},

where T−1/2
∑

(|γTt|+ γ2
Tt)χTt = OP (1) under the hypotheses of the proposition. Introduce

further the events GTM = {max1≤t≤T (|ψTt| + |τTt|) ≤ MT } for real MT to be determined
later. The only role of MT will be to ensure integrability of expressions involving ψTt, τTt for
every fixed T .

First, as in Lemma 2.3 and Corollary 2.1 of KO94, we obtain the pointwise convergence
|UT (θ)−U∗T (θ)| = oP (1) for every θ ∈ [0, A]. For ε, a, b > 0 with V1 (θ + b, 0)−V1 (θ − b, 0) ≤ a
(feasible as V1 (·, 0) is continuous), the quadratic variation of UT (θ)− U∗T (θ) on ATa ∩BTb ∩
GTM (where, in particular, integrability is automatic), is

T−1
∑

γ2
TtV ar

[
ηt(I{|εt−ξTt−ψTt|≤θ+ζTt+τTt} − I{|εt|≤θ})|FT,t−1

]
≤ T−1

∑
γ2
TtE

[
η2
t (I{|εt−ξTt−ψTt|≤θ+ζTt+τTt} − I{|εt|≤θ})

2|FT,t−1

]
≤ T−1

∑
γ2
TtE

[
η2
t I{θ−|ζTt|−|ξTt|−|ψTt|−|τTt|≤|εt|≤θ+|ζTt|+|ξTt|+|ψTt|+|τTt|}|FT,t−1

]
≤ T−1

∑
γ2
Tt[V1(θ + |ζTt|+ |ξTt|+ |ψTt|+ |τTt|, 0)− V1(θ + |ζTt|+ |ξTt|, 0)]

+T−1
∑

γ2
Tt[V1(θ − |ζTt| − |ξTt|, 0)− V1(θ − |ζTt| − |ξTt| − |ψTt| − |τTt|, 0)]

+T−1
∑

γ2
Tt[V1(θ + |ζTt|+ |ξTt|, 0)− V1(θ − |ζTt| − |ξTt|, 0)]

≤ 2T−1
∑

γ2
TtχTt + T−1

∑
γ2
Tt[V1(θ + b, 0)− V1(θ − b, 0)]

≤ 2qT−1
∑

γ2
TtχTt + aT−1

∑
γ2
Tt.

In this proof, denote the mean function by µ instead of m, to avoid confusion with m of the
proof of KO94. Then, with ΛT := ATa ∩BTb ∩CT,2η/3 ∩GTM ∩ {T−1

∑
γ2
TtχT ≤ aη/3q}, by

Lemma 2.2 in KO94, the above evaluation of the quadratic variation yields

P ([|UT (θ)− U∗T (θ)| > ε] ∩ ΛT )

≤ P
([∣∣∣T−1/2

∑
γTtI{ΓTt≤T 1/2a}I{|ξTt|+|ζTt|≤b}I{|ψTt|+|τTt|≤MT }

×
{
ηt(I{|εt−ξTt−ψTt|≤θ+ζTt+τTt} − I{|εt|≤θ}) + µ(θ, 0)− µ(θ + ζTt + τTt, ξTt + ψTt)

}∣∣∣ > ε
]

∩
[
2qT−1

∑
γ2
TtχTt + aT−1

∑
γ2
Tt ≤ aη

] )
≤ exp

(
−ε2/2a (ε+ η)

)
.
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So,

P (|UT (θ)− U∗T (θ)| > ε) ≤ exp
(
−ε2/2a (ε+ η)

)
+P

(
max

1≤t≤T
(|ψTt|+ |τTt|) > MT

)
+ P

(
T−1

∑
γ2
Tt > η/3

)
+P

(
AcTa ∪Bc

Tb ∪
{
T−1

∑
γ2
TtχTt > aη/3q

})
.

For a given arbitrary ω > 0, choose η andMT such that limT P
(
T−1

∑
γ2
Tt > η/3

)
< ω/3 and

lim supT P (max1≤t≤T (|ψTt|+|τTt|) > MT ) < ω/3, and then a such that exp
(
−ε2/2a (ε+ η)

)
<

ω/3; these choices are possible since T−1
∑
γ2
Tt

w→ γ <∞ a.s. and |ψTt|, |τTt| <∞ a.s. With
these choices it holds that lim supT P (|UT (θ)− U∗T (θ)| > ε) < ω, as the last probability in
the preceding display vanishes under the hypothesis of the Proposition.

Second, concerning tightness, we note that an analogue of Proposition 2.1 of KO94 is
valid: for any T ≥ 1, b ≥ 0, η ≥ 1 and δ > 0, with δ/ (1 +N (δ, b))1/2 ≥ 4 (η/T )1/2 ,

P
([

sup
θ∈[0,A]

|UT (θ)− UT (πδb(θ))| > (c1 + ηc2) (δ + ITη(δ, b))
]

(S.2)

∩
[

max
1≤t≤T

|ΓTt| ≤ T 1/2δ/ (1 +N (δ, b))1/2

]
∩BTb ∩ CTη ∩GTM ∩ JT

)
≤ c3e

−η,

where JT := ∩i∈{0,1}
{
T−1/2

∑
|γTt|1+iχTt ≤ η0η

1+i/2/(2q)
}
and c1,2,3 are universal con-

stants. In KO94’s proof, ζ1k
ni and ζ

2k
ni (see KO94, p.552) are replaced respectively by

ζ1k
T t := I{|ΓTt|≤akT 1/2}, 0 ≤ k ≤ m,

ζ2k
T t :=

{
I{ak+1T 1/2<|ΓTt|≤akT 1/2}, 0 ≤ k < m

ζ1m
Ti , k = m

,

where ak and m are used according to the definition of KO94, p.552 (not to be confused
with the normalization sequence aT for the innovations, which never appears in this proof).
Further, Dni (x) and Rnk (x) (see KO94, p.553) are replaced respectively by

DTt (θ) := ηtI{|εt−ξTt−ψTt|≤θ+ζTt+τTt} − µ(θ + ζTt + τTt, ξTt + ψTt), 1 ≤ t ≤ T,

RTk (θ) := T−1/2
∑
|γTt|ζ2k

T t(ηtI{θ′k+ζTt+τTt<|εt−ξTt−ψTt|≤θk+ζTt+τTt}

+µ(θk + ζTt + τTt, ξTt + ψTt)− µ(θ′k + ζTt + τTt, ξTt + ψTt)]), 0 ≤ k ≤ m,

and the evaluation of |Dni (xk)−Dni (x) | between (2.7) and (2.8) on p.553 of KO94, by

|DTt (θk)−DTt (θ) | ≤ ηtI{θ′k+ζTt+τTt<|εt−ξTt−ψTt|≤θk+ζTt+τTt}

+µ(θk + ζTt + τTt, ξTt + ψTt)− µ(θ′k + ζTt + τTt, ξTt + ψTt)

for θ′k < θ ≤ θk and ηt ≥ 0. The quadratic variation of STk (θ) := T−1/2
∑
γTtζ

1k
T t[DTt(θk−1)−
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DTt(θk)] on the set BTb ∩ CTη ∩GTM ∩ JT (cf. p.554) is given by

