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S.1 Results on weighted empirical processes

In this supplement we need to work with a slightly more general version of Proposition A.1.

As in the Appendix of the paper, let Fpr; (T € N,1 < t < T) be the o-algebra gener-
ated by {y1,...,ut} (y0, and Ay of section 6, are assumed fixed constants). Consider an
array {ng, Ere, Ures Cres TTt Yo b g Of 1.v.’s such that 0, € {1,&4,¢;7,¢; } (the same choice for
all t,T), and (74, Yre, Cps TTt, Y1e) 18 Fr—1-measurable and a.s. finite for all ¢,7". Define

m (07 Z) = E(nlﬂﬂel—z\gﬁ})a
Ur(0) =T~ */? Z Yoo [Ml{lei—€7,— gy | <O+ Cpptrre} — MO + Sy + T, Epp + V)] S
Ur(0) := 712 Z’YTt [Wtﬂ{\at\ge} —m(0, 0)] .

Proposition A.3 (generalized A.1) In addition to Assumptions £, and Y' or Y(k), let
the following hold:

7! Z’y%t Ly <o as.,
T2 Z(WT)&’ + 750 (Ure] + [77e] + 7 + 774) = Op(1),

1rgta<)§r{”£Tt’ +1Crel + T2 gl (1 + (o] + 77} = 0p(1).

Then the processes {Ur} and {U}} are tight in the uniform metric of C|0, A] for all A > 0,
and

sup |Ur(0) — Uz (0)] = op(1).
0€(0,A]

Clearly, Proposition A.1 obtains by choosing (7, = 77+ = 0, all ¢,T.

PROOF OF PROPOSITION A.3. It suffices to consider n, € {1,&;",¢; } > 0, since for 1, = &
the processes Ur and U7 can be decomposed additively using the identity ¢; = el —e; .
We propose a proof which mimics that of Theorem 1.1 in Koul and Ossiander (1994)
[hereafter KO94] and uses their notation, whenever notation is not defined here. Specifically,
we need the following adjustments. Instead of n,i,U, (x), z € R, &,;, Ana, Bnp, Cny and dy,
we consider respectively T, t, Urp(0), 0 € [0, A], ({1, Vres Cres T1t), ATa := {maxi<i<r Ty <
TV2a} with Dy = 20y (14+ A€y + |Gy l+ oy Hrrel), Bry = {maxicecr ([ +¢r)) <

b}, CTn = {T_l ZV%& < 77/2} and
py (01,02) == sup {|Vo (01 +w,z2)— Vo (0a+w,z2) Y2 Vi (61 +w,2) — Vi (62 + w, 2)|?}

0<|2];w<b



for 01,02 € [0, A], where V; (0, z2) := E(?ﬁiﬂ{‘at_zgg}) (i = 0,1; 0° := 1). For repeated use
below, notice that for all § € [0, A], i = 0,1 and outcomes in Bry, it holds that

\Vi(0 + Cre & [bq| £ I71e], §t) — Vi(0 + Gy Et) |
([rel + lmre DN flloo + (0 + [Epe] + [Cael + [l + |TreD)llid X flloo}

<
< X714 (S.1)

with gy = [l + |7oe] + 03 + 72, and g = [|foe + (A + b+ 2)id X fllow < o0, and
similarly,

Vi(0 + e{[Crel + |&el + || + 76}, 0) = Va0 + €{|Ce| + €7 [}, 0)] < Xgreqy € € {=1, 1},

where T2 3" (|44 +7v%,)x7: = Op (1) under the hypotheses of the proposition. Introduce
further the events Gy = {maxi<i<7 (97| + |71¢|) < Mr} for real M7 to be determined
later. The only role of M will be to ensure integrability of expressions involving ¢, 77 for
every fixed T

First, as in Lemma 2.3 and Corollary 2.1 of KO94, we obtain the pointwise convergence
|Ur(0)—U7(0)| = op(1) for every 6 € [0, A]. Fore,a,b > 0 with V; (6 +b,0)—V; (0 —b,0) < a
(feasible as V; (-, 0) is continuous), the quadratic variation of Ur(0) — U7 (6) on Ap, N By N
Gty (where, in particular, integrability is automatic), is

T V3 Var (Uiey—¢py—ir, <04+ retrret — Kie<oy) | Fri1]

< TN A0 E [0 (Uer—g—ipy <04¢rprry — Lieel<op) | Fra]

< TN VE L0 Gy 6|~y = ol <led 0+ G Her [+ 1+ oy FT-1]

< T Z’Y%Ft[vl(e + ’CTt’ + |€Tt’ + W)Tt‘ + ‘TTt‘70) - Vl(‘9 + |CTt‘ + ‘thLO)}
+T7Y 93 VA0 = 1G] = 1€74],0) = V(0 = Sl — [&] — [be] — 774, 0))
AT A7 VA0 + Gl + 1], 0) = VA(O = [l — €], 0)]

< 20N X + T A[Va(0 +b,0) — Vi(6 - b,0)]

< 2T Z Veexre +aT ™ Z Ve

In this proof, denote the mean function by p instead of m, to avoid confusion with m of the
proof of KO94. Then, with A7 := Arq N By N Cr9y/3 N Grar N {T71" ~2.xr < an/3q}, by
Lemma 2.2 in KO94, the above evaluation of the quadratic variation yields

P ([|Ur(0) = Up(0)| > €] N Ar)
—1/2
=P ( HT 2> v <ra ier +Hord <L +Hrrd <}
X ANty e, —tpp|<0-+Cpy e} — Ljerj<01) + 14(0,0) — (0 4+ Cpy + T, gy + ¢Tt)}‘ > 5}

N [2qT‘1 > Vrixre +aT ™) Ay < cm} )

<exp (—€*/2a (e +1)) .



