Supplementary Material on “Noncausal Vector Autoregression”

Details on the discussion of nonidentifiability of noncausal VAR models in the
Gaussian case in Section 2.1. A practical complication with noncausal autoregressive
models is that they cannot be identified by second order properties or Gaussian likelihood.
In the univariate case this is explained, for example, in Brockwell and Davis (1987, p.
124-125)). To demonstrate the same in our multivariate case, note first that, by well-
known results on linear filters (cf. Hannan (1970, p. 67)), the spectral density matrix of
the process y; defined by (1) is given by
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In the latter expression, the matrix in the brackets is 27 times the spectral density matrix
of a second order stationary process whose autocovariances are zero at lags larger than
r + s. As is well known, this process can be represented as an invertible moving average
of order r + s. Specifically, by a slight modification of Theorem 10’ of Hannan (1970), we
get the unique representation
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where the n x n matrixes My, ..., M, are real with M positive definite, and the zeros
of det (Z;i(s) M jei“’> lie outside the unique disc. Thus, the spectral density matrix of y;

N1 NS
has the representation (27) " <Z§ig M, 6”“’) <Z§:§ M e 4 “’) , which is the spectral
density matrix of a causal VAR(r + s) process. Finally, note that a direct application of
Hannan’s (1970) Theorem 10" would give a representation with w replaced by —w. That
this modification is possible can be seen from the proof of the mentioned theorem (see

the discussion starting in the middle of p. 64 of Hannan (1970)).

Remaining part of the proof of Lemma 1. Regarding 4 (\), first notice that
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where we have used Assumptions 2(ii) and (iii), and the expression of the density of p?



(see (10)). Proceeding as in the case of the first assertion yields
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(see the definition of 2 () in (12)). This shows the stated inequality and the condition
for equality leads to the same condition as in the case of 7 (). Finally, in the Gaussian
case, By (p?) = n and B, (p}) = 2n + n?, implying 2 (\) = n(n +2) /4. O

Proof of the nonsingularity of the matrix H; mentioned in Section 3.1. To
simplify notation we demonstrate the nonsingularity of H; when s = 2. From the defin-
ition of H it is not difficult to see that the possible singularity of H; can only be due
to a linear dependence of its last n (r 4+ 2) rows and, furthermore, that it suffices to show
the nonsingularity of the lower right hand corner H; of order n (r 4+ 2) x n (r + 2). This
matrix reads as
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where the partition is as indicated. The determinant of B;; is evidently unity so that
from the well-known formula for the determinant of a partitioned matrix it follows that
we need to show the nonsingularity of the matrix B11.0 = By — B9 By 'B1,. Thei mverse
of By; depends on the coefficients of the power series representation of L(z)=®(2)"

given by L(z) = Z;io L;z? where Ly = I,, and, when convenient, L; = 0, j < 0, will
be used. Equating the coefficient matrices of powers of z on both sides of the identity
L(z2)®(z) =1, yields L; = Lj_1®; + L;_2®,. Using this identity it is readily seen that
Bl_l1 is an upper triangular matrix with I,, on the diagonal and L;, j = 1,...,nr—1, on the
diagonals above the main diagonal. This fact and straightforward but tedious calculations
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further show that
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Next define the companion matrix
& — { d; D, }

and note that the latter condition in (2) implies that the eigenvalues of ® are smaller
than one in absolute value. Also, the matrices L; and L;_; (j > 0) can be obtained from
the upper and lower left hand corners of the matrix ®7, respectively. Using these facts,
the identity L; = L;_1®1+ L;_2®,, and properties of the powers ®J it can further be seen
that
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where the latter equality is based on the Jordan decomposition of ® so that ® = PDP .
Thus, the determinant of B equals the determinant of the matrix in parentheses in
its latter expression. Because D’ is an upper triangular matrix having the jth powers of
the eigenvalues of ® on the diagonal this determinant is a product of quantities of the
form 1 — Z?Ll a;jv’ where v signifies an eigenvalue of ®. By the latter condition in (2)
the eigenvalues of ® are smaller than one in absolute value whereas the former condition
in (2) implies that the zeros of a (z) lie outside the unit disc. Thus, the nonsingularity of
B1.5, and hence that of H 92) and H, follows.