QTk (θ) = T−1
∑

γ2
Ttζ

1k
T tV ar(ηtI{θk−1+ζTt+τTt<|εt−ξTt−ψTt|≤θk+ζTt+τTt}|FT,t−1)

≤ T−1
∑

γ2
Ttζ

1k
T t[V1(θk + ζTt + |τTt|+ |ψTt|, ξTt)− V1(θk−1 + ζTt + |τTt| − |ψTt|, ξTt)]

= T−1
∑

γ2
Ttζ

1k
T t[V1(θk + ζTt + |ψTt|+ |τTt|, ξTt)− V1(θk + ζTt, ξTt)]

−T−1
∑

γ2
Ttζ

1k
T t[V1(θk−1 + ζTt − |ψTt| − |τTt|, ξTt)− V1(θk−1 + ζTt, ξTt)]

+T−1
∑

γ2
Ttζ

1k
T t[V1(θk + ζTt, ξTt)− V1(θk−1 + ζTt, ξTt)]

≤ 2qT−1
∑

γ2
TtχTt + ρ2 (θk, θk−1)T−1

∑
γ2
Tt

≤ 2qT−1
∑

γ2
TtχTt + 5δ2

kT
−1
∑

γ2
Tt

≤ 2T−1/2η0η
3/2 + (5/2)δ2

kη

≤ 2δ2
kη + (5/2)δ2

kη < 5δ2
kη,

the last inequality by the definition of m and δk (see KO94, p.552). Thus, (2.9) of KO94
remains valid upon adding ∩GTM ∩ JT inside the evaluated probability. Rn (x) (see p.554 of
KO94) is replaced by

RT (θ) := 2T−1/2
∑
t

∑
0≤k≤m

|γTt|ζ2k
T t{µ(θk+ζTt+τTt, ξTt+ψTt)−µ(θ′k+ζTt+τTt, ξTt+ψTt)}

with

|RT (θ) | ≤ 2T−1/2
∑
t

∑
0≤k≤m

|γTt|ζ2k
T t

×|V0(θk + ζTt + |ψTt|+ |τTt|, ξTt)− V0(θ′k + ζTt − |ψTt| − |τTt|, ξTt)|1/2

×|V1(θk + ζTt + |ψTt|+ |τTt|, ξTt)− V1(θ′k + ζTt − |ψTt| − |τTt|, ξTt)|1/2

≤ 2T−1/2
∑
t

∑
0≤k≤m

|γTt|ζ2k
T t[2qχTt + ρ2 (θk, θ) + ρ2(θ′k, θ)]

≤ 2T−1/2
∑
t

∑
0≤k≤m

|γTt|ζ2k
T t[2qχTt + 2δ2

k],

the first inequality by Cauchy-Schwartz. So, in place of (2.10) of KO94, for outcomes in
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BTb ∩ CTη ∩GTM ∩ JT and ηk defined on p.552 of KO94, we find that

|RT (θ) | ≤ 2T−1
∑
t

∑
0≤k<m

(γ2
Tt/ak+1)[2qχTt + 2δ2

k] + 2T−1/2
∑
t

|γTt|[2qχTt + 2δ2
m]

≤ 2T−1
∑
t

∑
0≤k<m

γ2
Tt[2qχTt/ak+1 + 23ηk+1] + 2T−1/2

∑
t

|γTt|[2qχTt + 2δ2
m]

≤ 4qT−1
∑
t

γ2
TtχTt

 ∑
0≤k<m

1/ak+1

+ 24T−1
∑
t

γ2
Tt

 ∑
0≤k<m

ηk+1


+4qT−1/2

∑
t

|γTt|χTt + 4

(∑
t

|γTt|2
)1/2

δ2
m

≤ 2η

 ∑
0≤k<m

δ2
m/ak+1

+ 23η

 ∑
0≤k<m

ηk+1

+ 2η0η + 4T 1/2(η/2)1/2δ2
m

≤ 10η

 ∑
0≤k<m

ηk+1

+ (2 + 27/2)η0η ≤ 16η

 ∑
0≤k≤m

ηk

 ,

which is the same upper bound as in KO94. Finally, the quadratic variation of the condi-
tionally centered RTk (θ) is bounded (on BTb ∩ CTη ∩GTM ∩ JT ) by

T−1
∑

γ2
Ttζ

2k
T tV ar(ηtI{θ′k+ζTt+τTt<|εt−ξTt−ψTt|≤θk+ζTt+τTt}|FT,t−1)

≤ T−1
∑

γ2
Ttζ

2k
T t[V1 (θk + ζTt + |ψTt|+ |τTt|, ξTt)− V1(θ′k + ζTt − |ψTt| − |τTt|, ξTt)]

≤ 2qT−1
∑

γ2
TtχTt + 2δ2

kT
−1
∑

γ2
Tt

≤ T−1/2η0η
3/2 + δ2

kη ≤ 2δ2
kη,

so (2.11) of KO94 remains valid upon the insertion of absolute values and ∩GTM ∩ JT inside
the evaluated probability. By combining the above results, (S.2) follows.

Next, Assumption E(ii) and the compactness of [0, A] imply that Assumption (A5) of
KO94 is satisfied automatically; cf. KO94, p.544, with (ρb, [0, A]) in place of (db,R). Then,
as in Corollary 2.4 of KO94, for every η ≥ 1, b ≥ 0 and δ > 0,

lim sup
T
P
(

sup
θ∈[0,A]

|UT (θ)− UT (πδb(θ))| > (c1 + ηc2) (δ +

∫ δ

0
(1 +N (u, b))1/2du)

)
≤ P (γ > η/2) + lim sup

T
P (GcTM ) + lim sup

T
P (JcT ) + c3e

−η

As γ, |ψTt|, |τTt| < ∞ a.s. and T−1/2
∑
|γTt|1+iχTt = OP (1), η and MT can be chosen

suffi ciently large to make the above expression as small as desired. The same evaluation holds
for U∗T (θ) as in Corollary 2.5 of KO94, so the proof of the convergence supθ∈[0,A] |UT (θ) −
U∗T (θ)| = oP (1) can be completed as the proof of (1.9) in KO94 (pp. 556-557). �
Proof of Lemma A.2(b,c).To prove part (b), define ιt(u) := I{|εt−ξTt(u)|≤θ} − pθ(ξTt(u))
and, for M > 0, also

rM5 (u) :=
∑

y2
t−1I{|a−1T yt−1|≤M}ιt(u).
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Then, for any M,ηT > 0,

P

(
sup
|u|≤A

|r5(bTu)| > ηT

)
≤ P

(
sup
|u|≤A

|rM5 (bTu)| > ηT

)
+ P

(
max
t≤T
|a−1
T yt| > M

)
.

