
Supplementary Material on “Noncausal Vector Autoregression”

Details on the discussion of nonidentifiability of noncausal VAR models in the
Gaussian case in Section 2.1. A practical complication with noncausal autoregressive
models is that they cannot be identified by second order properties or Gaussian likelihood.
In the univariate case this is explained, for example, in Brockwell and Davis (1987, p.
124-125)). To demonstrate the same in our multivariate case, note first that, by well-
known results on linear filters (cf. Hannan (1970, p. 67)), the spectral density matrix of
the process yt defined by (1) is given by
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In the latter expression, the matrix in the brackets is 2π times the spectral density matrix
of a second order stationary process whose autocovariances are zero at lags larger than
r + s. As is well known, this process can be represented as an invertible moving average
of order r+ s. Specifically, by a slight modification of Theorem 10’of Hannan (1970), we
get the unique representation
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where the n× n matrixesM0, ...,Mr+s are real withM0 positive definite, and the zeros

of det
(∑r+s

j=0Mje
iω
)
lie outside the unique disc. Thus, the spectral density matrix of yt

has the representation (2π)−1
(∑r+s

j=0Mje
ijω
)−1 (∑r+s

j=0Mje
−ijω

)′−1

, which is the spectral

density matrix of a causal VAR(r + s) process. Finally, note that a direct application of
Hannan’s (1970) Theorem 10’would give a representation with ω replaced by −ω. That
this modification is possible can be seen from the proof of the mentioned theorem (see
the discussion starting in the middle of p. 64 of Hannan (1970)).

Remaining part of the proof of Lemma 1. Regarding i (λ), first notice that∫ ∞
0

ζn/2+1f ′ (ζ;λ0) dζ =

(
ζn/2+1f (ζ;λ) |∞0 −

n+ 2

2
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)
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2
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Eλ
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)
,

where we have used Assumptions 2(ii) and (iii), and the expression of the density of ρ2
t
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(see (10)). Proceeding as in the case of the first assertion yields
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· i (λ) · Eλ
(
ρ4
t

)
(see the definition of i (λ) in (12)). This shows the stated inequality and the condition
for equality leads to the same condition as in the case of j (λ). Finally, in the Gaussian
case, Eλ (ρ2

t ) = n and Eλ (ρ4
t ) = 2n+ n2, implying i (λ) = n (n+ 2) /4. �

Proof of the nonsingularity of the matrix H1 mentioned in Section 3.1. To
simplify notation we demonstrate the nonsingularity of H1 when s = 2. From the defin-
ition of H1 it is not diffi cult to see that the possible singularity of H1 can only be due
to a linear dependence of its last n (r + 2) rows and, furthermore, that it suffi ces to show
the nonsingularity of the lower right hand corner H1 of order n (r + 2)× n (r + 2). This
matrix reads as

H
(2,2)
1 =



In −Φ1 −Φ2 0 · · · · · · p · · · 0

0
. . . . . . . . . . . . p ...

...
. . . . . . . . . . . . . . . p ...

... · · · 0 In −Φ1 −Φ2 p 0 0

... · · · 0 0 In −Φ1 p −Φ2 0
0 · · · 0 0 0 In p −Φ1 −Φ2

− − − − − − − −
−anrIn · · · · · · · · · · · · −a1In p In 0

0 −anrIn · · · · · · · · · · · · p −a1In In


def
=

[
B11 B12

B21 B22

]
,

where the partition is as indicated. The determinant of B11 is evidently unity so that
from the well-known formula for the determinant of a partitioned matrix it follows that
we need to show the nonsingularity of the matrix B11·2 = B22−B21B

−1
11B12. The inverse

of B11 depends on the coeffi cients of the power series representation of L (z) = Φ (z)−1

given by L (z) =
∑∞

j=0 Ljz
j where L0 = In and, when convenient, Lj = 0, j < 0, will

be used. Equating the coeffi cient matrices of powers of z on both sides of the identity
L (z) Φ (z) = In yields Lj = Lj−1Φ1 + Lj−2Φ2. Using this identity it is readily seen that
B−1

11 is an upper triangular matrix with In on the diagonal and Lj, j = 1, ..., nr−1, on the
diagonals above the main diagonal. This fact and straightforward but tedious calculations
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further show that

B11·2 =

[
In −

∑nr
j=1 ajLj −

∑nr
j=1 ajLj−1Φ2

−
∑nr

j=1 ajLj−1 In −
∑nr

j=2 ajLj−2Φ2

]
=

[
In 0
0 In

]
−

nr∑
j=1

aj

[
Lj Lj−1Φ2

Lj−1 Lj−2Φ2

]
.

Next define the companion matrix

Φ =

[
Φ1 Φ2

In 0

]
and note that the latter condition in (2) implies that the eigenvalues of Φ are smaller
than one in absolute value. Also, the matrices Lj and Lj−1 (j ≥ 0) can be obtained from
the upper and lower left hand corners of the matrix Φj, respectively. Using these facts,
the identity Lj = Lj−1Φ1 +Lj−2Φ2, and properties of the powers Φj it can further be seen
that

B11·2 = I2n −
nr∑
j=1

ajΦ
j = P

(
I2n −

nr∑
j=1

ajD
j

)
P−1,

where the latter equality is based on the Jordan decomposition of Φ so that Φ = PDP−1.
Thus, the determinant of B11·2 equals the determinant of the matrix in parentheses in
its latter expression. Because Dj is an upper triangular matrix having the jth powers of
the eigenvalues of Φ on the diagonal this determinant is a product of quantities of the
form 1 −

∑nr
j=1 ajν

j where ν signifies an eigenvalue of Φ. By the latter condition in (2)
the eigenvalues of Φ are smaller than one in absolute value whereas the former condition
in (2) implies that the zeros of a (z) lie outside the unit disc. Thus, the nonsingularity of
B11·2, and hence that of H

(2,2)
1 and H1 follows.

We note that in the case s = 1 the preceding proof simplifies because then we need
to show the nonsingularity of the matrix obtained from H(2,2)

1 by deleting its last n rows
and columns and setting Φ2 = 0. In place of B11·2 we then have In −

∑nr
j=1 ajΦ

j
1 and,

because now the eigenvalues of Φ1 are smaller than one in absolute value, the preceding
argument applies without the need to use a companion matrix. �

Remaining parts of the proof of Lemma 4. For the case t = k, i = j 6= 0 we have by
independence E (εt−i ⊗ e0t) = E (εt−i)⊗ E (e0t) = 0. Thus, by the definition εt = Σ

−1/2
0 εt

and (B.3), (A.3), and arguments used in the previous case,

C (εt−i ⊗ e0t, εt−i ⊗ e0t) = E
(
ρ2
t−i
)
E
[
ρ2
t

(
h0

(
ρ2
t

))2
] [
E
(
υt−iυ

′
t−i
)
⊗ E (υtυ

′
t)
]
.