We note that in the case s = 1 the preceding proof simplifies because then we need
to show the nonsingularity of the matrix obtained from H 52’2) by deleting its last n rows
and columns and setting &5 = 0. In place of By, we then have I, — Z?; a;®] and,
because now the eigenvalues of ®; are smaller than one in absolute value, the preceding
argument applies without the need to use a companion matrix. [J

Remaining parts of the proof of Lemma 4. For the case t = k, i = j # 0 we have by
independence E (g,_; ® eq;) = E(g;_;) @ E (e;) = 0. Thus, by the definition ¢, = Zal/Qet
and (B.3), (A.3), and arguments used in the previous case,

C(e1—i ® eor €0 @ eqr) =B (p}_;) B [pf (ho (pf))Q] [E (v—v)_;) @ E (vevy)] -
The stated result is obtained from this by using definitions and E (v,v}) = n™'1,.

Inthe caset # k,i=1t—k, and j = k —t we have i # 0 # j and, as in the preceding
case, E (g, ® eq;) = 0. We also note that &, ® egp = Kyn(eor @ &;) (see Result 9.2.2(3) in



Liitkepohl (1996)). As before, we now obtain
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where the last equality follows from (B.1), the symmetry of the commutation matrix K,,,
and the fact B (vv)) = n™11,.
Finally, in the last case the stated results follows from independence. [J

Remaining parts of the proof of Step 1 of Proposition 2. We consider the different
blocks of Zyg (0y) separately and, to simplify notation, we set N = T — s — r. In what
follows, frequent use will be made of the identity (' (¢;3g " €e; Ao) /f (6,50 "er; o)) B ler =
2o V2, (see (A.1)). For convenience we also present expressions of the scores evaluated
at 0y (see Appendix A and note that in the first three expressions (A.1), (A.4), and (A.5)
have been used):
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Block Ty, g, (00). Set Uy (92) = [(us—1 (02) @ L) -+ (wyr (02) @ I,)']" and Uy (120) =
Upt—1. Using (S.1) we then have
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From the definitions and (3) it can be seen that Up;—; and e are independent and, as
noticed after the definition of Zy, 9, (6o), C11 (0o;a,b) = j,E (uO,t—aulo,t—b)- Thus, (B.4),
the preceding equation, and straightforward calculation yield E (dg; (6y) /091) = 0 and,
furthermore,
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Block Ty,y, (0o), justification of the final step. We need to show that
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To see this, notice that (g, 1021/2@)1_[ PN 1/2)Knn = K (T2, 1/2®\Ifk+a 0020 1/2 ) (see
Liitkepohl (1996), Result 9.2.2 (5)(a)). Thus the left hand side of the preceding equality
can be written as
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Here the second and fourth equalities are obtained from (B.6) (because a, b > 0).

Block Ty,9, (0p). Let a € {1,...,r} and b € {1,...,s}. Using (3) and (5), and the
definitions of Ay (k,4) and By (k) (B (k) =0 for k < 0) given in the treatment of Block
Zy,9, (0o) we consider
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where the latter equality is based on Lemma 4. Summing over ¢,k =r+1,....T — s —r,
multiplying by —4/N, and letting 7" tend to infinity yields the matrix Cis (a,b;0y) (see
(S.1) and (S.2), and the definition of Zy,y, (fo)). Thus,
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It is easy to see that the first term on the right hand side equals the first term on the
right hand side of the defining equation of Ci5 (a, b; 0y). To show the same for the second
term, we need to show that
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Using Result 9.2.2 (5)(a) in Liitkepohl (1996) and the convention M;, =0, j < 0, we can
write the right hand side as

[e.9]
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Here the latter equality can be justified by using the identity IT (z) M (z) = I,, to obtain
an analog of (B.6) with ¥,_, and L_j, replaced by M;_; o and 0, respectively.

The preceding derivations and the definitions show that the covariance matrix of the
scores of ¥, and 1, divided by N converges to Zy,y, (0o).

Block I, (09). First note that, by (S.3) and independence of €;, we only need to show
that E (g (0o) /0o) = 0 and C (8gt (00) /00) = Zys (0p). These facts can be established
by observing

B 1
559t (00) = =D, (% 2255 ) (e ® e + 5 vee (1n)).

Thus, the desired results are obtained by using Lemma 4 (case t = k and i = j = 0), and
arguments in its proof.

Block Zyy (0o). As in the preceding case, it suffices to show that E (g (6y) /ON) = 0
and C (0g; (0g) /ON) = Iy (0p). For the former, conclude from (S.4), the definition ¢, =

Zglmet, and (B.3) that
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dg

0 1 0
B (50 ) = E(W 8)\f (752)
A=Xo

n/2
— n/2—1 %
- 7 / ¢ (G

n/2

- Femer N o
= 0.

Here the second equality is based on the expression of the density function of p? (see (10)),
the third one on Assumption 4(i), and the fourth one on the identity

Jrerpenac =02 [ rwnya = 02,

n/2 n/2

which can be obtained as in Fang et al. (1990, p. 35).