As maxt≤T |a−1
T yt|

w→ max[0,1] |Sκc | <∞ a.s., M can be chosen such that P (maxt≤T |a−1
T yt| >

M) be as small as desired. So the sought relations for r5 will follow once we show that
they hold for rM5 . To this aim we check, first, that for cT := T 3/4(a5

T bT )1/2 and for
every fixed u, T 1/4c−1

T {rM5 (bTu) − rM5 (0)} = OP (1), and hence, c−1
T {rM5 (bTu) − rM5 (0)} =

oP (1). Second, we check that c−1
T {rM5 (bT (·)) − rM5 (0)} is tight. The two facts jointly im-

ply that c−1
T sup|u|≤A{rM5 (bT (·)) − rM5 (0)} = oP (1). The proof is completed by noting that

T−1/2a−1
T rM5 (0) = OP (1) since it equals T−1/2a−1

T

∑
y2
t−1I{|a−1T yt−1|≤M}

[
I{|εt|≤θ} − pθ(0)

]
+

oP (1) (by Proposition A.1), where the normalized summation converges weakly to an a.s.
finite random variable (see Lemma 1 of Knight (1989)). The details follow.

Let Ft := σ (y0, ..., yt), and for u1, u2 ∈ R, let ∆pθ(u2, u1) := pθ(ξTt(u1))−pθ(ξTt(u2)) and
∆Fθ(u2, u1) := F (θ + ξTt(u2)) − F (θ + ξTt(u1)). Conditionally on Ft−1, the r.v. ιt (u2) −
ιt (u1) a.s. takes one value among ∆pθ(u2, u1) and ∆pθ(u2, u1) ± 1, so we find (considering
for concreteness u2yt−1 ≥ u1yt−1) that

E
[
{ιt (u2)− ιt (u1)}2|Ft−1

]
≤ {∆pθ(u2, u1)}2 + {∆pθ(u2, u1) + 1}2∆Fθ(u2, u1)

+{∆pθ(u2, u1)− 1}2∆F−θ(u2, u1)

≤ ∆pθ(u2, u1) + 2{∆Fθ(u2, u1) + ∆F−θ(u2, u1)},

the last inequality since |∆pθ + ω| ≤ 1 (ω ∈ {−1, 0, 1}). By the mean-value theorem (MVT),

E
[
{ιt (u2)− ιt (u1)}2|Ft−1

]
≤ 6 ‖f‖∞ (u2 − u1) yt−1 = 6 ‖f‖∞ |u2 − u1||yt−1|. (S.3)

Now the fact that T 1/4c−1
T {rM5 (bTu)− rM5 (0)} = OP (1) follows from Chebyshev’s inequality:

as I{|a−1T yt−1|≤M}{ιt(bTu)− ιt (0)} is an Ft martingale difference, it holds that E{rM5 (bTu)−
rM5 (0)} = 0 and

E{rM5 (bTu)− rM5 (0)}2 = E
∑(

y4
t−1I{|a−1T yt−1|≤M}E

[
{ιt(bTu)− ιt (0)}2|Ft−1

])
≤ Ta5

T bTM
56 ‖f‖∞ |u| = T−1/2c2

TM
56 ‖f‖∞ |u|,

the inequality from (S.3).
We turn to tightness and wish to apply a criterion in D [−A,A]. This is not directly

possible, given that the sample paths of rM5 are not càdlàg due to the terms I{|εt−(·)yt−1|≤θ},
which are not càdlàg. If we substitute them by

I{|εt−(·)yt−1|Cθ} := I{−θ<εt−(·)yt−1≤θ}I{yt−1>0}

+ I{−θ≤εt−(·)yt−1<θ}I{yt−1<0} + I{|εt|≤θ}I{yt−1=0},

a càdlàg modified process, say r̃M5 , is obtained. The set of points at which the sample paths
of rM5 and r̃M5 differ is {(θ− εt)/yt−1 : yt−1 > 0; t = 1, ..., T} ∪ {−(θ+ εt)/yt−1 : yt−1 < 0; t =
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1, ..., T}. Since the distribution of εt is absolutely continuous, a.s. at each of these points
only one indicator is affected, so

sup
|u|≤A

|rM5 (bT (·))− r̃M5 (bT (·))| ≤ max
t≤T

y2
t = OP (a2

T ) = oP (cT ).

It is therefore enough to establish the tightness of c−1
T {r̃M5 (bT (·))−r̃M5 (0)} in D [−A,A]. Since

we argue in terms of expectations, which are unaffected by the change from rM5 to r̃M5 , we
continue writing in terms of rM5 .

For a fixed M and u2 > um > u1 ≥ 0,

Gu2,u1,um := E
(
{rM5 (bTu2)− rM5 (bTum)}2{rM5 (bTum)− rM5 (bTu1)}2

)
=

∑
t1,t2,t3,t4

Gt1,t2,t3,t4

with Gt1,t2,t3,t4 := E
∏4
i=1[y2

ti−1IMti∆
(i)
ti

], IMt := I{|a−1T yt−1|≤M}, ∆
(1)
t := ∆

(2)
t := ιt(bTu2) −

ιt(bTum) and ∆
(3)
t := ∆

(4)
t := ιt(bTum) − ιt(bTu1). If only one ti (i = 1, ..., 4) equals

maxi=1,...,4 ti, then Gt1,t2,t3,t4 = 0 by the independence of {εt} and since E∆
(i)
t = 0 (i =

1, ..., 4). There remain at most T 3 non-zero Gt1,t2,t3,t4 , which can be evaluated as fol-
lows, depending on how many subscripts equal maxi=1,...,4 ti. Say, first, that tk = ts =
maxi=1,...,4 ti 6= tl, tn and {k, s, l, n} = {1, 2, 3, 4}. Then, with β1 = β2 = 6 ‖f‖∞ |u2 − um|
and β3 = β4 = 6 ‖f‖∞ |um − u1|, using the Cauchy-Schwartz inequality and (S.3) we find
that

Gt1,t2,t3,t4 ≤ a8
TM

8E
[
IMtlIMtn |∆

(l)
tl
||∆(n)

tn |IMtkIMtsE(|∆(k)
tk
||∆(s)

ts ||Fts−1)
]

≤ a8
TM

8E
[
IMtlIMtn |∆

(l)
tl
||∆(n)

tn |{E(|∆(k)
tk
|2|Ftk−1)}1/2{E(|∆(s)

ts |
2|Fts−1)}1/2

]
≤ a9

T bTM
9β

1/2
k β1/2

s E
[
IMtlIMtn |∆

(l)
tl
||∆(n)

tn |
]

≤ a9
T bTM

9β
1/2
k β1/2

s [E{IMtlE(|∆(l)
tl
|2|Ftl−1)}]1/2[E{IMtsE(|∆(n)

tn |
2|Ftn−1)}]1/2

≤ a10
T b

2
TM

10β
1/2
k β1/2

s β
1/2
l β1/2

n

= a10
T b

2
TM

1036 ‖f‖2∞ |u2 − um||u2 − um|
≤ a10

T b
2
TM

109 ‖f‖2∞ (u2 − u1)2.