The stated result is obtained from this by using definitions and E (υtυ
′
t) = n−1In.

In the case t 6= k, i = t− k, and j = k − t we have i 6= 0 6= j and, as in the preceding
case, E (εk ⊗ e0t) = 0. We also note that εt ⊗ e0k = Knn(e0k ⊗ εt) (see Result 9.2.2(3) in
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Lütkepohl (1996)). As before, we now obtain

C (εk ⊗ e0t, εt ⊗ e0k) = C (εk ⊗ e0t, Knn (e0k ⊗ εt))
= E

[(
ρkυk ⊗ ρth0

(
ρ2
t

)
υt
) (
ρkh0

(
ρ2
k

)
υ′k ⊗ ρtυ′t

)]
K ′nn

=
{
E
[
ρ2
th0

(
ρ2
t

)]}2 {E (υkυ
′
k)⊗ E (υtυ

′
t)}K ′nn

=
1

4
Knn,

where the last equality follows from (B.1), the symmetry of the commutation matrix Knn,
and the fact E (υtυ

′
t) = n−1In.

Finally, in the last case the stated results follows from independence. �

Remaining parts of the proof of Step 1 of Proposition 2. We consider the different
blocks of Iθθ (θ0) separately and, to simplify notation, we set N = T − s − r. In what
follows, frequent use will be made of the identity

(
f ′
(
ε′tΣ
−1
0 εt;λ0

)
/f
(
ε′tΣ
−1
0 εt;λ0

))
Σ−1

0 εt =

Σ
−1/2
0 e0t (see (A.1)). For convenience we also present expressions of the scores evaluated
at θ0 (see Appendix A and note that in the first three expressions (A.1), (A.4), and (A.5)
have been used):

∂

∂ϑ1

gt (θ0) = −2
r∑
i=1

∂

∂ϑ1

π′i (ϑ10) (u0,t−i ⊗ In) Σ
−1/2
0 e0t (S.1)

∂

∂ϑ2

gt (θ0) = 2
s∑
j=1

∂

∂ϑ2

φ′j (ϑ20)
r∑
i=0

(yt+j−i ⊗ Π′i0) Σ
−1/2
0 e0t (S.2)

∂

∂σ
gt (θ0) = −D′n

(
Σ−1

0 ⊗ Σ−1
0

)(
εt ⊗ Σ

1/2
0 e0t +

1

2
vec (Σ0)

)
(S.3)

∂

∂λ
gt (θ0) =

1

f
(
ε′tΣ
−1
0 εt;λ0

) ∂
∂λ
f
(
ε′tΣ
−1
0 εt;λ0

)
. (S.4)

Block Iϑ1ϑ1 (θ0). Set Ut−1 (ϑ2) =
[
(ut−1 (ϑ2)⊗ In)′ · · · (ut−r (ϑ2)⊗ In)′

]′
and Ut−1 (ϑ20) =

U0,t−1. Using (S.1) we then have

∂

∂ϑ1

gt (θ0) = −2∇1 (ϑ10)′ U0,t−1Σ
−1/2
0 e0t.

From the definitions and (3) it can be seen that U0,t−1 and e0t are independent and, as
noticed after the definition of Iϑ1ϑ1 (θ0), C11 (θ0; a, b) = j0E

(
u0,t−au

′
0,t−b

)
. Thus, (B.4),

the preceding equation, and straightforward calculation yield E (∂gt (θ0) /∂ϑ1) = 0 and,
furthermore,

C

(
N−1/2

T−s∑
t=r+1

∂

∂ϑ1

gt (θ0)

)
= ∇1 (ϑ10)′C11 (θ0)∇1 (ϑ10) = Iϑ1ϑ1 (θ0) .

Block Iϑ2ϑ2 (θ0), justification of the final step. We need to show that

∞∑
k=−∞

r∑
i,j=0

(
Ψk+a−i,0Σ

1/2
0 ⊗ Π′i0Σ

−1/2
0

)
Knn

(
Σ

1/2
0 Ψ′−k+b−j,0 ⊗ Σ

−1/2
0 Πj0

)
= 0.
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To see this, notice that (Ψk+a−i,0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 )Knn = Knn(Π′i0Σ

−1/2
0 ⊗Ψk+a−i,0Σ

1/2
0 ) (see

Lütkepohl (1996), Result 9.2.2 (5)(a)). Thus, the left hand side of the preceding equality
can be written as

Knn

∞∑
k=−∞

r∑
i,j=0

(
Π′i0Ψ′−k+b−j,0 ⊗Ψk+a−i,0Πj0

)
= Knn

∞∑
l=−∞

r∑
j=0

(
r∑
i=0

Π′i0Ψ′−l+a+b−j−i,0 ⊗Ψl,0Πj0

)

= Knn

∞∑
l=−∞

r∑
j=0

(
L′l−a−b+j,0 ⊗Ψl,0Πj0

)
= Knn

∞∑
k=0

(
L′k,0 ⊗

r∑
j=0

Ψk+a+b−j,0Πj0

)
= 0.

Here the second and fourth equalities are obtained from (B.6) (because a, b > 0).
Block Iϑ1ϑ2 (θ0). Let a ∈ {1, ..., r} and b ∈ {1, ..., s}. Using (3) and (5), and the

definitions of A0 (k, i) and B0 (k) (B0 (k) = 0 for k < 0) given in the treatment of Block
Iϑ2ϑ2 (θ0) we consider

C

(
(u0,t−a ⊗ In) Σ

−1/2
0 e0t,

r∑
i=0

(yk+b−i ⊗ Π′i0) Σ
−1/2
0 e0k

)

=
∞∑
c=0

∞∑
d=−∞

r∑
i=0

B0 (c)C ((εt−a−c ⊗ e0t), (εk+b−i−d ⊗ e0k))A0 (d, i)′

=
τ 0

4

∞∑
c=a

r∑
i=0

B0 (c− a)A0 (c+ b− i, i)′ 1 (t = k)

+
1

4

r∑
i=0

B0 (t− k − a)KnnA0 (k − t+ b− i, i)′ 1 (t 6= k) ,

where the latter equality is based on Lemma 4. Summing over t, k = r + 1, ..., T − s− r,
multiplying by −4/N , and letting T tend to infinity yields the matrix C12 (a, b; θ0) (see
(S.1) and (S.2), and the definition of Iϑ1ϑ2 (θ0)). Thus,

C12 (a, b; θ0) = −τ 0

∞∑
c=a

r∑
i=0

B0 (c− a)A0 (c+ b− i, i)′

−
∞∑
c=a

r∑
i=0

B0 (c− a)KnnA0 (−c+ b− i, i)′ .