That C(9g: (6p) /ON) = Zxx (p) is an immediate consequence of Assumption 4(ii),
(S.4), (B.3), and the expression of the density function of p?.

Blocks Ty, (0) and Ly, (0y). That these blocks are zero follows from (A.1), (S.1),
(S.3), (S.4), independence of €;, and the fact that ug,—; (¢ > 0) is independent of ¢, and
has zero mean (see (3)).



Block Zy,, (0y). Consider the covariance matrix (cf. the derivation of Zy,s, (6o))
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Here the former equality is based on (5), the definition on Ay (¢, ), and the expression of

0g: (0g) /0o given in the case of block Z,, (fy). The latter equality is due to Lemma 4.

The stated expression of Zy,, (6y) is a simple consequence of this and (S.2) and (S.3).
Block Ty, (6p). Similarly to the preceding case we consider the covariance matrix
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Here the first equality is justified by (5) whereas the remaining ones are obtained from
(S.4), (B.3), (A.3), the independence of the processes p, and v;, and the fact that
dg: (0p) /OX has zero mean. Thus, because E (v 4 i @ v;) = n tvec(l,) 1 (c = a — 1),
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which in conjunction with (B.6) gives the desired result Zy,» (6y) = 0.
Block Z,y (0p). The employed arguments are similar to those in the cases of blocks
Zos (00) and Z,y (0g). By the independence of ¢, it suffices to consider (see (S.3))

0 0 _ _ 0
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where the expectation equals (see (B.3), (A.3), and (S.4))
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Because E (v; @ vy) = n~'vec(l,) = n~'D,vech(l,), the stated expression of Z,, (6)
follows from the definitions and the expression of the density function of p? (see (10)).
Thus, we have completed the derivation of Zyg ().

Remaining part of the proof of Step 2 of Proposition 2. To show that the infinite
dimensional matrix [G, (1) : G (2) : - - -] is of full row rank, first note that the first block
of rows is readily seen to be of full row rank. Indeed, using the definition of B, (k) it is
straightforward to see that the matrix [B, (1) : -+ - : By (1)] (rn? x rn?) is upper triangular
with diagonal blocks ¥, 2 ¥ /2 and, therefore, of full row rank. The last two blocks of
rows are also linearly independent because the covariance matrix of (x3;, z4) equals that
of the scores of o and A, which is positive definite by Assumption 5(ii). It is furthermore
obvious that these two blocks of rows are linearly independent of the first block of rows.
Thus, from the definition of G|, (k) it can be seen that it suffices to show that the infinite
dimensional matrix [A, (—1) : Ay (—2) : ---] is of full row rank. We shall demonstrate
that the matrix [Ay (=1):---: Ay (=r — s)] (sn? x s (s +r)n?) is of full row rank. For
simplicity, we do this in the special case s = 2.
Consider the matrix product

5, g ® B 0

—1/2 1/2
[Ag (—1) s -2 Ay (= — 2)] Yy oo ® Xy

5, P, @ B :
0 5, L, ® B

{ S0 (Ui Vol @ Ig) 377 (DoT_g U1 jiollio © TTjp)
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)
_ { g (Lo ® o) 3 (Lo ® ITj)
ijo (_Lj—l,o &® H;O) Zj:o (_Lj() ® H;o) )

where the equalities follow from the definitions and from (B.6) by direct calculation.
We shall show below that the last expression, a square matrix of order 2n? x 2n?, is
nonsingular. Assume this for the moment and note that the latter matrix in the product
presented above is of full column rank 2n? (because Iy = —1I,, ). Thus, as the rank of a
matrix product cannot exceed the ranks of the factors of the product, it follows that the
matrix [Ay (—1) : -+ : Ay (=7 — 2)] has to be of full row rank 2n?.

To show the aforementioned nonsingularity, it clearly suffices to show the nonsingu-
larity of the matrix

Z;:o (_LjO ® Hg‘o) Z;:o (_Lj+1,0 ® H;'o) } [ I —Py® 1, }
| o (Lm0 ®10) 300 (—Ljo @ 1T)) 0 Iz
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_ I, — j J+1, j T

| 0 I, } © Z ({ Li1o0 Ljo— Lj_10P10 @ Lo

j=1

I, 0 - Ljo  Lj—1,0%P2 /
= ® I, — ! T ® I ) .
I, } Z ([ Lj 10 Lj20P0 ] 70
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As in the proof of the nonsingularity of the matrix H;, we have here used the identity
Lijo = Lj_10®P10+Lj_20P with Ly = I, and Ljp = 0, j < 0, as well as direct calculation.
In the same way as in that proof, we can now show the nonsingularity of the last matrix
by using the fact that this matrix can be expressed as
Le®IL,— Y (®®1T)) = (Pe®1I,) <1n2 ®L-> (Dj® H;0)> (Pi'®1,),
j=1 j=1