If, second, ts = tk = tn = maxi=1,...,4 ti, we need to evaluate E(|∆(s)
ts ||∆

(k)
tk
||∆(n)

tn |
i|Fts−1),

i = 1, 2. Say for concreteness that s = 1, k = 2, n = 3 and u2yt−1 > umyt−1 > u1yt−1

(the other possibilities can be considered analogously). Then |∆(1)
t1
|2|∆(3)

t3
|i takes the values

|∆pθ(um, u2)+1|2|∆pθ(u1, um)±1|i and |∆pθ(um, u2)−1|2|∆pθ(u1, um)−1|i with zero proba-
bility, whereas it takes the value |∆pθ(um, u2)−1|2|∆pθ(u1, um)+1|i with positive probability
iff bTu2yt−1 − θ > bTumyt−1 + θ > bTumyt−1 − θ > bTu1yt−1 + θ, in which case this positive
probability is F (θ + ξTt(um)) − F (−θ + ξTt(um)) < F (ξTt(u2)) − F (ξTt(u1)). Enumerating
the other values taken by |∆(1)

t1
|2|∆(3)

t3
|i with positive probability and recalling that |∆pθ| ≤ 1,

we obtain that

E(|∆(1)
t1
|2|∆(3)

t3
|i|Ft1−1) < I{bT |u2−u1||yt1−1|>2θ}16{F (ξTt(u2))− F (ξTt(u1))}

+|∆pθ(um, u2)|2|∆pθ(u1, um)|i

+4|∆pθ(um, u2)|2{∆Fθ(um, u1) + ∆F−θ(um, u1)}
+4|∆pθ(u1, um)|i{∆Fθ(u2, um) + ∆F−θ(u2, um)}.
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Using the MVT and |∆pθ| ≤ 1,

E(|∆(1)
t1
|2|∆(3)

t3
|i|Ft1−1) < I{bT |u2−u1||yt1−1|>2θ}bT 16 ‖f‖∞ |u2 − u1||yt1−1|

+b2T 33 ‖f‖2∞ |u2 − um||um − u1||yt1−1|2.

From here and since |∆(4)
t4
|2−i ≤ 4,

Gt1,t2,t3,t4 ≤ a8
TM

8E
[
IMt4 |∆

(4)
t4
|2−iIMt1E(|∆(1)

t1
|2|∆(3)

t3
|i|Ft1−1)

]
≤ a9

T bT 4M9
[
16 ‖f‖∞ |u2 − u1|E

(
IMt1I{bT |u2−u1||yt1−1|>2θ}

)
+ aT bT 9M ‖f‖2∞ |u2 − u1|2

]
.

By Markov’s inequality,

E
(
IMt1I{bT |u2−u1|yt1−1>2θ}

)
≤ aT bT (2θ)−1|u2−u1|E

[
IMt1a

−1
T |yt1−1|

]
≤ aT bT (2θ)−1M |u2−u1|,

so
Gt1,t2,t3,t4 ≤ a10

T b
2
T 4M10

[
16 ‖f‖∞ (2θ)−1 + 9 ‖f‖2∞

]
(u2 − u1)2.

As this evaluation was found to hold also when precisely two among ti (i = 1, ..., 4) equal
maxi=1,...,4 ti, it holds for all non-zero Gt1,t2,t3,t4 , so

Gu2,u1,um ≤ (T 3a10
T b

2
T )4M10

[
16 ‖f‖∞ (2θ)−1 + 9 ‖f‖2∞

]
(u2 − u1)2. (S.4)

Since c−1
T {rM5 (bTu) − rM5 (0)} = oP (1) for fixed u, from (S.4) and Theorem 15.6 of Billings-

ley (1968) it follows that c−1
T sup|u|≤A |rM5 (bTu) − rM5 (0)| = oP (1). In view of the previous

argument about rM5 (0) this proves part (b).
For part (c), we first derive an inequality analogous to (S.4), with υt(u) := εtI{|εt−ξTt(u)|≤θ}−

mθ(ξTt(u)) instead of ιt (u). Now

E
[
{υt (u2)− υt (u1)}2|Ft−1

]
≤ {mθ(ξTt(u2))−mθ(ξTt(u1))}2

+ 3{θ + (|u1| ∨ |u2|+ d−1
T |c|)|yt−1|}2 {|∆Fθ(u2, u1)|+ |∆F−θ(u2, u1)|} ,

where the first term after the inequality sign corresponds to integration over values of εt such
that I{|εt−ξTt(u1)|≤θ} = I{|εt−ξTt(u2)|≤θ}, and the second term —over the remaining values of
εt. As |m′θ (x)| ≤ 2 ‖f‖∞ (θ + |x|), from the MVT

E
[
{υt (u2)− υt (u1)}2|Ft−1

]
≤ {θ + (|u1| ∨ |u2|+ d−1

T |c|)|yt−1|}2{4 ‖f‖2∞ |u2 − u1|y2
t−1 + 6 ‖f‖∞ |yt−1|}|u2 − u1|.

Recalling that aT bT = o(1) and aT = o(dT ), we conclude that for |u1|, |u2| ≤ A and large T ,

E
[
I{|a−1T yt−1|≤M}{υt(bTu2)− υt(bTu1)}2|Ft−1

]
≤ CaT bT |u2 − u1| , (S.5)

with C = (θ + 1)2(1 + 6 ‖f‖∞M). Introducing

rM2 (u) =
∑

yt−1I{|a−1T yt−1|≤M}υt (u) ,
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using (S.5) and the independence of {εt}, it follows by an argument like for the process rM5
that for some L > 0

E
(
{rM2 (bTu2)− rM2 (bTum)}2{rM2 (bTum)− rM2 (bTu1)}2

)
≤ (T 3a6

T b
2
T )L(u2 − u1)2.