-1 2
+P (1Iéltaé}{’1’(|¢Tt| + |T7e]) > MT> + P (T Z’YTt > 77/3>
+P (A%a U B, U {Til Z’V%’tXTt > a77/3Q}> .

For a given arbitrary w > 0, choose  and My such that limp P (T_1 Sk > 77/3) < w/3 and
lim supy P(maxi<¢<7 (|7 +|77¢|) > M) < w/3, and then a such that exp (—2?/2a (e + n)) <
w/3; these choices are possible since T71 3" 42, % v < 00 a.s. and [Yhpy], |T7¢| < 00 a.s. With
these choices it holds that limsupy P (|Ur() — U7 (0)] > €) < w, as the last probability in
the preceding display vanishes under the hypothesis of the Proposition.

Second, concerning tightness, we note that an analogue of Proposition 2.1 of KO94 is
valid: for any 7> 1,b> 0,7 > 1 and § > 0, with &/ (1 + N (8,0))"/? > 4 (n/T)"/?,

P(| sup [U7(8) = Ur(xan(0))] > (ex +nez) (3 + Iry(6,5))] (S.2)
0€[0,A]
N [ max [T < TY26/(1+ N (6,6))2| N Bry N Cry N Grar N JT)
1<t<T
< 0367777
where Jr = Nicioy {772 v oxr < mom*™/?/(2¢)} and 123 are universal con-

stants. In KO94’s proof, (¢ and (2% (see K094, p.552) are replaced respectively by

1k .
Crt = Ljppy <aprivzy, 0 <k <m,

%k e { H{ak+1Tl/2<|FTt|§ale/2}’ 0<k<m
t 1 9y
CTT’ k =m

where aj, and m are used according to the definition of KO94, p.552 (not to be confused
with the normalization sequence ar for the innovations, which never appears in this proof).
Further, Dy; (z) and R, (z) (see KO94, p.553) are replaced respectively by

Dre (0) == nil{je, ¢, —pril <0+ ¢rptrry — O+ Crp + T, §pp +¥07y), 1 < 8 < T,
o —1/2 2%
Ry (0) :==T / Z WTt|CTt(ﬁtﬂ{0;€+th+m<|st—§Tt—th|§0k+<Tt+TTt}
11Ok + Cry + 7T Ey + ) — 1O + Sy + 7T Epy +Ppy)]), 0 < k< om,

and the evaluation of |Dy; (zx) — Dpi (2) | between (2.7) and (2.8) on p.553 of KO94, by

’DTt (Qk) — Dy (0) ’ < ntH{9;€+<Tt+TTt<|5t_§Tt_'¢}Tt‘Sek""CTtJ"TTt}
+u(Ok + Cry + T Ey + Upy) — 10, + Cop A Ty Ey + Ury)

for #), < § < 0y and 1, > 0. The quadratic variation of Sty (8) := T2 3 vy, (X[ Dpy (0r—1)—



Dr4(0)] on the set By N Cry N Gy N Jr (cf. p.554) is given by

Qri(0) = T ViV ardio, ,4cptroeslei—Er—bp | <0x+Crptrret | Frit—1)
< 7! Z’YTtC Vi(Ok + Cre + |mrel + [7e], €)= VilOk—1 + Coy + 71| = [, 0]
= 7! Z’YTtC Vi(Ok + Cre + [Urel + |71l €)= Vi(Ok + (s E7)]

7! Z’YTtCTt Vi(Ok—1 + Cre = [re] = |77t Ee) = Vi(Or—1 + Cops E7)]

+7 Z ’Y%tclTlft[Vl(gk + Cres §Tt) - Vl(akfl + Cres th)]

2¢T" Z’Y%tXTt + 0% (O, Op—1) T Z’YQTt

2qT" Z Vexre + 50T Z Ve

2T71/277 773/2 (5/2)52
2021 + (5/2)0%n < 5027,

IA

VANVAN

the last inequality by the definition of m and & (see KO94, p.552). Thus, (2.9) of KO94
remains valid upon adding NGy N Jr inside the evaluated probability. R, (z) (see p.554 of
KO94) is replaced by

Ry (0) == QT_l/ZZ Z Vol ST (O + St 701, E+e) — (O + S+ 71, Ep+) }

t 0<k<m
with

|Br (0) |

IN

2712y 0 >0 hldH

t 0<k<m

< |Vo(Or + Crt + [l + [71¢], E70) — Vo0 + St — [l — |71l €)M
X|Vi(Ok + Cpp + [bpe| + |71 E3) — VA0, + Sy — 0| — ’Tthvat)\l/Z
272N " N vl CFi2axr: + 0 (0, 0) + p°(6,0))]

t 0<k<m

272N " N vl CHE 200 + 267),

t 0<k<m

IN

IN

the first inequality by Cauchy-Schwartz. So, in place of (2.10) of KO94, for outcomes in