where ® is the companion matrix corresponding the matrix polynomial I, — ®1pz —
Pyp2? and ®o= PyDPy lis its Jordan decomposition (cf. the aforementioned previous
proof). The determinant of the matrix on the right hand side of the preceding equation

is a product of determinants of the form det (In — Z§:1 H;OVj ) where v signifies an

eigenvalue of ®,. These determinants are nonzero because, by the latter condition in (2),
the eigenvalues of ®( are smaller than one in absolute value whereas the former condition
in (2) implies that the zeros of det I (2) lie outside the unit disc. This completes the proof
of the positive definiteness of Zyg (6y).

Proof of Lemma 2. In the same way as in the proof of Step 1 of Proposition 2 we
consider the different blocks of Zyg (6y) separately. For simplicity, we again suppress the
subscript from the expectation operator and denote E (-) instead of Eg, (-) .

Block Zy,9, (6p). Using the independence of ug;—; (i > 0) and e along with (B.4) it
can be seen that the first term of the expression of 9%g; () /09,09 (see Appendix A)
evaluated at ), has zero expectation. Thus, it suffices to consider the expectation of the
second term. To this end, recall the notation ¢, = ¥, Y 26,5 and define

Wi, (a,b) = 2B [ho (her) (wop—atip,—p © Soh)]

174 8/8
W (a,b) = 4E L,tt)(uo7t,au6t_b®2616t62261) :
1V1 fO (5t5t) 5

and
Wé%l (a,b) = —4E [(ho (5;5,5))2 (Uo,t—a%,t_b ® Eglete;Zal)} )

Using these definitions in conjunction with (A.6), (A.2), and (A.4) we can write the
aforementioned expectation as

"L 0 [ _ 0
—2) " oo, (10) B | (o0 @ 1) 55 P o7 (90)]
= 0 T 010 E o (o) (o @ 1) T3 -2 e, ()
0, _ a0,

L0 1) (ehe 1 ey O
4 5 )8 | 0 0 1) S5 S5 e ()
L 1

a1 8191 @ fo (€t€t)
143" 2t 0B [(h (60))? (1010 @ 1) S35 20 (00)
g 6191 a 10 i 0 \c¢et 0,t—a n 0 CtCt4p 019/ 0
0
= agl 8_19171—a ('ﬁlo) |:W7;129]_ (a b) ngfzﬁ (a b) + Wﬁlﬁl ( 7b):| 819, (/1910)



We need to show that the last expression equals —Zy,s, (85), which follows if 377 Wéj)ﬂl (a,b) =
—C1; (a,b) ® 35", To see this, conclude from the definitions, (B.3), and the fact C (v;) =
n~1I, that

Wit o)+ W2, (00) = 2|8 (o () + 28 (#25)] (8 (uaseat ) 0 557).

Using definitions and the expression of the density of p? (see (10)) yields
92 " p2
B (o (1) + 28 (1218

Jo (Pt)) (55)

7Tn/2 00 00
- o ([T 2 [T eng o)

n/2
_ (/ Q) + 20 (O - / g <c>d<)

where the last two equalities are justified by Assumption 6(i). Thus, we can conclude
that Wy, (a,b) + W52, (a,b) = 0.

Regarding Wé%l (a,b), use again (B.3) and the fact C (v;) = n~'I, to obtain
W (@) = —E [0 (o ()] E ’ 2o
9191 (a,b) = n Pt( U(Iot)) (uO,tfan,tfb) ® 24

= —Jok (“o,t—auf),t—b) ® 251

by the definitions of hg (-) and j, (see (11)). Thus, because j,E (uoi—qtif,_,) = Cn1 (a,b),
we have 30| qu?ﬂl (a,b) = Cy1 (a,b) ® B!, as desired.

Block Zy,9, (0). The first term on the right hand side of the expression of 9% g; (0) /09,00,
(see Appendix A) evaluated at 6y has zero expectation by arguments entirely similar to
those used to show that the expectation of g, (0y) /02 is zero (see the proof of Propo-
sition 2, Block Zy,y, (Ap)). Thus, it suffices to consider the second term for which we first
note that

s(tER) = ) RO

o B IR LI U N ey
= o (e =12 [ ers o)