It is easy to see that the first term on the right hand side equals the first term on the
right hand side of the defining equation of C12 (a, b; θ0). To show the same for the second
term, we need to show that

−Knn

(
Ψ′b−a,0 ⊗ In

)
= −

∞∑
c=a

r∑
i=0

(
Mc−a,0Σ

1/2
0 ⊗ Σ

−1/2
0

)
Knn

(
Σ

1/2
0 Ψ′−c+b−i,0 ⊗ Σ

−1/2
0 Πi0

)
.
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Using Result 9.2.2 (5)(a) in Lütkepohl (1996) and the convention Mj0 = 0, j < 0, we can
write the right hand side as

−Knn

∞∑
c=−∞

r∑
i=0

(
Ψ′−c+b−i,0 ⊗Mc−a,0Πi0

)
= −Knn

∞∑
k=−∞

(
Ψ′k0 ⊗

r∑
i=0

Πi0M−k−a+b−i,0

)
= Knn

(
Ψ′b−a,0 ⊗ In

)
.

Here the latter equality can be justified by using the identity Π (z)M (z) = In to obtain
an analog of (B.6) with Ψj−i,0 and L−j0 replaced by Mj−i,0 and 0, respectively.
The preceding derivations and the definitions show that the covariance matrix of the

scores of ϑ1 and ϑ2 divided by N converges to Iϑ2ϑ1 (θ0).
Block Iσσ (θ0). First note that, by (S.3) and independence of εt, we only need to show

that E (∂gt (θ0) /∂σ) = 0 and C (∂gt (θ0) /∂σ) = Iσσ (θ0). These facts can be established
by observing

∂

∂σ
gt (θ0) = −D′n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )(εt ⊗ e0t +

1

2
vec (In)).

Thus, the desired results are obtained by using Lemma 4 (case t = k and i = j = 0), and
arguments in its proof.
Block Iλλ (θ0). As in the preceding case, it suffi ces to show that E (∂gt (θ0) /∂λ) = 0

and C (∂gt (θ0) /∂λ) = Iλλ (θ0). For the former, conclude from (S.4), the definition εt =

Σ
−1/2
0 εt, and (B.3) that

Eλ0
(
∂

∂λ
gt (θ0)

)
= Eλ0

(
1

f (ρ2
t ;λ0)

· ∂
∂λ
f
(
ρ2
t ;λ
)∣∣∣∣
λ=λ0

)

=
πn/2

Γ (n/2)

∫ ∞
0

ζn/2−1 ∂

∂λ
f (ζ;λ)

∣∣∣∣
λ=λ0

dζ

=
πn/2

Γ (n/2)

∂

∂λ

∫ ∞
0

ζn/2−1f (ζ;λ) dζ|λ=λ0

= 0.

Here the second equality is based on the expression of the density function of ρ2
t (see (10)),

the third one on Assumption 4(i), and the fourth one on the identity∫ ∞
0

ζn/2−1f (ζ;λ) dζ =
Γ (n/2)

πn/2

∫
f (x′x;λ) dx =

Γ (n/2)

πn/2
,

which can be obtained as in Fang et al. (1990, p. 35).
That C (∂gt (θ0) /∂λ) = Iλλ (θ0) is an immediate consequence of Assumption 4(ii),

(S.4), (B.3), and the expression of the density function of ρ2
t .

Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). That these blocks are zero follows from (A.1), (S.1),
(S.3), (S.4), independence of εt, and the fact that u0,t−i (i > 0) is independent of εt and
has zero mean (see (3)).
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Block Iϑ2σ (θ0). Consider the covariance matrix (cf. the derivation of Iϑ2ϑ2 (θ0))

C

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t,

∂

∂σ
gk (θ0)

)

= −
∞∑

c=−∞

r∑
i=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk ⊗ e0k)) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= −
r∑
i=0

A0 (a− i, i)DnJ0D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn1 (t = k) .

Here the former equality is based on (5), the definition on A0 (c, i), and the expression of
∂gt (θ0) /∂σ given in the case of block Iσσ (θ0). The latter equality is due to Lemma 4.
The stated expression of Iϑ2σ (θ0) is a simple consequence of this and (S.2) and (S.3).
Block Iϑ2λ (θ0). Similarly to the preceding case we consider the covariance matrix

C

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t,

∂

∂λ
gk (θ0)

)

=
∞∑

c=−∞

r∑
i=0

A0 (c, i)C
(

(εt+a−i−c ⊗ e0t),
∂

∂λ
gk (θ0)

)

=
∞∑

c=−∞

r∑
i=0

A0 (c, i)E
[(
ρt+a−i−cυt+a−i−c ⊗ ρth0

(
ρ2
t

)
υt
) 1

f0 (ρ2
k)

∂

∂λ′
f
(
ρ2
k;λ0

)]

=
∞∑

c=−∞

r∑
i=0

A0 (c, i)E (υt+a−i−c ⊗ υt)E
[
ρt+a−i−cρth0

(
ρ2
t

) 1

f0 (ρ2
k0)

∂

∂λ′
f
(
ρ2
k;λ0

)]
.

Here the first equality is justified by (5) whereas the remaining ones are obtained from
(S.4), (B.3), (A.3), the independence of the processes ρt and υt, and the fact that
∂gt (θ0) /∂λ has zero mean. Thus, because E (υt+a−i−c ⊗ υt) = n−1vec(In) 1 (c = a− i),

C

(
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0 e0t,

∂

∂λ
gk (θ0)

)

=
1

n

r∑
i=0

A0 (a− i, i) vec (In)E
(
ρ2
t

h0 (ρ2
t )

f0 (ρ2
t ; )

∂

∂λ′
f
(
ρ2
t ;λ0

))
1 (t = k) ,

which in conjunction with (B.6) gives the desired result Iϑ2λ (θ0) = 0.
Block Iσλ (θ0). The employed arguments are similar to those in the cases of blocks

Iσσ (θ0) and Iλλ (θ0). By the independence of εt it suffi ces to consider (see (S.3))

C
(
∂

∂σ
gt (θ0) ,

∂

∂λ
gt (θ0)

)
= −D′n

(
Σ
−1/2
0 ⊗ Σ

−1/2
0

)
E
[
(εt ⊗ e0t)

∂

∂λ′
gt (θ0)

]
,

where the expectation equals (see (B.3), (A.3), and (S.4))

E
[(
ρtυt ⊗ ρth0

(
ρ2
t

)
υt
) 1

f0 (ρ2
t )

∂

∂λ′
f
(
ρ2
t ;λ0

)]
= E (υt ⊗ υt)E

[
ρ2
t

h0 (ρ2
t )

f0 (ρ2
t ; )

∂

∂λ′
f
(
ρ2
t ;λ0

)]
.
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Because E (υt ⊗ υt) = n−1vec(In) = n−1Dnvech(In), the stated expression of Iσλ (θ0)
follows from the definitions and the expression of the density function of ρ2

t (see (10)).
Thus, we have completed the derivation of Iθθ (θ0).