Bry, N Cryy N Grar N Jr and 7, defined on p.552 of KOY4, we find that

[Rr () | 27! Z Z ’YTt/ak+1)[2QXTt + 252} + 27 1/22 vrel [2ax7: + 20, ml

t 0<k<m

IN

IN

2! Z Z Vo [20x 7/ a1 + 23] + 2772 Z Ve (20X 7 + 202

t 0<k<m

4qT_1Z’Y?FtXTt Z 1/ag+1 +24T_127%t Z Mie+1
t

0<k<m t 0<k<m

IN

1/2
+4qT Y Iy Xy + 4 (Z Iml2> O
t t

IA

o | > nfanea | + 2% [ D mppa | 4 2non + 4T (n/2)%62,
0<k<m 0<k<m

IN

107 [ D mea | +@+27Pmn <16 | Y mi |,
0<k<m 0<k<m

which is the same upper bound as in KO94. Finally, the quadratic variation of the condi-
tionally centered Rry, () is bounded (on Bry N Cry NGy N J7) by

T AV CEV ar(ligr . trpo<ler—toms—toms | <0x+Cmytraet FTi-1)

T Z’YTtC Vi Ok + Crp + [el + [778]s E) — V(O + Cop = [e| = [778], €]

27" Z'YTtXTt + 26,7 Z’YTt
T 200032 + 62 < 262,

VAN VAN

IN

5o (2.11) of KO94 remains valid upon the insertion of absolute values and NGy N Jr inside
the evaluated probability. By combining the above results, (S.2) follows.

Next, Assumption £(ii) and the compactness of [0, A] imply that Assumption (A5) of
K094 is satisfied automatically; c¢f. KO94, p.544, with (p,, [0, A]) in place of (dp, R). Then,
as in Corollary 2.4 of KO94, for every n > 1,5 >0 and 6 > 0,

6
lim supP( sup |Ur(0) — Ur(wsp(0))] > (c1 +ne2) (6 + / (1+ N (u, b))1/2du))
T 9€0,4] 0

< P(y>n/2)+limsup P (G%;,) + limsup P (JF) + cze™"
T T

As v, gy, IT71] < 00 as. and T=Y23 |y Tixyy = Op(1), 1 and My can be chosen
sufficiently large to make the above expression as small as desired. The same evaluation holds
for U7(0) as in Corollary 2.5 of KO94, so the proof of the convergence supgejo 4 |Ur () —
U3(0)| = op(1) can be completed as the proof of (1.9) in KO94 (pp. 556-557). W

PrROOF OF LEMMA A.2(b,c).To prove part (b), define v (u) = Iy, _¢,. (u)j<oy — Po(§re(u))

and, for M > 0, also

Tév‘[(u) = Z yt2—1H{|a;1yt,1|§M}Lt(u)'

5



Then, for any M,np > 0,

P (sup |75 (bru)| > 77T> <P ( sup | (bru)| > 77T> +P (?L%(IGFW > M) )

[ul<A lul<A

As maxi<r |agpty] 5 max(g ) |S¢| < 0o a.s., M can be chosen such that P(max;<r laztye| >
M) be as small as desired. So the sought relations for r5 will follow once we show that
they hold for 7. To this aim we check, first, that for cy := T3/4(a%br)'/? and for
every fixed u, TY4c; {rM (bru) — rM(0)} = Op(1), and hence, e {rd (bru) — rd(0)} =
op(1). Second, we check that c;'{r}!(bp(-)) — r}(0)} is tight. The two facts jointly im-
ply that c;' sup|u‘§A{réw(bT(-)) —73(0)} = 0p(1). The proof is completed by noting that
T=12a; )1 (0) = Op(1) since it equals T~/2a ! Zygflﬂ{m;lyt—llSM} [Lije, <01 — po(0)] +
op(1) (by Proposition A.1), where the normalized summation converges weakly to an a.s.
finite random variable (see Lemma 1 of Knight (1989)). The details follow.

Let F; := o (yo, .-, Yt), and for uy, ug € R, let Apg(ug, u1) := po(Epi(u1)) —po(Ey(u2)) and
AFy(ug,u1) := F (0 + Epp(uz)) — F (04 Ep4(ur)). Conditionally on Fy_1, the r.v. ¢ (ug) —
1t (u1) a.s. takes one value among Apg(ug,u1) and Apg(uz,u;) £ 1, so we find (considering
for concreteness usy;_1 > ulyt,l) that

IN

{Apg(uz,u1)}? + {Apg(uz, u1) + 1} AFp(ug, uy)
+{Apg(uz,u1) — 1}°AF_g(uz, u1)
< Apg(ug,ur) + 2{AFp(u2,u1) + AF_g(u2,u1)},

E [{t1 (u2) = v (u1)}?| Fr1]

the last inequality since |Apy +w| <1 (w € {—1,0,1}). By the mean-value theorem (MVT),
E [{u (u2) =t (u) Y| Fem1] <6 fllo (w2 = ur) ge—1 = 6| fllog luz —wllg—a]-  (S.3)

Now the fact that T%4c {r} (bru) — 7} (0)} = Op(1) follows from Chebyshev’s inequality:
as H{‘a;lyt71|<M}{Lt(bTU) — 1 (0)} is an F; martingale difference, it holds that E{r?!(bru) —

rM(0)} = 0 and

B{rd (brw) = 1 (01 = B (5T -y, canE [{ulbru) — u (011F1])
< TagbrM®6 || f| |u| = T~2EM%6 | || Jul,
the inequality from (S.3).
We turn to tightness and wish to apply a criterion in D[—A, A]. This is not directly

possible, given that the sample paths of ré\/[ are not cadlag due to the terms Iy, )y, ;1<)
which are not cadlag. If we substitute them by

Lo (yema1<0) = L—o<er—(ppor<0)l{ye1>0}
+ T—o<e,—(yeo1 <0ty <0} + Igje, <03y =0}

a cadlag modified process, say Fé\/[ , is obtained. The set of points at which the sample paths
of rM and #M differ is {(0 — &) /yt—1 : ye—1 > 05t =1, ., TIU{—(0 + &) /yt—1 : yr—1 < 05t =



1,...,T}. Since the distribution of &; is absolutely continuous, a.s. at each of these points
only one indicator is affected, so

sup |75 (br(-)) — 75" (br(-))| < maxy? = Op(a7) = op(cr).

lul<A t<T
It is therefore enough to establish the tightness of c}l{Féw(bT(-)) —#M(0)} in D[—A, A]. Since
we argue in terms of expectations, which are unaffected by the change from ré\/[ to fé\/[ , wWe
continue writing in terms of 7.