By Theorem 15.6 of Billingsley (1968), T−3/4(a3
T bT )−1/2{rM2 (bT (·)) − rM2 (0)} is tight in

D [−A,A] for every fixed M (more precisely, the process can be modified like rM5 earlier so
that a tight càdlàg sequence is obtained). Since T−3/4(a3

T bT )−1/2{rM2 (bTu)−rM2 (0)} = oP (1)
for every fixed u (as E{rM2 (bTu) − rM2 (0)} = 0 and E{rM2 (bTu) − rM2 (0)}2 ≤ Ta3

T bTM
2C|u|

using (S.5)), by tightness the convergence is uniform on [−A,A], as asserted in part (c). �
Proof of Proposition A.2. The assertions follow from Proposition A.1 by adapting the
compactness and monotonicity arguments of Koul (2002) for his Theorem 7.2.1. We only
discuss the necessary modifications.

Note first that under Assumptions E and Y(k), yt has the decomposition yt = Q
∑t

i=1 εi+∑t−1
i=0 qiεt−i + OP (T 1/2) uniformly in t = 1, ..., T , where Q = 1 −

∑k
i=1 ∂i 6= 0 and {qi}∞i=0

decrease exponentially, whereas∆yt = ∆y0
t +cιt, where∆y0

t =
∑t−1

i=0 q̃iεt−i with exponentially
decreasing {q̃i} and

∑
|ιt| = OP (T 1/2). The decomposition of yt can be used to show that

T−1
∑
|a−1
T yt−1|

w→ |Q|
∫
|S| ∈ (0,∞) a.s. Furthermore, we shall use the evaluations

T−1a−1
T

∑
|γTt||yt−1| = OP (1) and T−1/2b−1

T

∑
|γTt|‖∆yt−1‖ = oP (1), (S.6)

the former one since the left-hand side is bounded by (max1≤t≤T |γTt|)(T−1
∑
|a−1
T yt−1|) =

OP (1), and the latter one, since

T−1/2b−1
T

∑
|γTt|‖∆yt−1‖ ≤ max

1≤t≤T
|γTt|

(
T−1/2b−1

T

∑
‖∆yt−1‖

)
= b−1

T OP (T 1/2 ∨T−1/2aT ).

(S.7)
Here we have evaluated

∑
‖∆yt−1‖ ≤

∑
‖∆y0

t−1‖ + OP (T 1/2) as OP (T ) for distributions
with E|ε1| <∞ by Markov’s inequality, and as OP (aT ) for E|ε1| =∞, since then∑

‖∆y0
t−1‖ ≤ k

T∑
t=1

t−1∑
i=0

|q̃i| |εt−i|

= k
T∑
t=1

t−1∑
i=0

|q̃i| |εt−i| I{|εt−i|≤aT } + k max
1≤t≤T

|εt|
T∑
t=1

t−1∑
i=0

|q̃i| I{|εt−i|>aT }.

with E(
∑T

t=1

∑t−1
i=0 |q̃i| |εt−i| I{|εt−i|≤aT }) ≤ TE(|ε1|I{|ε1|≤aT })

∑∞
i=0 |q̃i| = O (aT ) by Kara-

mata’s theorem, max1≤t≤T |εt| = OP (aT ) and E(
∑T

t=1

∑t−1
i=0 |q̃i| I{|εt−i|>aT }) ≤ TP (|ε1| >

aT )
∑∞

i=0 |q̃i| = O (1).
For notational ease, redefine ξTt(u) := T−1/2a−1

T (u + c)yt−1 and ψTt(s) := b−1
T s′∆yt−1,

such that the statements to prove become

sup
(u,s,θ)∈K

|UT (u, s, θ)− UT (0, 0, θ)| = oP (1)

with K := {(u, s, θ) : |u| ≤ C, ‖s‖ ≤ C, θ ∈ [0, A]}, and

sup
(u,s,θ)∈K

∣∣∣∑ γTt

{
ηt[I{|εt−ξTt(u)−ψTt(s)|≤θ} − I{|εt−T−1/2a−1T cyt−1|≤θ}]− 2uθf (θ) a−1

T T−1/2yt−1

}∣∣∣
= oP (T 1/2).

9



Let
J±,±T (u, s, θ) := T−1/2

∑
γ±Ttη

±
t I{|εt−ξTt(u)−ψTt(s)|≤θ},

where the + and − superscripts of γTt and ηt are taken independently. In place of the
processes defined by Koul, p.299, we need

T±,±(θ, u, s, a) := T−1/2
∑

γ±Ttη
±
t I{|εt−ξTt(u)−ψTt(s)|≤θ+T−1/2a

−1
T a|yt−1|+b−1T a‖∆yt−1‖},

m±,±(θ, u, s, a) := T−1/2
∑

γ±Ttm
(
θ + T−1/2a−1

T a|yt−1|+ b−1
T a‖∆yt−1‖, ξTt(u) + ψTt(s)

)
and Z±,± := T±,± − m±,±, where m is the conditional expectation function matching the
choice of η+

t or η
−
t . For |u− v| ≤ δ and ‖s − r‖ ≤ δ (with δ > 0 to be chosen later) the

inequalities

I{|εt−ξTt(u)−ψTt(s)|≤θ−T−1/2a
−1
T δ|yt−1|−b−1T a‖∆yt−1‖} ≤ I{|εt−ξTt(v)−ψTt(r)|≤θ}

≤ I{|εt−ξTt(u)−ψTt(s)|≤θ+T−1/2a
−1
T δ|yt−1|+b−1T a‖∆yt−1‖}

hold. So

T±,±(θ, u, s,−δ)− T±,±(θ, u, s, 0) ≤ J±,±T (v, r, θ)− J±,±T (u, s, θ)

≤ T±,±(θ, u, s, δ)− T±,±(θ, u, s, 0)

and,

|J±,±T (v, r, θ)− J±,±T (u, s, θ)| ≤ |Z±,±(θ, u, s, δ)− Z±,±(θ, 0, 0, 0)| (S.8)

+|Z±,±(θ, u, s,−δ)− Z±,±(θ, 0, 0, 0)|
+2|Z±,±(θ, u, s, 0)− Z±,±(θ, 0, 0, 0)|
+|m±,±(θ, u, s, δ)−m±,±(θ, u, s, 0)|
+|m±,±(θ, u, s,−δ)−m±,±(θ, u, s, 0)|.