Remaining part of the proof of Step 2 of Proposition 2. To show that the infinite
dimensional matrix [G0 (1) : G0 (2) : · · · ] is of full row rank, first note that the first block
of rows is readily seen to be of full row rank. Indeed, using the definition of B0 (k) it is
straightforward to see that the matrix [B0 (1) : · · · : B0 (r)] (rn2 × rn2) is upper triangular
with diagonal blocks Σ

−1/2
0 ⊗Σ

−1/2
0 and, therefore, of full row rank. The last two blocks of

rows are also linearly independent because the covariance matrix of (x3t, x4t) equals that
of the scores of σ and λ, which is positive definite by Assumption 5(ii). It is furthermore
obvious that these two blocks of rows are linearly independent of the first block of rows.
Thus, from the definition of G0 (k) it can be seen that it suffi ces to show that the infinite
dimensional matrix [A0 (−1) : A0 (−2) : · · · ] is of full row rank. We shall demonstrate
that the matrix [A0 (−1) : · · · : A0 (−r − s)] (sn2 × s (s+ r)n2) is of full row rank. For
simplicity, we do this in the special case s = 2.
Consider the matrix product

[A0 (−1) : · · · : A0 (−r − 2)]


Σ
−1/2
0 Π00 ⊗ Σ

1/2
0 0

... Σ
−1/2
0 Π00 ⊗ Σ

1/2
0

Σ
−1/2
0 Πr0 ⊗ Σ

1/2
0

...
0 Σ

−1/2
0 Πr0 ⊗ Σ

1/2
0


=

[ ∑r
j=0

(∑r
i=0 Ψ−j−i,0Πi0 ⊗ Π′j0

) ∑r
j=0

(∑r
i=0 Ψ−1−j−i,0Πi0 ⊗ Π′j0

)∑r
j=0

(∑r
i=0 Ψ1−j−i,0Πi0 ⊗ Π′j0

) ∑r
j=0

(∑r
i=0 Ψ−j−i,0Πi0 ⊗ Π′j0

) ]
=

[ ∑r
j=0

(
−Lj0 ⊗ Π′j0

) ∑r
j=0

(
−Lj+1,0 ⊗ Π′j0

)∑r
j=0

(
−Lj−1,0 ⊗ Π′j0

) ∑r
j=0

(
−Lj0 ⊗ Π′j0

) ]
,

where the equalities follow from the definitions and from (B.6) by direct calculation.
We shall show below that the last expression, a square matrix of order 2n2 × 2n2, is
nonsingular. Assume this for the moment and note that the latter matrix in the product
presented above is of full column rank 2n2 (because Π00 = −In ). Thus, as the rank of a
matrix product cannot exceed the ranks of the factors of the product, it follows that the
matrix [A0 (−1) : · · · : A0 (−r − 2)] has to be of full row rank 2n2.
To show the aforementioned nonsingularity, it clearly suffi ces to show the nonsingu-

larity of the matrix[ ∑r
j=0

(
−Lj0 ⊗ Π′j0

) ∑r
j=0

(
−Lj+1,0 ⊗ Π′j0

)∑r
j=0

(
−Lj−1,0 ⊗ Π′j0

) ∑r
j=0

(
−Lj0 ⊗ Π′j0

) ] [
In2 −Φ10 ⊗ In
0 In2

]
=

[
In L10 − Φ10

0 In

]
⊗ In −

r∑
j=1

([
Lj0 Lj+1,0 − Lj0Φ10

Lj−1,0 Lj,0 − Lj−1,0Φ10

]
⊗ Π′j0

)

=

[
In 0
0 In

]
⊗ In −

r∑
j=1

([
Lj0 Lj−1,0Φ20

Lj−1,0 Lj−2,0Φ20

]
⊗ Π′j0

)
.
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As in the proof of the nonsingularity of the matrix H1, we have here used the identity
Lj0 = Lj−1,0Φ10+Lj−2,0Φ20 with L00 = In and Lj0 = 0, j < 0, as well as direct calculation.
In the same way as in that proof, we can now show the nonsingularity of the last matrix
by using the fact that this matrix can be expressed as

In2 ⊗ In −
r∑
j=1

(
Φj

0 ⊗ Π′j0
)

= (P0 ⊗ In)

(
In2 ⊗ In −

r∑
j=1

(
Dj

0 ⊗ Π′j0
)) (

P−1
0 ⊗ In

)
,

where Φ0 is the companion matrix corresponding the matrix polynomial In − Φ10z −
Φ20z

2 and Φ0= P0D0P
−1
0 is its Jordan decomposition (cf. the aforementioned previous

proof). The determinant of the matrix on the right hand side of the preceding equation

is a product of determinants of the form det
(
In −

∑r
j=1 Π′j0ν

j
)
where ν signifies an

eigenvalue of Φ0. These determinants are nonzero because, by the latter condition in (2),
the eigenvalues of Φ0 are smaller than one in absolute value whereas the former condition
in (2) implies that the zeros of det Π (z) lie outside the unit disc. This completes the proof
of the positive definiteness of Iθθ (θ0).

Proof of Lemma 2. In the same way as in the proof of Step 1 of Proposition 2 we
consider the different blocks of Iθθ (θ0) separately. For simplicity, we again suppress the
subscript from the expectation operator and denote E (·) instead of Eθ0 (·) .
Block Iϑ1ϑ1 (θ0). Using the independence of u0,t−i (i > 0) and e0t along with (B.4) it

can be seen that the first term of the expression of ∂2gt (θ) /∂ϑ1∂ϑ
′
1 (see Appendix A)

evaluated at θ0 has zero expectation. Thus, it suffi ces to consider the expectation of the
second term. To this end, recall the notation εt = Σ

−1/2
0 εt and define

W
(1)
ϑ1ϑ1

(a, b) = 2E
[
h0 (ε′tεt)

(
u0,t−au

′
0,t−b ⊗ Σ−1

0

)]
,

W
(2)
ϑ1ϑ1

(a, b) = 4E
[
f ′′0 (ε′tεt)

f0 (ε′tεt)

(
u0,t−au

′
0,t−b ⊗ Σ−1

0 εtε
′
tΣ
−1
0

)]
,

and
W

(3)
ϑ1ϑ1

(a, b) = −4E
[
(h0 (ε′tεt))

2 (
u0,t−au

′
0,t−b ⊗ Σ−1

0 εtε
′
tΣ
−1
0

)]
.