For a fixed M and ug > uy, > up >0,

Guz,ul,um =E ({ré\/l(bTUQ) - ré\/[(bTum)}2{Té\/[(bTum) - Téw(bTul)}2) = Z th,t2,t3,t4

t1,t2,t3,ta

with Gy, 1o 14,04 = EHZ 1[yt _ 10, A( )] Tpe = ]I{|a e 1| <M} A( ) .= AgQ) = v (brug) —
tt(bry,) and AE?’) = A§4) = u(bpum) — t(bpug). If only one t; (i = 1,...,4) equals
max;—1,.4t;, then Gy t,1,+, = 0 by the independence of {e;} and since EAgl) =0 =
1,...,4). There remain at most 7° non-zero Gy, t,15.1,, Which can be evaluated as fol-
lows, depending on how many subscripts equal max;—1, . 4t;. Say, first, that t; = ¢, =
max;=1,..4 t; ?é tbtn and {k‘,S,l,TL} = {1>2’374} Then’ with Bl = ﬁQ =6 Hf“oo |u2 - Um|
and B3 = B4 = 6||f|l |um — u1], using the Cauchy-Schwartz inequality and (S.3) we find
that

Guintats S aMOE [HMtlﬂMtn|A§5>\|A£:>|Hmkﬂm E(AL A7, )]
< QMO [Tugg Tnae, |A AT HE( AL PIFo ) P HE(AL PIF, 1)
< adbrMO828Y2E (L lare, |85 ALY
< a3br M8 B2 By E(1AY 215, ) Y2 E{Tar, E(AL 2| Fro 1) 12
< a2 M10B/%p1/281 2 1 2
= 236 || 112 |uz — wluz — ]
< a10b2M109||fH2 (UQ—Ul)Z.

If, second, ts = t = t, = max;—1, 4t;, we need to evaluate E(|A(S ||A ||Atn 11 F.—1),
i = 1,2. Say for concreteness that s = 1, kK = 2, n = 3 and ugyt 1 > UmYt—1 > U1Yi—1
(the other possibilities can be considered analogously). Then |At1 2 |A |’ takes the values
|\ (tm, 1) + 12| Apg (11, tn) £ 1 2 |App (i, 1) — 12| Apo (s tm) — 1] with zero proba-
bility, whereas it takes the value |Apg(tm, uz) — 12| Apg(u1, um) +1|* with positive probability
iff brusys—1 — 0 > brumys—1 + 0 > brumyi—1 — 0 > bruiys—1 + 0, in which case this positive
probability is F'(6 + & (um)) — F(—0 4 & (um)) < F(Epi(u2)) — F(Epy(u1)). Enumerating
the other values taken by |A§11) |2|A§§’) | with positive probability and recalling that |Apg| < 1,
we obtain that

(’A HA Ni|For) < Lo i —un fye, 1|20y LO{F (E e (u2)) — F (& (un))}
+|Apo (tm, uz) [*| Apg (u1, )|’
+4| Apg (tm, u2)|P{ AFy (tpm, u1) + AF_g(tpm, u1)}
+4’Ap9(u1, Um)|i{AF9(u27 Um) + AF—G(U% um)}



Using the MVT and |Apyg| < 1,

1 3) 4
E(ALPIADIFL 1) < Lppfu—u ey -1 52030716 | fllog 2 — 1|1y, 1]

+03:33 (| £112 [tz — [ — ua ||ye, 1|

From here and since |A§j)]2_i < A4,

IN

4)12—; 1 3) 4
Griintats < @MOE [ | AL P L BIAL P1AL 17, 1)

1

IN

@G AM® (16111 o [u2 = 11]B (Tnsts Loy i, 15293 ) + arbrOM | FIZ fuz = wa ]
By Markov’s inequality,

E (HMtlﬂ{bT\urul|yt1,1>29}> < arbr(20) " uo—u1 |E [Tng, a7 |y, 1] < arbr(20) ™" M|ug—ua],

SO
Gty tatats < AP VFAM™ 161 £]. (260)7" + 91 1% | (uz = w1)?.

As this evaluation was found to hold also when precisely two among ¢; (i = 1,...,4) equal
max;—1,... 4 t;, it holds for all non-zero Gy, ¢, t5.t4, SO

Guzsirsin < (T2l [16] £l 20) L +9NIFIZ ] (w2 — ). (S.4)

Since e {r} (bru) — r}(0)} = op(1) for fixed u, from (S.4) and Theorem 15.6 of Billings-
ley (1968) it follows that c;* SUD|y|< A [r¥ (bru) — r¥(0)| = op(1). In view of the previous
argument about r27(0) this proves part (b).