By the MVT, for every (u, s),

sup
θ∈[0,A]

|m±,±(θ, u, s,±δ)−m±,±(θ, u, s, 0)| ≤ 2δGT−1/2
∑

γ±Tt(T
−1/2a−1

T |yt−1|+ b−1
T ‖∆yt−1‖),

sup
θ∈[0,A];|u−v|,‖s−r‖≤δ

|T−1/2
∑

γTt [m(θ, ξTt(u) + ψTt(s))−m(θ, ξTt(v) + ψTt(r))] |

≤ 2δGT−1/2
∑
|γTt|(T−1/2a−1

T |yt−1|+ b−1
T ‖∆yt−1‖),

where G := supx∈R |max{x, 1}f(x)| <∞ by the continuity of f and by hypothesis, and

0 ≤ T−1a−1
T

∑
γ±Tt|yt−1| ≤ T−1a−1

T

∑
|γTt||yt−1| = OP (1),

0 ≤ T−1/2b−1
T

∑
γ±Tt‖∆yt−1‖ ≤ T−1/2b−1

T

∑
|γTt|‖∆yt−1‖ = oP (1)

by (S.6). For arbitrary fixed ε > 0 this allows us to choose δ > 0 so that, for every u and s,

lim sup
T→∞

P

(
sup
θ∈[0,A]

|m±,±(θ, u, s,±δ)−m±,±(θ, u, s, 0)| ≥ ε
)
< ε, (S.9)

lim sup
T→∞

P
(

sup
θ∈[0,A]
|u−v|≤δ
‖s−r‖≤δ

|T−1/2
∑

γTt [m(θ, ξTt(u) + ψTt(s))−m(θ, ξTt(v) + ψTt(r))] | ≥ ε
)
< ε.(S.10)
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For this chosen δ and every (u, s), by Proposition A.3,

sup
θ∈[0,A]

|Z±,±(θ, u, s, ωδ)− Z±,±(θ, 0, 0)| = oP (1), ω ∈ {−1, 0, 1}. (S.11)

In fact, we can check the hypothesis of Proposition A.3 with ζTt := T−1/2a−1
T ωδ|yt−1| and

τTt := b−1
T ωδ‖∆yt−1‖. It holds every (u, s) that max1≤t≤T |ζTt| and max1≤t≤T |ξTt(u)| are

OP
(
T−1/2

)
, max1≤t≤T |τTt| and max1≤t≤T |ψTt(s)| are OP (b−1

T aT ) = oP (T 1/2), and∑
(|γTt|+ γ2

Tt)(|ψTt(s)|+ |τTt|+ ψ2
Tt(s) + τ2

Tt)

≤ 2(C + δ + C2 + δ2)(1 + max
1≤t≤T

γ2
Tt)
∑

(b−1
T ‖∆yt−1‖+ b−2

T ‖∆yt−1‖2)

= OP (1)
∑

(b−1
T ‖∆yt−1‖+ b−2

T ‖∆yt−1‖2)

= OP (b−1
T T ∨ b−1

T aT ) +OP (b−2
T a2

T ) = oP (T 1/2),

since b−1
T T 1/2 = o (1) and b−1

T aT = o(T 1/4). Here we have used the evaluation of
∑
‖∆yt−1‖

after (S.7) and the evaluation
∑
‖∆yt−1‖2 ≤

∑
‖∆y0

t−1‖2 + k(
∑
|ιt|)2 ≤ k

∑
(∆y0

t−1)2 +

OP (T ) = OP (a2
T ) since a−2

T

∑
(∆y0

t−1)2 w→ (
∑∞

i=0 q̃
2
i )[S]1.

From (S.8), (S.9) and (S.11) it follows that for every (u, s) ,

lim sup
T→∞

P

(
sup

θ∈[0,A];|u−v|,‖s−r‖≤δ
|J±,±T (v, r, θ)− J±,±T (u, s, θ)| ≥ 6ε

)
< ε,

which jointly with (S.10) gives

lim sup
T→∞

P

(
sup

θ∈[0,A];|u−v|,‖s−r‖≤δ
|UT (v, r, θ)− UT (u, s, θ)| ≥ 25ε

)
< ε.

As, for every (u, s), supθ∈[0,A] |UT (u, s, θ) − UT (0, 0, θ)| = oP (1) by Proposition A.1 and
the triangle inequality with U∗T (θ) as third point, relation (A.9) follows via a compactness
argument.

To obtain from (A.9) the second convergence in the proposition, it suffi ces to show that

λT := sup
(u,s,θ)∈K

∣∣∣∑ γTt

{
[m(θ, ξTt(u) + ψTt(s))−m(θ, ξTt(0))]− 2uθf (θ)T−1/2a−1

T yt−1

}∣∣∣
is oP (T 1/2) with m calculated for ηt = εt. With this choice it holds that m′2(θ, 0) = 2θf (θ),
where m′2 is the derivative of m w.r.t. its second argument. Thus, using the MVT, it is seen

that λT ≤ λ(1)
T + λ

(2)
T with

λ
(1)
T := T−1/2a−1

T C sup
(u,s,θ)∈K

∣∣∣∑ γTtyt−1[m′2(θ, τTt(u, s))−m′2(θ, 0)]
∣∣∣ ,

λ
(2)
T := b−1

T sup
(u,s,θ)∈K

∣∣∣∑ s′(γTt∆yt−1)m′2(θ, τTt(u, s))
∣∣∣

and τTt(u, s) := T−1/2a−1
T cyt−1 + ωTt{T−1/2a−1

T uyt−1 + ψTt(s)} for appropriate ωTt ∈ [0, 1].
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Let ε > 0 be given. Let

ATY := {T−1a−1
T

∑
|γTt||yt−1| > Y }, CTΓ := {T−1

∑
γ2
Tt > Γ},

DTN := {max1≤t≤T |a−1
T yt−1| > N}.

Choose and fix Y,Γ, N > 0 such that lim supT P (ATY ) ≤ ε/3, limT P (CTΓ) ≤ ε/3 and
lim supT P (DTN ) ≤ ε/3. Finally, let b > 0 be such that |m′2(θ, x)−m′2(θ, 0)| ≤ ε̃ := ε/(2CY )
for every θ ∈ [0, A] and |x| ≤ b (b exists by the uniform continuity of f on compacts). Then
on the event {max1≤t≤T |T−1/2a−1

T (|c|+ C)yt−1| ≤ b/2} ∩AcTY ∩ CcTΓ ∩Dc
TN it holds that

λ1
T ≤ T−1/2a−1

T C
∑[

ε̃I{b−1T C‖∆yt−1‖≤b/2} + 4GI{b−1T C‖∆yt−1‖>b/2}

]
|γTt||yt−1|

≤ C
[
ε̃
(
T−1/2a−1

T

∑
|γTt||yt−1|

)
+ 4G max

1≤t≤T
|a−1
T yt−1|

(
T−1

∑
γ2
Tt

)1/2 (∑
I{b−1T C‖∆yt−1‖>b/2}

)1/2
]

≤ T 1/2ε/2 + 4CGNΓ1/2
(∑

I{b−1T C‖∆yt−1‖>b/2}

)1/2
,

since supR2 |m′2| ≤ 2 supR |id× f | ≤ 2G, so

P
(
T−1/2λ

(1)
T > ε

)
≤ P (ATY ) + P (CTΓ) + P (DTN ) (S.12)

+P

(
max

1≤t≤T
|T−1/2a−1

T (|c|+ C)yt−1| > b/2

)
+P

(∑
I{b−1T C‖∆yt−1‖>b/2} >

T

64Γ

( ε

CGN

)2
)
.