= n(n+2)/4, (S.6)

where the last equality is justified by Assumption 6(i) and (B.1).
Next define

T

ho (Egé‘t) Z (yt+a—iy;e+b—j ® Hgozalnj@

1,j=0

Wb, (a,b) = 2E

Y
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gler) _ _
0 /t ) Z (yt+a—i?/£+b—j ® %, 16756;20 1Hj0)

and

W2, (a,b) = —4E | (ho (£1e0))” Y (Uera-ithapy ® WSy ere; 55 o)

i,j=0

Using these definitions in conjunction with (A.5) and (A.6) the expectation of the sec-
ond term on the right hand side of the expression of 9%g; (0) /002005 (see Appendix A)
evaluated at 0y can be written as

S a ,
ZZ 8_192% (U90) E

= Z 2 (920) B

' ) B a
Z (yt—i-a—i ® HZO) ZO Yz 879/ (90)]

=0

fr(ehey) B
0( : t) Z (yt+a7iy;,+bfj ® H2020 1Hjo)

0
— ¢, (¢
fo (g1er) byrt o, by, (V20)

- /7 (glgt) T / B / ) 8
+4 Z (919 1920 f?) (55515) Z_: (yt+af1lyt+b*j ® HQOEO 161}6520 lﬂjo) _619/2 ¢b (7920)
a,b=1 i,j=0
e\ < , o 5
_4a;1 679 (b 1920) (fg (5zgt) ZJX_:O (yt+a7iyt+b*j ® Hiozo 161}6520 1Hj0) _019/2 gbb (1920)

s

0
- ¢ (920) (Wi, (a,0) + W2, (a.8) + Wi, (a.6)] 550, (Va0)
2

a,b= 1

Thus, to show that the last expression equals —Zy,4, (6o) it suffices to show that 377, Wéi)% (a,b) =
—C9 (a,b,;00). To this end, first note that, by (5),

ng;b (a,0) = 2 Z Z [ho (giee) \D60€t+a*i*062+bfjquﬂdo ® [MpXg o) |

4,j=0 ¢,d=—o00
r

2 o0
= “E(p))E(ho(6}) D Y Ao(cta—ii)Ao(ctb—j,j)
4,j=0 c=—00

c#0

=Y Ao(a—1i,i) Ao (b—j,j),

4,j=0

where, as before, V%, 2 I, 2_1/ > = Ag (k,i). The latter equality is a straightforward
consequence of (B 3), (B.1), and the fact C (vy) = n'I,.
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For Wéz)% (a,b) one obtains from (5)

s 6/ B ~
i,j=0 c,d=—

: <><>zz
+4E(

c#0
where the latter equality is again obtained from (B.3) and the fact C (v;) = n~'[,,. From
(S.5) and (S.6) we can now conclude that

) Z Ao (a—i,§) B (v, @ v}) Ao (b= j, ).

,j=0

Wi, (@) + W, (a,0) = = Ag(a—i.i) Ao (b— j,j)

4,7=0
+n(n+2) Y Ag(a—i,1) B (v @ vo)) Ao (b= J, j)
i,j=0

Next, arguments similar to those already used give

quzﬂg (a,0) = —4 Z Z B [(ho (52&))2 (‘choet—i-a—i—CE:erb—jfd\IjZlO ® Héoﬁaleteiﬁalﬂjo)}

1,j=0 ¢,d=—o0

= —SEDE [ (o () }Z > Aofeta i) Anfet b5

c;ﬁO

—4 |:10t hO ,Ot ] ZAO a—1,1) (UtUg@th;)AO (b—174,9)

2,j=0

= —1o Y, > Aolc+a—ii)Ao(c+b—jj)
1,j=0 c=—00
c#0

—4ZA0 i) DpJoD! Ay (b— 4, 7).
4,7=0

Here the last equality follows from the definitions of 7q, %y, and Jy (in the term involving
Jo (B.6) has also been used).
From the preceding derivations we find that

3 T =
2 Wi, (@0) = =703 3 Aoleta—ii)doletb—j)
i=1 B,j=0c=—00

c#0

— Z Ag (a —1i,4) 4D, Jo D), + I, — n(n + 2)E (vv; @ v,0})] Ag (b— 74, 7) -

i,j=0
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That Z?:l Wig?% (a,b) = —C9 (a, b, ;0p) holds, can now be seen by using the identity

E [(vec(vev})) (vee(vev}))] = (12 + Koy + vec (I,,) vee (1,)) (S.7)

n(n+2)
(see Wong and Wang (1992, p. 274)) and observing that the left hand side equals
E (v} ® v0)) and that the impact of the term vec([,)vec(I,)" on the right hand side
cancels by equality (B.6) (see the definition of Cs (a, b, ;0))).