Using these definitions in conjunction with (A.6), (A.2), and (A.4) we can write the
aforementioned expectation as

−2

r∑
a=1

∂

∂ϑ1

π′a (ϑ10)E
[
(u0,t−a ⊗ In) Σ

−1/2
0

∂

∂ϑ′1
et (θ0)

]
= −2

r∑
a=1

∂

∂ϑ1

π′a (ϑ10)E
[
h0 (ε′tεt) (u0,t−a ⊗ In) Σ−1

0

∂

∂ϑ′1
εt (ϑ0)

]
−4

r∑
a=1

∂

∂ϑ1

π′a (ϑ10)E
[
f ′′0 (ε′tεt)

f0 (ε′tεt)
(u0,t−a ⊗ In) Σ−1

0 εtε
′
tΣ
−1
0

∂

∂ϑ′1
εt (ϑ0)

]
+4

r∑
a=1

∂

∂ϑ1

π′a (ϑ10)E
[
(h0 (ε′tεt))

2
(u0,t−a ⊗ In) Σ−1

0 εtε
′
tΣ
−1
0

∂

∂ϑ′1
εt (ϑ0)

]
=

r∑
a,b=1

∂

∂ϑ1

π′a (ϑ10)
[
W

(1)
ϑ1ϑ1

(a, b) +W
(2)
ϑ1ϑ1

(a, b) +W
(3)
ϑ1ϑ1

(a, b)
] ∂

∂ϑ′1
πb (ϑ10) .
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We need to show that the last expression equals−Iϑ1ϑ1 (θ0), which follows if
∑3

i=1W
(i)
ϑ1ϑ1

(a, b) =

−C11 (a, b)⊗Σ−1
0 . To see this, conclude from the definitions, (B.3), and the fact C (υt) =

n−1In that

W
(1)
ϑ1ϑ1

(a, b) +W
(2)
ϑ1ϑ1

(a, b) = 2

[
E
(
h0

(
ρ2
t

))
+

2

n
E
(
ρ2
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

)] (
E
(
u0,t−au

′
0,t−b

)
⊗ Σ−1

0

)
.

Using definitions and the expression of the density of ρ2
t (see (10)) yields

E
(
h0

(
ρ2
t

))
+

2

n
E
(
ρ2
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

)
(S.5)

=
πn/2

Γ (n/2)

(∫ ∞
0

ζn/2−1f ′0 (ζ) dζ +
2

n

∫ ∞
0

ζn/2f ′′0 (ζ) dζ

)
=

πn/2

Γ (n/2)

(∫ ∞
0

ζn/2−1f ′0 (ζ) dζ +
2

n
ζn/2f ′0 (ζ) |∞0 −

∫ ∞
0

ζn/2−1f ′0 (ζ) dζ

)
= 0,

where the last two equalities are justified by Assumption 6(i). Thus, we can conclude
that W (1)

ϑ1ϑ1
(a, b) +W

(2)
ϑ1ϑ1

(a, b) = 0.

Regarding W (3)
ϑ1ϑ1

(a, b), use again (B.3) and the fact C (υt) = n−1In to obtain

W
(3)
ϑ1ϑ1

(a, b) = − 4

n
E
[
ρ2
t

(
h0

(
ρ2
t

))2
]
E
(
u0,t−au

′
0,t−b

)
⊗ Σ−1

0

= −j0E
(
u0,t−au

′
0,t−b

)
⊗ Σ−1

0 ,

by the definitions of h0 (·) and j0 (see (11)). Thus, because j0E
(
u0,t−au

′
0,t−b

)
= C11 (a, b),

we have
∑3

i=1W
(i)
ϑ1ϑ1

(a, b) = C11 (a, b)⊗ Σ−1
0 , as desired.

Block Iϑ2ϑ2 (θ0). The first term on the right hand side of the expression of ∂2gt (θ) /∂ϑ2∂ϑ
′
2

(see Appendix A) evaluated at θ0 has zero expectation by arguments entirely similar to
those used to show that the expectation of ∂gt (θ0) /∂ϑ2 is zero (see the proof of Propo-
sition 2, Block Iϑ2ϑ2 (θ0)). Thus, it suffi ces to consider the second term for which we first
note that

E
(
ρ4
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

)
=

πn/2

Γ (n/2)

∫ ∞
0

ζn/2+1f ′′0 (ζ) dζ

=
πn/2

Γ (n/2)

(
ζn/2+1f ′0 (ζ)

∣∣∣∞
0
− n+ 2

2

∫ ∞
0

ζn/2f ′0 (ζ) dζ

)
= n(n+ 2)/4, (S.6)

where the last equality is justified by Assumption 6(i) and (B.1).
Next define

W
(1)
ϑ2ϑ2

(a, b) = 2E

[
h0 (ε′tεt)

r∑
i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 Πj0

)]
,
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W
(2)
ϑ2ϑ2

(a, b) = 4E

[
f ′′0 (ε′tεt)

f0 (ε′tεt)

r∑
i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)]
and

W
(3)
ϑ2ϑ2

(a, b) = −4E

[
(h0 (ε′tεt))

2
r∑

i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)]
.

Using these definitions in conjunction with (A.5) and (A.6) the expectation of the sec-
ond term on the right hand side of the expression of ∂2gt (θ) /∂ϑ2∂ϑ

′
2 (see Appendix A)

evaluated at θ0 can be written as

2

s∑
a=1

∂

∂ϑ2

φ′a (ϑ20)E

[
r∑
i=0

(yt+a−i ⊗ Π′i0) Σ
−1/2
0

∂

∂ϑ′2
et (θ0)

]

= 2
s∑

a,b=1

∂

∂ϑ2

φ′a (ϑ20)E

[
f ′0 (ε′tεt)

f0 (ε′tεt)

r∑
i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 Πj0

)] ∂

∂ϑ′2
φb (ϑ20)

+4
s∑

a,b=1

∂

∂ϑ2

φ′a (ϑ20)E

[
f ′′0 (ε′tεt)

f0 (ε′tεt)

r∑
i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)] ∂

∂ϑ′2
φb (ϑ20)

−4

s∑
a,b=1

∂

∂ϑ2

φ′a (ϑ20)E

[(
f ′0 (ε′tεt)

f0 (ε′tεt)

)2 r∑
i,j=0

(
yt+a−iy

′
t+b−j ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)] ∂

∂ϑ′2
φb (ϑ20)

=
s∑

a,b=1

∂

∂ϑ2

φ′a (ϑ20)
[
W

(1)
ϑ2ϑ2

(a, b) +W
(2)
ϑ2ϑ2

(a, b) +W
(3)
ϑ2ϑ2

(a, b)
] ∂

∂ϑ′2
φb (ϑ20) .