The latter two probabilities tend to zero, the second one since
∑
I{b−1T C‖∆yt−1‖>b/2} = oP (T ).

Indeed, on the one hand,∑
I{b−1T C‖∆yt−1‖>b/2} ≤ k

∑
I{b−1T C|∆y0t |>b/(4k)} + k

∑
I{b−1T C|ιt|>b/(4k)}

= k
∑

I{b−1T C|∆y0t |>b/(4k)}

with probability approaching one, since

P
(∑

I{b−1T C|ιt|>b/(4k)} > 0
)

= P

(
max

1≤t≤T
b−1
T C|ιt| > b/(4k)

)
≤ P

(∑
|ιt| > bT b/(4Ck)

)
→ 0

for
∑
|ιt| = OP (T 1/2) and T−1/2bT → ∞, and on the other hand,

∑
I{b−1T C|∆y0t |>b/(4k)} =

oP (T ) by Markov’s inequality:

∑
P (b−1

T C|∆y0
t | > b/(4k)) ≤ TP

(
b−1
T C

∞∑
i=0

|q̃i||εt+i| > b/4
)

= O(T lT b
−α
T ) = O(T lTa

−α
T (aT /bT )α) = O(l̃TT

α/2) = o (T ) ,

where lT and l̃T are slowly varying, since the distribution function of
∑∞

i=0 |q̃i||εt+i| is
regularly varying with tail index α inherited from {εt}. Therefore, returning to (S.12),
lim supT P (T−1/2λ

(1)
T > ε) ≤ ε, and by the arbitrariness of ε, T−1/2λ

(1)
T = oP (1).

12



Regarding λ(2)
T , it satisfies the inequality

λ
(2)
T ≤ b

−1
T 2CG max

1≤t≤T
|γTt|

∑
‖∆yt−1‖ = OP (b−1

T T ∨ b−1
T aT ) = oP (T 1/2),

see (S.7). Thus, also T−1/2λ
(2)
T = oP (1) and T−1/2λT = oP (1). This completes the proof of

the proposition. �

S.2 A counter-exemplary result

Proof of Proposition 6. We use (A.4) and the notation introduced in the proof of
Theorem 4. Fix an A > 0 and let M1 := sup|u|≤A

∣∣I{u6=0}{(nTu)−1φ2 (nTu)− hθ}
∣∣ = oP (1)

and M2 := sup|u|≤A |φ̃ (0, θ) (φ1(nTu)− 1) + φ3(nTu)| = oP (δ−1
T ) by the proof of Proposition

2(a). By the same proposition, the event A := {|n−1
T φ̂

(i)| < A,∀i ∈ N ∪ {0}} is contained in

A1 := {φ̂(i)
= φ̂

(i−1)
(hθ +R

(i)
1 ) + φ̃ (0, θ) +R

(i)
2 ,∀i ∈ N} ∩ {sup

i∈N
|R(i)

j | ≤Mj , j = 1, 2}.

Let ∆̂T := φ̂
(0) − (1− hθ)−1φ̃ (0, θ); then in the decomposition φ̂

(i)
= φ̂

(i)

1 + φ̂
(i)

2 we have

φ̂
(i)

1 = ∆̂T

i∏
j=1

(hθ +R
(i)
1 ) + φ̃ (0, θ) [(1− hθ)−1 + λ

(i)
T ] with (S.13)

λ
(i)
T :=

i∑
j=1

[ i∏
k=j+1

(hθ +R
(k)
1 )− hi−jθ

]
+ (1− hθ)−1

[ i∏
j=1

(hθ +R
(i)
1 )− hiθ

]
.

With A2 :=
{
|M1| ≤ 2−1 (hθ − 1)

}
, for outcomes in A1 ∩ A2 it holds that∣∣∣∣∣∣

i∏
j=1

(hθ +R
(i)
1 )

∣∣∣∣∣∣ ≥
(
hθ + 1

2

)i
and

i∑
j=1

i∏
k=j+1

|hθ +R
(k)
1 | <

(3hθ − 1)i

2i (hθ − 1)
. (S.14)

Define

IT := min
{
i ∈ N : n−1

T |∆̂T |2−i(hθ + 1)i + n−1
T |φ̃ (0, θ) |(1− hθ)−1 > 3A

}
.

Then IT = OP (1) because n−1
T φ̃ (0, θ) = OP (1) by Proposition 1(a), n−1

T ∆̂T is bounded away
from zero in probability under the hypotheses of parts (a) and (b), and hθ > 1. Further, for
outcomes in A1 ∩ A2

λ
(i)
T ≤

i∑
j=1

[(hθ +M1)i−j − hi−jθ ] + (1− hθ)−1[(hθ −M1)i − hiθ]

and a similar evaluation of λ(i)
T from below holds, so that

(hθ −M1)i − 1

hθ −M1 − 1
− (hθ +M1)i − 1

hθ − 1
≤ λ(i)

T ≤
(hθ +M1)i − 1

hθ +M1 − 1
− (hθ −M1)i − 1

hθ − 1
.
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As IT = OP (1) and M1 = oP (1), it follows that λ(IT )
T = oP (1), and since n−1

T φ̃ (0, θ) =

OP (1) , P (A3)→ 1 for A3 := {|n−1
T φ̃ (0, θ) λ̂

(IT )

T | < A}. Recalling eq. (??) and the definition
of IT , we can conclude that for outcomes in ∩3

i=1Ai, |n−1
T φ̂

(IT )

1 | > 2A. Recalling also (??), for

such outcomes |n−1
T φ̂

(IT )

2 | ≤ n−1
T M2{2−1 (3hθ − 1)}IT (hθ − 1)−1 =: κT , and since P (A4)→ 1

for A4 := {κT < A}, we finally obtain that, for outcomes in ∩4
i=1Ai, |n−1

T φ̂
(IT )| ≥ |n−1

T φ̂
(IT )

1 |−
|n−1
T φ̂

(IT )

2 | > A. Therefore, A ⊂
(
∩4
i=1Ai

)c (with c denoting complement). Recalling that
A ⊂ A1, we find that A ⊂

(
∩4
i=2Ai

)c, where P (∩4
i=2Ai

)
→ 1. This implies that P (A) → 0,

which jointly with n−1
T φ̂

(0)
= OP (1) (by hypothesis) and

P
(
|n−1
T φ̂

(i)| < A,∀i ∈ N
)
≤ P (A) + P (|n−1

T φ̂
(0)| ≥ A)

yields limA→∞ lim supT→∞ P (|n−1
T φ̂

(i)| < A, ∀i ∈ N) = 0. As lim supT→∞ P (|n−1
T φ̂

(i)| <
A,∀i ∈ N) is increasing in A, it follows that limT→∞ P (|n−1

T φ̂
(i)| < A, ∀i ∈ N) = 0 for all

A > 0. �

S.3 Further simulations

The focus in the paper was on iterative estimation of the AR parameter φ, resulting in
effi ciency gains and associated local power gains of UR tests. To evaluate whether iterative
estimation of the threshold enhances, diminishes or does not affect these gains, we carry out
a further simulation exercise.