For part (c), we first derive an inequality analogous to (S.4), with vi(u) = eilf, —¢.. (u)|<0) —
mg (& (u)) instead of ¢4 (u). Now

E [{ve (u2) = vr (u1)}2|Fioa] < {mo(Eqi(ua)) — mo(Epy(w))}?
+3{0 + (lua| V uz| + dpt e lys—1 [} {| AFy (ug, ur)| + |AF_g(uz, )|},
where the first term after the inequality sign corresponds to integration over values of &; such
that Ie, ¢, (ui)<0) = Ifjes—e, (uz)|<0), and the second term — over the remaining values of

er. As my (z)| < 2| fll (0 + |z|), from the MVT

E [{'Ut (u2) — vy (Ul)}QV:t—l]
< {0+ (furl V fuzl + dz ey {4 112 Tz = wrly?y + 6 [1F ]l i1} uz = wal

Recalling that arbr = o(1) and ar = o(dr), we conclude that for |u1],|u2| < A and large T,
E [Hﬂa;yhl‘ cany{velbruz) — ve(bpun) 2 Fimt | < Carby uz — il (S.5)
with C = (0 +1)%(1 + 6 f||., M). Introducing
réw(u) = Z yt*llﬂa;lyt,ﬂgM}vt (U) 3

8



using (S.5) and the independence of {e;}, it follows by an argument like for the process r!

that for some L >0
E ({r3" (brug) — 3" (brum) Y {r3 (brum) — 3! (brw1)}?) < (T?afb3) Lug — w1)®.

By Theorem 15.6 of Billingsley (1968), T—3/%(a3.br) ' /2{rd (br(-)) — r}(0)} is tight in
D[—A, A] for every fixed M (more precisely, the process can be modified like 7} earlier so
that a tight cadlag sequence is obtained). Since T~%/4(adbr)~Y/2{r (byu) —r}1(0)} = op(1)
for every fixed u (as E{rd(bpu) — r31(0)} = 0 and E{rd! (byu) — r}1(0)}? < Tadbr M2C|u|
using (S.5)), by tightness the convergence is uniform on [—A, A], as asserted in part (c). W
PROOF OF PROPOSITION A.2. The assertions follow from Proposition A.1 by adapting the
compactness and monotonicity arguments of Koul (2002) for his Theorem 7.2.1. We only
discuss the necessary modifications.

Note first that under Assumptions £ and Y(k), y; has the decomposition y, = @ Zzzl gi+
Zf;é gici—i + Op(TY/?) uniformly in ¢ = 1,...,T, where Q = 1 — Zle 0; # 0 and {¢;}3°,
decrease exponentially, whereas Ay; = Ay +cty, where Ay? = Zz;é Gi€t—; with exponentially
decreasing {g;} and 3 |u| = Op(T'/?). The decomposition of y; can be used to show that
T Japtye1] = Q] [|S] € (0,00) a.s. Furthermore, we shall use the evaluations

T a;" Y Ivrellye-1] = Op (1) and T7265:0 Y " [yl | Ayiall = 0p(1),  (S6)

the former one since the left-hand side is bounded by (maxj<i<r |y ) (T Y Jap yi-1]) =
Op(1), and the latter one, since

T2 3 il |Ayeall < max byl (7772071 3 1 Ayiall) = b7t Op(TY2 v T ar).

I<t<T
(8.7
Here we have evaluated 3 [|Ay_1]| < 2 |AYY || + Op(TY/?) as Op (T) for distributions
with E|e1]| < oo by Markov’s inequality, and as Op(ar) for E|e;| = oo, since then

T t-1
ZHA}’?—lu < kZZ@HEt—z"
t=1 =0
T t—1 T t—1
- k;zo |g@| |€t’i| H{|5t—i|§aT} + kfé‘fg& |5t‘ ;ZO |q~1| H{\€z—i\>aT}'
=1 1= =1 1=

with B/ 3050 1@l le-il e,y j<ary) < TE(1|ley<ar}) o2 |Gl = O (ar) by Kara-
mata’s theorem, maxi<i<r |e¢] = Op(ar) and E(X 1 Y0016l Le, i jvap)) < TP(le1] >

ar) X220 1@l = O (1). 1 )
For notational ease, redefine &y (u) := T~ Y2az (u + ¢)yi—1 and Yy (s) 1= byp's' Ay,
such that the statements to prove become

Sup |UT(U7‘S’0) - UT(0a0a0)| = OP(l)
(u,s,0)€EK

with K := {(u,s,0) : |u| < C,|s]| <C,0 €0, A]}, and
( S%DGK‘ZW {00100 01<0) — o120y <) — 206 (0) ' T 2%—1}’
= op(T"?).



Let
:tv:t p— -
T (u,,0) =T V2 Y E e, ()i ()| <6}

where the + and — superscripts of vy, and 7, are taken independently. In place of the
processes defined by Koul, p.299, we need

+,+ o —1)2 + +
T55(0,u,5,0) == T2 ) ypm; Lt ()7 ()| <O4T 1207 alys 1 | +57 all Ay [}
mEE (0, u,5,0) = T2 Y ygm (0+ T~ 207 aly| + 07 all Ayioa, €y () + ¥ (s))
and Z+* .= T+* — ;m®™% where m is the conditional expectation function matching the
choice of n;" or ;. For |[u—wv| < J and ||s — | < § (with § > 0 to be chosen later) the
inequalities
et ()= () <0-T=1/205 1y -1 |-b7 all Ay} = Tler—€rs(0)—pre(r) <0}

= eyt g0 ()~ (5) | <O+T 1/ 207 g1 [ +57 al| Aye1 I}

hold. So
TE%(0,u,5,—0) — THE(0,u,5,0) < JTi’i(v,r,G) - JTi’i(u, s,0)
< TH%(0,u,s,0) — T5%(6,u,s,0)
and,
55 (0, 7,0) — J5 5 (u,5,0)] < |Z25%F(0,u,s,6) — Z5%(0,0,0,0)] (S.8)