Thus, to show that the last expression equals−Iϑ2ϑ2 (θ0) it suffi ces to show that
∑3

i=1W
(i)
ϑ2ϑ2

(a, b) =
−C22 (a, b, ; θ0). To this end, first note that, by (5),

W
(1)
ϑ2ϑ2

(a, b) = 2
r∑

i,j=0

∞∑
c,d=−∞

E
[
h0 (ε′tεt)

(
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π′i0Σ−1

0 Πj0

)]
=

2

n
E
(
ρ2
t

)
E
(
h0

(
ρ2
t

)) r∑
i,j=0

∞∑
c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−
r∑

i,j=0

A0 (a− i, i)A0 (b− j, j) ,

where, as before, Ψk0Σ
1/2
0 ⊗Π′i0Σ

−1/2
0 = A0 (k, i). The latter equality is a straightforward

consequence of (B.3), (B.1), and the fact C (υt) = n−1In.
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For W (2)
ϑ2ϑ2

(a, b) one obtains from (5)

W
(2)
ϑ2ϑ2

(a, b) = 4

r∑
i,j=0

∞∑
c,d=−∞

E
[
f ′′0 (ε′tεt)

f0 (ε′tεt)

(
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)]

=
4

n2
E
(
ρ2
t

)
E
(
ρ2
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

) r∑
i,j=0

∞∑
c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

+4E
(
ρ4
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

) r∑
i,j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ′t)A0 (b− j, j) ,

where the latter equality is again obtained from (B.3) and the fact C (υt) = n−1In. From
(S.5) and (S.6) we can now conclude that

W
(1)
ϑ2ϑ2

(a, b) +W
(2)
ϑ2ϑ2

(a, b) = −
r∑

i,j=0

A0 (a− i, i)A0 (b− j, j)

+n(n+ 2)
r∑

i,j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ′t)A0 (b− j, j) .

Next, arguments similar to those already used give

W
(3)
ϑ2ϑ2

(a, b) = −4
r∑

i,j=0

∞∑
c,d=−∞

E
[
(h0 (ε′tεt))

2 (
Ψc0εt+a−i−cε

′
t+b−j−dΨ

′
d0 ⊗ Π′i0Σ−1

0 εtε
′
tΣ
−1
0 Πj0

)]
= − 4

n2
E
(
ρ2
t

)
E
[
ρ2
t

(
h0

(
ρ2
t

))2
] r∑
i,j=0

∞∑
c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−4E
[
ρ4
t

(
h0

(
ρ2
t

))2
] r∑
i,j=0

A0 (a− i, i)E (υtυ
′
t ⊗ υtυ′t)A0 (b− j, j)

= −τ 0

r∑
i,j=0

∞∑
c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−4
r∑

i,j=0

A0 (a− i, i)DnJ0D
′
nA0 (b− j, j) .

Here the last equality follows from the definitions of τ 0, i0, and J0 (in the term involving
J0 (B.6) has also been used).
From the preceding derivations we find that

3∑
i=1

W
(i)
ϑ2ϑ2

(a, b) = −τ 0

r∑
i,j=0

∞∑
c=−∞
c 6=0

A0 (c+ a− i, i)A0 (c+ b− j, j)

−
r∑

i,j=0

A0 (a− i, i) [4DnJ0D
′
n + In − n(n+ 2)E (υtυ

′
t ⊗ υtυ′t)]A0 (b− j, j) .
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That
∑3

i=1W
(i)
ϑ2ϑ2

(a, b) = −C22 (a, b, ; θ0) holds, can now be seen by using the identity

E
[
(vec(υtυ′t)) (vec(υtυ′t))

′]
=

1

n (n+ 2)

(
In2 +Knn + vec (In) vec (In)′

)
(S.7)

(see Wong and Wang (1992, p. 274)) and observing that the left hand side equals
E (υtυ

′
t ⊗ υtυ′t) and that the impact of the term vec(In)vec(In)′ on the right hand side

cancels by equality (B.6) (see the definition of C22 (a, b, ; θ0)).
Block Iϑ1ϑ2 (θ0). First conclude from the expression of ∂2gt (θ) /∂ϑ1∂ϑ

′
2 (see Appendix

A), (A.5), (A.6), and (B.3) that

∂2

∂ϑ1∂ϑ
′
2

gt (θ0) = 2

r∑
a=1

s∑
b=1

∂

∂ϑ1

π′a (ϑ10)
(
In ⊗ Σ

−1/2
0 et (θ0)

) (
y′t+b−a ⊗ In

) ∂

∂ϑ′2
φb (ϑ20)

−2

r∑
a=1

s∑
b=1

∂

∂ϑ1

π′a (ϑ10)h0 (ε′tεt)
r∑
i=0

(
u0,t−ay

′
t+b−i ⊗ Σ−1

0 Πi0

) ∂

∂ϑ′2
φb (ϑ20)

−4
r∑

a=1

s∑
b=1

∂

∂ϑ1

π′a (ϑ10)h′0 (ε′tεt)
r∑
i=0

(
u0,t−ay

′
t+b−i ⊗ Σ−1

0 εtε
′
tΣ
−1
0 Πi0

) ∂

∂ϑ′2
φb (ϑ20) .

In the first expression on the right hand side,(
In ⊗ Σ

−1/2
0 et (θ0)

) (
y′t+b−a ⊗ In

)
= h0 (ε′tεt)Knn

(
Σ−1

0 εty
′
t+b−a ⊗ In

)
by the definition of et (θ0) (see (A.1)) and Result 9.2.2(3) in Lütkepohl (1996). Define

W
(1)
ϑ1ϑ2

(a, b) = 2KnnE
[
h0 (ε′tεt)

(
Σ−1

0 εty
′
t+b−a ⊗ In

)]
,

W
(2)
ϑ1ϑ2

(a, b) = −2E

[
h0 (ε′tεt)

r∑
i=0

(
u0,t−ay

′
t+b−i ⊗ Σ−1

0 Πi0

)]

W
(3)
ϑ1ϑ2

(a, b) = −4E

[
f ′′0 (ε′tεt)

f0 (ε′tεt)

r∑
i=0

(
u0,t−ay

′
t+b−i ⊗ Σ−1

0 εtε
′
tΣ
−1
0 Πi0

)]
and

W
(4)
ϑ1ϑ2

(a, b) = 4E

[
(h0 (ε′tεt))

2
r∑
i=0

(
u0,t−ay

′
t+b−i ⊗ Σ−1

0 εtε
′
tΣ
−1
0 Πi0

)]
.