Block Ty, (0p). First conclude from the expression of 9%g, (6) /09,09, (see Appendix
A), (A.5), (A.6), and (B.3) that

i —1/2 , d
99,00, 57 779 (00) = 2; ; 35" o (Do) <In ® 5, e (9())) (Yt1p-a ® In) a_q%¢b (¥20)
- )
—2 Z Z 90, 1 (V10) ho (g1€0) >~ (uo.i—alhsy i ® Tg 'Thio) 579 (920)
a=1b=1 ~ 1 o ;

- / — I — 0
—4 Z Z 8191 1910 hO (€t€t) Z (ontfayt_’_b_i X 20 1€t€t20 1Hi0) 8_19,2¢b (1920) .

a=1 b=1 =0

In the first expression on the right hand side,
<I" ® %y e (90)> (Y150 @ In) = ho (€1e0) K (2 €tsp-a © In)
by the definition of e; (Ay) (see (A.1)) and Result 9.2.2(3) in Liitkepohl (1996). Define

W, (a,0) = 2K, [ho (e)e:) (S0 ertiny—o @ 1n)]

r

ho (5e¢) Z (U0,t-aYt4p—i © g o)

1=0

WS, (a,b) = —28

WS, (a,b) = —4E

0 (gter) ¢ ) IR
fo(eler) Z (uoﬂf*aywai ® Yo €€y HiO)
¢ i=0

and
.

(ho (8;60)2 Z (uo,t—ay2+b_i X EgletegEalﬂig)

1=0

Wb, (a,b) = 4B

We need to show that Z?:l Wé?ﬂz (a,b) = —C1a (a,b;0p). The employed arguments, based
mostly on (3), (5), (B.3), and the fact C(v;) = n~'I,, are similar to those used in the
previous cases. First note that

ngiz% (a,b) = 2K, Z ho (ehe4) Olete;%_a_c\lﬂc@@[n)}

C=—00

2
= EE [p?ho (p?)} Knn (qjg—aﬁ ® [n)
= _Knn (\P;Jfa,o ® [n) ’

13



where the last equality is due to (B.1). Next,

W, (a,b) = _22 Z ZE ho (£he1) (Moo€r—a—c€h i qW'io @ Sg ') ]
c=0 d=—o0 =0
2 o0 T
= —~E(p)E (ho (57)) DD (MaBo¥,s0pyi0 ® By 'Thio)
c=0 =0
and
" 6/

qu%? (a,b) = _42 Z ZE {?Z 55: Meo€t—a—c€isp—i-aVao ® Ty €€, HzO)

c=0 d=—o00 1=0

4 S (p?)
— E(R)B (A

fo (p¥)

> Z 0020\1’/+a+b i0 @ Xy 1H10)

c=0 =0

From the preceding expressions and (S.5) it is seen that Wé% (a,b) + Wﬁl% (a,b) = 0.
Regarding Wéi%z) (a,b), we have

Wi, (@) = 4> > N'E [(ho (1e0))? (Meo€r—ac€rpp s gVl @ zgletegz(;lnio)}
c=0 d=—o0 i=0

4
= EE (of) B [IOt ho (%) }Z MeoZoWe i q1-10 ® g ' io)
c=0 =0
DY (Mg © 55 TL)

c=a 1=0

where the last equality holds by the definitions of kg (-) and 7. Combining the preceding
derivations yields 2?21 Wg?% (a,b) = —C12 (a,b; 0p), as desired.
Block Z,, (0y). From the expression of 92g; (6) /019,00, (see Appendix A) and (B.3)
we obtain
d? ) V2,015, 12 A
=0t (00) = 2ho(eie) D, (2 ee! ® %5 )Dn+§D (55! @ 551) D,
R (ehey) DL (S @ 5y 1/2) (ei8) @ £42) (352 ® £5%) D,

Using (B.3) and the independence of p, and v, the expectation of the first term on the
right hand side can be written as

2E (p;ho (p})) D, (z V2R (v 57V @ 2—1) D, =-D, (%' ®5") Dy,

where the equality is based on (B.1) and the fact B (viv}) = n~'1,,. Thus, we can conclude
that

82
E (a s (90)) — DS @S B () (sig) @ )] (ST @ £7Y2) D,

_1 / -1 -1
2Dn(z ® X7 D,
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Using (B.3) and (A.2) one obtains

" 2
B 1 (sje) () @ eiey)] = [E (p4 J (o)

D) 5 (5t (o (1)) | B (ot 10
n(n+2)

= TE ('Ut'U; X 'U{U;) — Z[)E (’U{U; X U{U;) s

where the latter equality is based on (S.6) and the definition of 4y (see (12)). Thus,

0? 1, / /
E <agag,9t (90)> = ZLD"(E 29y 1/2) [n(n + 2)E (v, @ va)) — 21,2] (Zg 12 g 5 1/2)Dn