+ZEE(0,u,8,—8) — ZF%(6,0,0,0)|

+2|Z5%(0,u,5,0) — Z5%(0,0,0,0)|

+mEE(0,u, 5,8) —mEE(0,u,s,0)|

+mEE(0,u, s, —0) — mEE(0,u, s,0)).
By the MVT, for every (u, s),

veloA] (0, u, 5, £6) —m*=E(0,u,5,0)] < 28GT Y2 E, (T~ 2az g1 | + by | Ayesl),
€0,

sup 712 Z’YTt (0, & (u) + ¥y (s)) — m(0, Epy (V) + Dy (7))] |

0€[0,A};|lu—vl,||s—r||<é
< 266723 by (T az g | + b7 | Ay ),
where G := sup,cg | max{x, 1} f(z)| < oo by the continuity of f and by hypothesis, and
0 < Tl > vilyeal <T oz Iyrellye-a] = Op(1),
0 < TS agllayeal < T2 Y b |Ayiall = op(1)

by (S.6). For arbitrary fixed € > 0 this allows us to choose ¢ > 0 so that, for every u and s,

lim sup P ( sup |mE(0,u, s, £6) — mTE(B,u,s,0)| > e) <€, (S.9)
T—o0 0€[0,4]
hmTSUP P( GSEPA] T UQZWTt (0, & (u) + ¥py(s)) — m(0, Epy(v) + (7)) | = €§S'<1Q)
—00 c
|lu—v|<é
ls—rll<é
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For this chosen § and every (u, s), by Proposition A.3,

sup |Zi’i(0,u,s,w5) — Z5%(0,0,0)] = 0p(1), w e {~1,0,1}. (S.11)
0€[0,A]

In fact, we can check the hypothesis of Proposition A.3 with (7, = T_1/2a;1w5]yt_1\ and
77y i= by wd||Ay—1]]. Tt holds every (u, s) that maxj<i<7 |Cpy| and maxy<i<r €7y (u)| are
Op (T7Y?), maxi<i<r |77¢| and maxi<;<7 [¢7y(s)| are Op(bytar) = op(TY?), and

Y (rzel + 2 (9 (8)] + [77e] + 74 (s) + )
2 52 2 1 —2 2
< 20C+0+C"+0 )(1+1I£ta§)§f7Tt)Z<bT Ayl + b7 [ Aye-1]”)

= 0p(1)) (b7 Ayi1l + 77| Ay [*)
= 0p(bp'T Vbrtar) + Op(bp%d%) = op(TV?),

since b ' T2 = 0 (1) and by.'ar = o(T*/*). Here we have used the evaluation of 3" || Ay;_1||
after (S.7) and the evaluation Y [[Ay; 1]|? < Y IAYY 12 + B2 [u])? < kX (A2 )2 +
Op(T) = Op(a) since az” Y3 (Ay)_1)* = (1720 ¢)[Sh-

From (S.8), (S.9) and (S.11) it follows that for every (u,s),

lim sup P sup \J;f’i(v,r, 0) — J%’i(u,8,9)| > 6e | <e,
T—o0 0€[0,A];|u—vl,||s—r[|<5

which jointly with (S.10) gives

lim sup P sup \Ur(v,r,0) — Ur(u,s,0)| > 25¢ | <e.
T—o0 0€l0,Al;|lu—v|,||s—r|| <8

As, for every (u,s), supgeio 4] |Ur(u,s,0) — Ur(0,0,0)] = op(1) by Proposition A.1 and
the triangle inequality with U} () as third point, relation (A.9) follows via a compactness
argument.

To obtain from (A.9) the second convergence in the proposition, it suffices to show that

Ao sup |37 gy {[ml0, Eru(w) + ¥y () =m0, €24(0))) - 2007 () T~ 2az "y ||

is op(T"/?) with m calculated for 1, = e;. With this choice it holds that m5(6,0) = 20f (6),
where m), is the derivative of m w.r.t. its second argument. Thus, using the MVT, it is seen
that Ar < A + AP with

N =172 C S | vz (6, 7w, ) = mh(6,0)]
u,s,0)e

)‘g) = b;l( Sl;g) X ZSl(VTtAthl)mIQ(evTTt(ua3))

u,s,v)e

and 774 (u, 8) := T~ Y20 ey 1 + wre{ T~V 2a; uys—1 + ¥y (s)} for appropriate wry € [0, 1].
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Let € > 0 be given. Let

Ary == {T ;" Y [ypyllye—a| > Y}, Crri={T7' 3%, > T},
Dry = {maxj<i<7 |a;1yt,1| > N}.

Choose and fix Y,I'; N > 0 such that limsupy P(Ary) < ¢/3, limy P(Crr) < ¢/3 and
limsupy P(Dry) < /3. Finally, let b > 0 be such that [m (0, z) —m4(0,0)] < &:=¢/(2CY)
for every 6 € [0, A] and |z| < b (b exists by the uniform continuity of f on compacts). Then
on the event {maxi<;<7 |T~V2a;(|c| + C)yi—1| < b/2} N ASy N C§p N DSy it holds that

IN

1 -1/2 —1 ~
Mo < TV 0N [Blyopay vz + 4Gk oy gssz) vl
C e (17207 Y il
1/2 1/2
-1 —1 2
+4Glf£%xT\aT yt—ﬂ(T Z‘Yﬂ) (Zﬂ{b;10||Ayt_1H>b/2}) }