The same data generation processes as in section 7 are used. Two groups of experiments
are run, with threshold equal respectively to the 75th percentile of the set of residual absolute
values, and to a self-normalized residual standard deviation as in (5.19). In experiments
with a fixed threshold, the threshold θ̂ is computed from the residuals associated with the
preliminary estimator of φ, and is not updated in the iteration over φ. This gives rise to

the statistics ξ(N)
T (0) := ξ

(N)
T (0, θ̂) and ξ(

√
T )

T (φLS) := ξ
(
√
T )

T (φLS , θ̂) respectively for the zero
and the OLS preliminary estimator of φ. In experiments with joint iteration over φ and
the threshold, the threshold is updated from each new set of residuals; see section 5. As in
Table 1, three preliminary estimators of φ for the joint iteration are considered - 0 and the
two estimators obtained by fixed-threshold iteration. Empirical size and power for all the
experiments are reported in Table S1.

The following regularities are observed.
First, for experiments with threshold equal to the self-normalized residual standard devi-

ation, iteration of the threshold does not appear to affect size and power.
Second, for the quantile threshold, empirical size tends to be smaller when the threshold

is iterated, thus counteracting the frequent slight oversize of fixed-threshold tests, and some-
times transforming it into a slight undersize. Also the empirical rejection frequencies under
the local alternative are somewhat smaller. However, size-adjusted power (not reported) is
virtually independent of whether the thershold is iterated or not.

An exception occurs for α = 1
2 (representative for α < 1) when estimation is initialized

with the OLS estimator. Its convergence rate is too slow compared to the magnitude order of
{yt−1}, resulting in large residuals. In particular, the 75th residual percentile is unbounded
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in probability. Nevertheless, the Gaussian approximation seems appropriate under the null.
Under the local alternative, fixing the threshold at the OLS residual quantile yields rejection
frequencies decreasing in T , whereas iterating the threshold gives rise to the same rejection
frequencies as under the assumptions of our theory. This interesting outcome does not occur
if the usual residual standard deviation (normalized by T ) is used as a threshold, although
for the OLS residuals it has the same stochastic magnitude order as the quantile. Rather,
power decreasing in T is observed both with and without iteration of the threshold. Like-
wise, this outcome does not occur if a stochastically bounded threshold is used (see Table 1
and the block in Table S1 for the self-normalized standard deviation). Thus, the quantile’s
robustness is preferable to both the insensitivity of stochastically bounded thresholds and
the high sensitivity of the usual standard deviation. Iterations over φ improve its magnitude
order gradually, which is appropriately captured by the quantile and is enhanced in further
iterations. We do not explore this issue further.

Summarizing, for the empirically most relevant case α > 1 iterations of the threshold
seem to make little practical difference.

A secondary conclusion from the simulation is that among the two thresholds, the self-
normalized residual standard deviation and the residual quantile, the quantile appears to
have a slight advantage in terms of both size and power.
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Table S1. Empirical Size and Power for Fixed and Iterated θ̂

θ̂ =self-normalized residual s.d. θ̂ =75th residual percentile
Fixed θ̂ Joint iteration started at Fixed θ̂ Joint iteration started at

T ξ
(N)
T (0) ξ

(
√
T )

T (φLS) 0 φ̃
(N)

θ̂
(0) φ̃

(
√
T )

θ̂
(LS) ξ

(N)
T (0) ξ

(
√
T )

T (φLS) 0 φ̃
(N)

θ̂
(0) φ̃

(
√
T )

θ̂
(LS)

Empirical size
α = 3/2

100 5.3 7.3 5.3 5.4 7.4 5.9 6.3 4.6 5.5 6.1
500 5.5 6.3 5.4 5.5 6.2 5.7 5.5 5.2 5.7 5.3

α = 1 (Cauchy)
100 3.9 10.5 3.9 4.0 10.2 5.5 5.5 4.2 4.8 5.2
500 4.1 7.3 4.1 4.2 7.2 5.1 5.3 4.5 4.9 5.1
104 4.5 5.3 4.5 4.5 5.3

α = 1 (Bimodal)
100 22 .7 32 .0 22 .8 22 .9 32 .2 5.8 7.4 4.3 5.0 6.0
500 33 .3 41 .7 33 .3 33 .3 41 .7 5.3 5.6 4.7 5.0 5.3

α = 1/2
100 3.1 42 .6 3.1 3.1 42 .4 5.8 6 .8 4.2 4.6 5 .8
500 3.9 48 .8 3.9 3.9 48 .8 5.2 6 .3 4.3 4.6 5 .9
104 5 .4 5 .5

Empirical rejection frequencies for φ = −7/dT
α = 3/2

100 38.8 46.8 38.2 39.1 46.6 47.3 46.8 42.1 45.3 46.6
500 49.2 51.6 49.3 49.6 51.5 53.3 51.7 51.3 53.0 51.5
104 58.8 60.4 58.8 58.9 60.4 61.9 60.8 61.5 62.0 60.7

α = 1 (Cauchy)
100 52.1 62.6 52.1 52.3 62.7 67.3 67.5 64.6 66.1 66.9
500 64.3 67.8 64.3 64.4 67.8 71.3 70.7 70.2 70.8 71.0
104 71.1 70.7 71.1 71.1 70.7 72.8 71.8 72.5 72.7 72.6

α = 1 (Bimodal)
100 11.7 30.7 11 .6 11 .7 30 .9 43.0 44.4 37.6 39.2 40.6
500 22.9 40.2 22 .8 22 .8 40 .2 44.7 47.0 43.1 43.9 44.2
104 35.9 49.0 35 .8 35 .8 49 .0 46.9 48.7 46.6 47.0 47.0

α = 1/2
100 54.5 49 .8 54.5 54.5 49 .9 56.3 35 .8 53.8 54.5 54 .1
500 62.8 52 .3 62.8 62.9 52 .3 56.7 24 .7 55.7 56.1 56 .5
104 72.6 52 .6 72.6 72.6 52 .5 58.5 12 .3 58.3 58.4 56 .8

Notes . Monte Carlo results based on 10,000 replications. Italics match with those in Table 1.
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