— oD (35 @ £ H)E (v, @ v0)) (S92 @ 25 %) D,

Because E (vv] @ vv)) = D,E ((vech(vv}))(vech(v))) D!, the right hand side equals
—T,, (0) if the expression in the brackets can be replaced by vec(I,,)vec([,,)". From (S.7)
it is seen that this expression can be replaced by vec(I,)vec(l,) + Ky, — I2. Thus, the
desired result follows because

(Kon — In2) (S @ 552D,y = (852 © $9%) (K — In2) Dy = 0

by Results 9.2.2(2)(b) and 9.2.3(2) in Liitkepohl (1996).
Block Ty (6y). By the definition of Zy, (6y) and the expression of §?g; (9) /0N 0N, (see
Appendix A) it suffices to note that

1 8 B 7.‘-n/2 00 n/2-1 62 . -

where the former equality is based on (10) and the latter on Assumption 6(ii) (cf. the
corresponding part of the proof of Proposition 2, Block Z,, (6p)).

Blocks Ly, 5 (0p) and Zy,  (6p). The former is an immediate consequence of the expres-
sion of 9?g; (0) /0,00 (see Appendix A), the independence of ¢; and O¢} (9y) /09y, and
the fact E (O¢} (9y) /091) = 0 (see (A.4)) which imply E (8%g; (o) /09,00") = 0.

As for Zy, (o), it is seen from the expression of 9%g; (¢) /09,0\" (see Appendix A),
the definition of function h (see above (A.1)), and (A.4) that we need to show that

1
"R

and similarly when 1/ f, (g}e;) is replaced by f} (le;) / (fo (ghe:))*. These facts follow from
the independence of ug;—_, and € and the fact E (ug;—,) = 0.

Block Zy,s (o). From the expression of §2g; (0) /09200’ (see Appendix A) and (A.5)
we find that

E

0
(Uot—a @ 1) Ealetwf' (ere; No)| =0, a=1,..,r,

82
Wgt (90)
/ : a / a ! / — —
= —2ho (g1&1) bzl 8_792% (¥20) GZ:O (€t ® Yerb—a @ ) (Eo gz 1) Dy,

A

NG,
=20 (€120) Y 5520 (020) 3 s © L) By (€, 9 ) (27 @ 571) D,
b=1 a=0
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By independence of ¢, and equation (5), y;1p_ on the right hand side can be replaced
by U,_,0€: when expectation is taken. Thus, using the definition of e; (see (A.1)) and
straightforward calculation the expectation of the first term on the right hand side becomes

_22819 (bb 1920 ZE[GOt@)\Db a06t®H Y 1/2] (E 1/2®2 1/2)Dn
- —22 995 ¢Z (¥20) ZAO (b—a,i)E|(ey ®@er @ 1,)] (Xg 12 g 5 1/2)Dn
b=1 a=0
S 8 I r .
= D 550 00) 3 Ao (b= a,i) (%1 @ % ) Dy,
b=1 a=0

where, again, Ag(b—a,i) = V,_ a021/2 ® I ,%, /2 and the latter equality is due to
Eley, ® e; @ I,) = Bleey, @ I,) = =271 0 (see (B 5)).

The expectation of the second term in the preceding expression of 9%g; (6y) /0200’
can similarly be written as

T

hg (eter) D (Wyaper @ ) S5 e (¢} @ &)

a=0

(2—1/2 2 2_1/2)Dm

S a ,
_2; 8_192% (090) E

where, by (B.3) and (A.2), the expectation equals

{EWﬁgi

— < n(n+2) )ZAOb—az E (v,v) @ vgv}) .

} B o (ho (47)) }}}jAob—az E (00} ® vyv})

Here we have used (S.6), the definition of 4y (see (12)), and straightforward calculation.
Combining the preceding derivations shows that

2 s .,
(aﬁ(?a -t (0o )) = 2 (io — W) bz:; 8%92% (Y20) az%AO (b—a,i) B (v,0], @ v0})

y (2—1/2 2 2_1/2)Dn

T

s a ) ‘
+Zm¢b (¥0) OAO (b—a,i) (Zy"* @ 25D,

= 22&9 @' (120) ;AO — a,i) Do Jo D (54" © $3V/*) D,

where the last expression equals —Zy,, (fg) and the latter equality can be justified by
using the definition of Jy, the identity (S.7), and arguments similar to those already used
in the case of block Z,, (6y) (see the end of that proof).
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Block Ty, (0o). From the expression of 92g; (0) /0920 (see Appendix A) and (A.5)

it is seen that we need to show that

T

L ! — 0 1t
Z {fo( 1et) (Yt4a—i ® ITjp) Eolﬁz‘,ﬁf (5t5t3>\0):| =0, a=1,..r
€

and

- f 6 (‘S;Et) -1 0
B [— (oo s @ ) Sl e f (Sl do)| =0, a=1,.7
; (fo (52575))2 0 0 8)\/ t
The argument is similar in both cases and also similar to that used in the proof of Propo-
sition 2 (see Block Zy, (6p)). For example, consider the former and use (5) and indepen-
dence of ¢, to write the left hand side of the equality as