1/2
T1/25/2 + 4CGNTY? (Z ]I{b;lc||Ayt_1||>b/2}) ’

since suppz |mb| < 2supy |id x f| < 2G, so

IN

IA

P (T—WA(T” > 5) < P(Ary)+ P(Crr) + P(Dry) (S.12)

([ [0 (el + Ol > b72)

T € \2
+P (Z Lot cnay. =2y > 64T (C’GN) ) '

The latter two probabilities tend to zero, the second one since ]I{b;10|\Ayt,1||>b/2} =op(T).
Indeed, on the one hand,

D Tnsiciayesyy < B Tnsioiagssany 8 D Lozt ol sty
= kzﬂ{b;cmygpb/(%)}

with probability approaching one, since

P (Z L= G )] > o) —p ( max b7 Clu| > b/(4k)> <P (Z | > bTb/(4C’k)> =0

1<t<

for " |u| = Op(T'/?) and T~'/2br — o0, and on the other hand, Zﬂ{b;lc‘Ay?‘>b/(4k)} =
op(T) by Markov’s inequality:

> POF'CIAYY] > b/(4k)) < TP(bz'CY ldilleri| > b/4)
=0

= O(Tlrby®) = O(Tlra;(ar/br)®) = O(IrT*?) = o (T),

where Ip and Ip are slowly varying, since the distribution function of S25°|dil|er+:| is
regularly varying with tail index « inherited from {e;}. Therefore, returning to (S.12),

lim sup P(T_l/zAg}) > ¢) < g, and by the arbitrariness of ¢, T_l/Q)\g}) =op (1).

12



Regarding )\( ) , it satisfies the inequality

2 — _ _
AP <piteca max [y ST lAY-1] = Op(b7'T v brtar) = op(T?),

see (S.7). Thus, also T*1/2)\§?) = op (1) and T=Y2\p = op (1). This completes the proof of
the proposition. l

S.2 A counter-exemplary result

PROOF OF PROPOSITION 6. We use (A.4) and the notation introduced in the proof of
Theorem 4. Fix an A > 0 and let My := supj,j<4 [ Tuzoy{ (nrw) Loy (npu) — ho}| = op(1)
and My = supj,|< |6 (0,0) (¢; (nru) — 1) + ¢s(nru)| = op(6") by the proof of Proposition

2(a). By the same proposition, the event A := {|n}1gb(i)| < A,Vi € NU{0}} is contained in

= 16" ="V (hg+ BY) 1 3 (0, 0)+Rg),Vz€N}ﬁ{sup|R <My, j=1,2).

Let Ar ¢(0) — (1 —hg)"1¢(0,0); then in the decomposition <25(i) = égl) + &éz) we have
o — A H ho + RY) +6(0,0) [(1 — hg)~! + 2] with (S.13)
7=1
i : : k i—j T i i
A = S| TT o+ BE) = 2|+ (L= ko)~ | T] (ho + B — .
i=1 k=j+1 =1

With Ay = {\M1| <271 (hg — 1)}, for outcomes in A; N As it holds that
: ; hg +1Y)" k), _ (Bhg—1)

h Oy > (20 22)  and he 14
[tk + 1) = (*5) ST om0« B0 s
j=1 J=1k=j+1
Define

I := min {z € N ngt|Ag|27 (hg + 1) + ngt|(0,0) | (1 — hg) L > 3A}.

Then It = Op (1) because n;lq;ﬁ (0,68) = Op(1) by Proposition 1(a), n}lAT is bounded away
from zero in probability under the hypotheses of parts (a) and (b), and hg > 1. Further, for
outcomes in A N Ay

M) < S ((hg + Mr)' ™ — by I+ (1 hg) " (ho — My)' — B
j=1
and a similar evaluation of )\gf) from below holds, so that

(hg—Ml)i—l _ (hg—i—Ml)i—l
hg — M —1 hg — 1

@) < (ho+ M) =1 (hg— M) =1
=TT hg+ M -1 hg — 1
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As It = Op (1) and M; = op (1), it follows that /\(I ™) = op (1), and since n;'¢ (0,0) =
Op (1), P(A3) — 1 for Az := {|n;'$(0,0) )\T | < A}. Recalhng eq. (??) and the definition
of I, we can conclude that for outcomes in N3_;.A;, |n}1¢1 T)| > 2A. Recalling also (?77?), for

U < nZ Mo {271 (3he — 1)MT(hg — 1)1 = kr, and since P(A4) 1

such outcomes |nT1¢
for .A4 = {ky < A}, we finally obtain that, for outcomes in N’_; A;, [n,*

|ng (IT | > A. Therefore, A C (ﬁ4 I.A) (with ¢ denoting complement). Recalhng that
A C Al, we find that A C ( 1A ) , where P (ﬁfZQAi) — 1. This implies that P (A) — 0,

which jointly with n;lgb(o) = Op(1) (by hypothesis) and

p ('n;%% < AVie N) < P(A) +P(|n;1¢E(O)| > )

yields lima_.co limsupy_, o, P(‘”El<;5(i)| < AVi € N) = 0. As limsupp_, P(|n;1<2>(i)] <

A,Vi € N) is increasing in A, it follows that limz_, P(|n}1<}5(i)| < A,¥i € N) = 0 for all
A>0.1

S.3 Further simulations

The focus in the paper was on iterative estimation of the AR parameter ¢, resulting in
efficiency gains and associated local power gains of UR tests. To evaluate whether iterative
estimation of the threshold enhances, diminishes or does not affect these gains, we carry out
a further simulation exercise.