We need to show that
∑4

i=1 W
(i)
ϑ1ϑ2

(a, b) = −C12 (a, b; θ0). The employed arguments, based
mostly on (3), (5), (B.3), and the fact C (υt) = n−1In, are similar to those used in the
previous cases. First note that

W
(1)
ϑ1ϑ2

(a, b) = 2Knn

∞∑
c=−∞

E
[
h0 (ε′tεt)

(
Σ−1

0 εtε
′
t+b−a−cΨ

′
c0 ⊗ In

)]
=

2

n
E
[
ρ2
th0

(
ρ2
t

)]
Knn

(
Ψ′b−a,0 ⊗ In

)
= −Knn

(
Ψ′b−a,0 ⊗ In

)
,
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where the last equality is due to (B.1). Next,

W
(2)
ϑ1ϑ2

(a, b) = −2

∞∑
c=0

∞∑
d=−∞

r∑
i=0

E
[
h0 (ε′tεt)

(
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ−1

0 Πi0

)]
= − 2

n
E
(
ρ2
t

)
E
(
h0

(
ρ2
t

)) ∞∑
c=0

r∑
i=0

(
Mc0Σ0Ψ′c+a+b−i,0 ⊗ Σ−1

0 Πi0

)
and

W
(3)
ϑ1ϑ2

(a, b) = −4

∞∑
c=0

∞∑
d=−∞

r∑
i=0

E
[
f ′′0 (ε′tεt)

f0 (ε′tεt)

(
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ−1

0 εtε
′
tΣ
−1
0 Πi0

)]

= − 4

n2
E
(
ρ2
t

)
E
(
ρ2
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

) ∞∑
c=0

r∑
i=0

(
Mc0Σ0Ψ′c+a+b−i,0 ⊗ Σ−1

0 Πi0

)
.

From the preceding expressions and (S.5) it is seen that W (2)
ϑ1ϑ2

(a, b) +W
(3)
ϑ1ϑ2

(a, b) = 0.

Regarding W (4)
ϑ1ϑ2

(a, b), we have

W
(4)
ϑ1ϑ2

(a, b) = 4
∞∑
c=0

∞∑
d=−∞

r∑
i=0

E
[
(h0 (ε′tεt))

2 (
Mc0εt−a−cε

′
t+b−i−dΨ

′
d0 ⊗ Σ−1

0 εtε
′
tΣ
−1
0 Πi0

)]
=

4

n2
E
(
ρ2
t

)
E
[
ρ2
t

(
h0

(
ρ2
t

))2
] ∞∑
c=0

r∑
i=0

(
Mc0Σ0Ψ′c+a+b−i,0 ⊗ Σ−1

0 Πi0

)
= τ 0

∞∑
c=a

r∑
i=0

(
Mc−a,0Σ0Ψ′c+b−i,0 ⊗ Σ−1

0 Πi0

)
,

where the last equality holds by the definitions of h0 (·) and τ 0. Combining the preceding
derivations yields

∑4
i=1W

(i)
ϑ1ϑ2

(a, b) = −C12 (a, b; θ0), as desired.
Block Iσσ (θ0). From the expression of ∂2gt (θ) /∂ϑ1∂ϑ

′
2 (see Appendix A) and (B.3)

we obtain

∂2

∂σ∂σ′
gt (θ0) = 2h0 (ε′tεt)D

′
n

(
Σ
−1/2
0 εtε

′
tΣ
−1/2
0 ⊗ Σ−1

0

)
Dn +

1

2
D′n
(
Σ−1

0 ⊗ Σ−1
0

)
Dn

+h′0 (ε′tεt)D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 ) (εtε

′
t ⊗ εtε′t) (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn.

Using (B.3) and the independence of ρt and υt the expectation of the first term on the
right hand side can be written as

2E
(
ρ2
th0

(
ρ2
t

))
D′n

(
Σ
−1/2
0 E (υtυ

′
t) Σ−1/2 ⊗ Σ−1

)
Dn = −D′n

(
Σ−1

0 ⊗ Σ−1
0

)
Dn,

where the equality is based on (B.1) and the fact E (υtυ
′
t) = n−1In. Thus, we can conclude

that

E
(

∂2

∂σ∂σ′
gt (θ0)

)
= D′n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )E [h′0 (ε′tεt) (εtε

′
t ⊗ εtε′t)]

(
Σ−1/2 ⊗ Σ−1/2

)
Dn

− 1

2
D′n
(
Σ−1 ⊗ Σ−1

)
Dn.
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Using (B.3) and (A.2) one obtains

E [h′0 (ε′tεt) (εtε
′
t ⊗ εtε′t)] =

[
E
(
ρ4
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

)
− E

(
ρ4
t

(
h0

(
ρ2
t

))2
)]
E (υtυ

′
t ⊗ υtυ′t)

=
n (n+ 2)

4
E (υtυ

′
t ⊗ υtυ′t)− i0E (υtυ

′
t ⊗ υtυ′t) ,

where the latter equality is based on (S.6) and the definition of i0 (see (12)). Thus,

E
(

∂2

∂σ∂σ′
gt (θ0)

)
=

1

4
D′n(Σ

−1/2
0 ⊗ Σ

−1/2
0 ) [n(n+ 2)E (υtυ

′
t ⊗ υtυ′t)− 2In2 ] (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn

− i0D′n(Σ
−1/2
0 ⊗ Σ

−1/2
0 )E (υtυ

′
t ⊗ υtυ′t) (Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn.

Because E (υtυ
′
t ⊗ υtυ′t) = DnE ((vech(υtυ

′
t))(vech(υtυ

′
t))D

′
n the right hand side equals

−Iσσ (θ0) if the expression in the brackets can be replaced by vec(In)vec(In)′. From (S.7)
it is seen that this expression can be replaced by vec(In)vec(In)′ + Knn − In2 . Thus, the
desired result follows because

(Knn − In2) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn = (Σ

−1/2
0 ⊗ Σ

−1/2
0 ) (Knn − In2)Dn = 0

by Results 9.2.2(2)(b) and 9.2.3(2) in Lütkepohl (1996).
Block Iλλ (θ0). By the definition of Iλλ (θ0) and the expression of ∂2gt (θ) /∂λ1∂λ

′
2 (see

Appendix A) it suffi ces to note that

E
[

1

f (ρ2
t ;λ0)

∂2

∂λ∂λ′
f
(
ρ2
t ;λ0

)]
=

πn/2

Γ (n/2)

∫ ∞
0

ζn/2−1 ∂2

∂λ∂λ′
f (ζ;λ0) dζ = 0,

where the former equality is based on (10) and the latter on Assumption 6(ii) (cf. the
corresponding part of the proof of Proposition 2, Block Iλλ (θ0)).
Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). The former is an immediate consequence of the expres-

sion of ∂2gt (θ) /∂ϑ1∂σ
′ (see Appendix A), the independence of εt and ∂ε′t (ϑ0) /∂ϑ1, and

the fact E (∂ε′t (ϑ0) /∂ϑ1) = 0 (see (A.4)) which imply E (∂2gt (θ0) /∂ϑ1∂σ
′) = 0.