4,0
ZE |: €t€t a, i’OEt ® H;0> 20 IGth/ (625157 )\0):|

;Ag(a—z’,i)E(w@w) Lb[ét) Sl (e )]

where that equality is due to (B.3). Because E (v; ® v;) = vec(E (vsv})) = n~*vec(I,,) the
last expression is zero by (B.6). A similar proof applies to the other expectation.

Block T, (6p). One obtains from the expression of 9?g; (0) /0cO)N (see Appendix A)
that E (0%g; (0y) /0cON) is a sum of two terms. One is

1
fo (gter)

/ a / / /
D55 0 5 B | @ e) g f )] = DA 95 B o u)

i 0
E[fofz )Wf (P§§>\o) )

where the equality is based on (B.3) and, using (10), the last expectation can be written
as

a¢ =

/2 00 n/2 0 ', n2
Form ), a6 aX/ ¢S (G dlacy = 0.

Here the former equality is justified by Assumption 6(ii) and the latter by (B.1). By similar
arguments it is seen that the second term of B (9%g; (6y) /0cdN) becomes —Z,, (Ap). O

A=Xo

Remaining parts of the proof of Theorem 1. We demonstrate (B.11) for some typi-
cal components of 9%g;(0) /9000 and note that the remaining components can be handled
along similar lines. Of 0%g(6)/09;09; i,j € {1,2} we only consider 0°g(6)/09,0v;. In
what follows, ¢y, ¢y, ... will denote positive constants. From the expression of 9%g; (6) /09,00,
(see Appendix A), Assumption 3, and the definitions of the quantities involved (see (A.1),

17



(A.6), (A.5), (18)) it can be seen that

82
E — (0 < ¢E
o (2 [ ]) < am (S“p ferl0 >

+c2 g, (SupZHut : (09)]] H H)

< 3By, <Z ||yt+j\|> esug) }h (Gt (0) £ e (19);)\)‘
€09

j=—r

(92)

U’tz

s 4
+c4By, (Z ||yt+j||) esué? }h, (Et (19)1 e () ; )\)|
€00

j=—r

Finiteness of the last two expectations can be established similarly, so we only show the
latter. First conclude from (A.2) and Assumption 7 that, with ©y small enough,

as
sup |W' (e (9) S (9); )| < 2a1 + 20, (sup e (0) X e (19))
ASSH) €O

< ¢ (1 + sup ||& (19)H2a3>

[USCH

s 2a3
ce | 1+ (Z ||yt+j||> ;

j=—r

IN

where the last equality is obtained from the definition of ¢ (¥) (see (18)). Thus, it
4+2a

follows that we need to show finiteness of Ey, ((ij_r [ ||> 3) or, by Minkowski’s

inequality and (5), finiteness of

EGO (||€t||4+2a3) S C7EAO (p;l+2a3) _ / Cn/2+l+a3f (C )\0) dC < 00,

n/ 2)
where the former inequality is justified by (B.3) and the latter by Assumption 7.

From (18) and the expression of 9%g, () /0cdo’ (see Appendix A) it can be seen
that the treatment of 92g,(0)/0o0c’ is very similar to that of §%¢;(0)/99,09, and the
same is true for 82¢;(0)/09;00" (i = 1,2). Next consider 9%g;(0)/ONIN'. The dominance
assumptions imposed on the third and fifth functions in Assumption 7 together with
the triangular inequality and the Cauchy-Schwarz inequality imply that, with ©g small
enough,

5 o
——0:(0)]| | <2a1 + 2a,E, 9) B! ﬁ) >
o®)[) <200+ 200, ( (s 0 (05 )

where finiteness of the right hand side was established in the case of 9%¢,(6)/09,09,. The
treatment of the remaining components, 9%g;(6)/09;0\" and 9%g;(0)/0adN, involve no
new features, so details are omitted.

By, <sup
[ASSH
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Finally, because

—(T — s —7r)""0%1(0)/0000' = — (T — s — ) 2829,5 (0)/0600¢,

t=r+1

the consistency claim is a straightforward consequence of the fact that 92g;(0) /0006 obeys
a uniform law of large numbers. [J
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