The same data generation processes as in section 7 are used. Two groups of experiments
are run, with threshold equal respectively to the 75th percentile of the set of residual absolute
values, and to a self-normalized residual standard deviation as in (5.19). In experiments
with a fixed threshold, the threshold 6 is computed from the residuals associated with the
preliminary estimator of ¢, and is not updated in the iteration over ¢. This gives rise to

the statistics §(TN) 0) := §(TN) (0,0) and §T (gZ)LS) §T (ngLS, 0) respectively for the zero
and the OLS preliminary estimator of ¢. In experiments with joint iteration over ¢ and
the threshold, the threshold is updated from each new set of residuals; see section 5. As in
Table 1, three preliminary estimators of ¢ for the joint iteration are considered - 0 and the
two estimators obtained by fixed-threshold iteration. Empirical size and power for all the
experiments are reported in Table S1.

The following regularities are observed.

First, for experiments with threshold equal to the self-normalized residual standard devi-
ation, iteration of the threshold does not appear to affect size and power.

Second, for the quantile threshold, empirical size tends to be smaller when the threshold
is iterated, thus counteracting the frequent slight oversize of fixed-threshold tests, and some-
times transforming it into a slight undersize. Also the empirical rejection frequencies under
the local alternative are somewhat smaller. However, size-adjusted power (not reported) is
virtually independent of whether the thershold is iterated or not.

An exception occurs for o = % (representative for o < 1) when estimation is initialized
with the OLS estimator. Its convergence rate is too slow compared to the magnitude order of
{yt—1}, resulting in large residuals. In particular, the 75th residual percentile is unbounded
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in probability. Nevertheless, the Gaussian approximation seems appropriate under the null.
Under the local alternative, fixing the threshold at the OLS residual quantile yields rejection
frequencies decreasing in T', whereas iterating the threshold gives rise to the same rejection
frequencies as under the assumptions of our theory. This interesting outcome does not occur
if the usual residual standard deviation (normalized by T') is used as a threshold, although
for the OLS residuals it has the same stochastic magnitude order as the quantile. Rather,
power decreasing in T is observed both with and without iteration of the threshold. Like-
wise, this outcome does not occur if a stochastically bounded threshold is used (see Table 1
and the block in Table S1 for the self-normalized standard deviation). Thus, the quantile’s
robustness is preferable to both the insensitivity of stochastically bounded thresholds and
the high sensitivity of the usual standard deviation. Iterations over ¢ improve its magnitude
order gradually, which is appropriately captured by the quantile and is enhanced in further
iterations. We do not explore this issue further.

Summarizing, for the empirically most relevant case a > 1 iterations of the threshold
seem to make little practical difference.

A secondary conclusion from the simulation is that among the two thresholds, the self-
normalized residual standard deviation and the residual quantile, the quantile appears to
have a slight advantage in terms of both size and power.
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TABLE S1. EMPIRICAL SIZE AND POWER FOR FIXED AND ITERATED 6

0 =self-normalized residual s.d. 0 =75th residual percentile

Fixed 0 Joint iteration started at Fixed 6 Joint iteration started at

T V0§00 0 50 857w [ 600§, 0 570 5 ws)

Empirical size

a=3/2
100 5.3 7.3 5.3 5.4 7.4 5.9 6.3 46 5.5 6.1
500 9.9 6.3 5.4 9.9 6.2 5.7 9.9 5.2 5.7 5.3
a =1 (Cauchy)
100 3.9 10.5 3.9 4.0 10.2 5.5 5.5 42 4.8 5.2
500 4.1 7.3 4.1 4.2 7.2 5.1 5.3 4.5 4.9 5.1
10 45 5.3 45 4.5 5.3
a =1 (Bimodal)
100 22.7 32.0 22.8 22.9 32.2 5.8 7.4 43 5.0 6.0
500 33.8 41.7 33.3 33.3 41.7 5.3 5.6 4.7 5.0 5.3
a=1/2
100 3.1 42.6 3.1 3.1 42.4 5.8 6.8 4.2 4.6 5.8
500 3.9 48.8 3.9 3.9 48.8 5.2 6.3 4.3 4.6 5.9
104 5.4 5.5
Empirical rejection frequencies for ¢ = —7/dr
a=3/2
100 38.8 46.8 38.2 39.1 46.6 47.3 46.8 42.1 45.3 46.6
500 49.2 51.6 49.3 49.6 51.5 53.3 51.7 51.3 53.0 51.5
104 58.8 60.4 58.8  58.9 60.4 61.9 60.8 61.5 62.0 60.7
a =1 (Cauchy)
100 52.1 62.6 52.1 523 62.7 67.3 67.5 64.6 66.1 66.9
500 64.3 67.8 64.3 64.4 67.8 71.3 70.7 70.2 70.8 71.0
104 71.1 70.7 71.1 711 70.7 72.8 71.8 72.5 T2.7 72.6
a =1 (Bimodal)
100 11.7 30.7 11.6 11.7 30.9 43.0 44.4 37.6 39.2 40.6
500 22.9 40.2 22.8 22.8 40.2 44.7 47.0 43.1 43.9 44.2
104 35.9 49.0 35.8 85.8 49.0 46.9 48.7 46.6 47.0 47.0
a=1/2
100 54.5 49.8 54.5  54.5 49.9 56.3 35.8 53.8 54.5 54.1
500 62.8 52.3 62.8 62.9 52.3 56.7 24.7 55.7 56.1 56.5
104 72.6 52.6 72.6 72.6 52.5 58.5 12.8 58.3 584 56.8

Notes. Monte Carlo results based on 10,000 replications. Italics match with those in Table 1.
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