As for Iϑ1λ (θ0), it is seen from the expression of ∂2gt (θ) /∂ϑ1∂λ
′ (see Appendix A),

the definition of function h (see above (A.1)), and (A.4) that we need to show that

E
[

1

f0 (ε′tεt)
(u0,t−a ⊗ In) Σ−1

0 εt
∂

∂λ′
f ′ (ε′tεt;λ0)

]
= 0, a = 1, ..., r,

and similarly when 1/f0 (ε′tεt) is replaced by f
′
0 (ε′tεt) / (f0 (ε′tεt))

2. These facts follow from
the independence of u0,t−a and εt and the fact E (u0,t−a) = 0.
Block Iϑ2σ (θ0). From the expression of ∂2gt (θ) /∂ϑ2∂σ

′ (see Appendix A) and (A.5)
we find that

∂2

∂ϑ2∂σ′
gt (θ0)

= −2h0 (ε′tεt)

s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)
r∑

a=0

(ε′t ⊗ yt+b−a ⊗ Π′a0)
(
Σ−1

0 ⊗ Σ−1
0

)
Dn

−2h′0 (ε′tεt)
s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)

r∑
a=0

(yt+b−a ⊗ Π′a0) Σ−1
0 εt (ε′t ⊗ ε′t)

(
Σ−1 ⊗ Σ−1

)
Dn.
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By independence of εt and equation (5), yt+b−a on the right hand side can be replaced
by Ψb−a,0εt when expectation is taken. Thus, using the definition of et0 (see (A.1)) and
straightforward calculation the expectation of the first term on the right hand side becomes

−2
s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)

r∑
a=0

E
[
e′0t ⊗Ψb−a,0εt ⊗ Π′a0Σ

−1/2
0

]
(Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= −2
s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)
r∑

a=0

A0 (b− a, i)E [(e′0t ⊗ εt ⊗ In)] (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

=

s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)
r∑

a=0

A0 (b− a, i) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where, again, A0 (b− a, i) = Ψb−a,0Σ
1/2
0 ⊗ Π′a0Σ

−1/2
0 and the latter equality is due to

E(e′0t ⊗ εt ⊗ In) = E(εte
′
0t ⊗ In) = −2−1In2 (see (B.5)).

The expectation of the second term in the preceding expression of ∂2gt (θ0) /∂ϑ2∂σ
′

can similarly be written as

−2
s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)E

[
h′0 (ε′tεt)

r∑
a=0

(Ψb−a,0εt ⊗ Π′a0) Σ−1
0 εt (ε′t ⊗ ε′t)

]
(Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where, by (B.3) and (A.2), the expectation equals{
E
[
ρ4
t

f ′′0 (ρ2
t )

f0 (ρ2
t )

]
− E

[
ρ4
t

(
h0

(
ρ2
t

))2
]} r∑

a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ′t)

=

(
n (n+ 2)

4
− i0

) r∑
a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ′t) .

Here we have used (S.6), the definition of i0 (see (12)), and straightforward calculation.
Combining the preceding derivations shows that

E
(

∂2

∂ϑ2∂σ′
gt (θ0)

)
= 2

(
i0 −

n (n+ 2)

4

) s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)
r∑

a=0

A0 (b− a, i)E (υtυ
′
t ⊗ υtυ′t)

× (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

+

s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)

r∑
a=0

A0 (b− a, i) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= 2
s∑
b=1

∂

∂ϑ2

φ′b (ϑ20)

r∑
a=0

A0 (b− a, i)DnJ0D
′
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn,

where the last expression equals −Iϑ2σ (θ0) and the latter equality can be justified by
using the definition of J0, the identity (S.7), and arguments similar to those already used
in the case of block Iσσ (θ0) (see the end of that proof).
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Block Iϑ2λ (θ0). From the expression of ∂2gt (θ) /∂ϑ2∂λ
′ (see Appendix A) and (A.5)

it is seen that we need to show that

r∑
i=0

E
[

1

f0 (ε′tεt)
(yt+a−i ⊗ Π′i0) Σ−1

0 εt
∂

∂λ′
f ′ (ε′tεt;λ0)

]
= 0, a = 1, ..., r,

and
r∑
i=0

E
[
f ′0 (ε′tεt)

(f0 (ε′tεt))
2 (yt+a−i ⊗ Π′i0) Σ−1

0 εt
∂

∂λ′
f (ε′tεt;λ0)

]
= 0, a = 1, ..., r.

The argument is similar in both cases and also similar to that used in the proof of Propo-
sition 2 (see Block Iϑ2λ (θ0)). For example, consider the former and use (5) and indepen-
dence of εt to write the left hand side of the equality as

r∑
i=0

E
[

1

f0 (ε′tεt)
(Ψa−i,0εt ⊗ Π′i0) Σ−1

0 εt
∂

∂λ′
f ′ (ε′tεt;λ0)

]
=

r∑
i=0

A0 (a− i, i)E (υt ⊗ υt)E
[

ρ2
t

f0 (ρ2
t )

∂

∂λ′
f ′
(
ρ2
t ;λ0

)]
,

where that equality is due to (B.3). Because E (υt ⊗ υt) = vec(E (υtυ
′
t)) = n−1vec(In) the

last expression is zero by (B.6). A similar proof applies to the other expectation.
Block Iσλ (θ0). One obtains from the expression of ∂2gt (θ) /∂σ∂λ′ (see Appendix A)

that E (∂2gt (θ0) /∂σ∂λ) is a sum of two terms. One is

−D′n(Σ
−1/2
0 ⊗ Σ

−1/2
0 )E

[
1

f0 (ε′tεt)
(εt ⊗ εt)

∂

∂λ′
f ′ (ε′tεt;λ0)

]
= −D′n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )E (υt ⊗ υt)

× E
[

ρ2
t

f0 (ρ2
t )

∂

∂λ′
f ′
(
ρ2
t ;λ0

)]
,

where the equality is based on (B.3) and, using (10), the last expectation can be written
as

πn/2

Γ (n/2)

∫ ∞
0

ζn/2
∂

∂λ′
f ′ (ζ;λ)

∣∣∣∣
λ=λ0

dζ =
πn/2

Γ (n/2)

∂

∂λ′

∫ ∞
0

ζn/2f ′ (ζ;λ) dζ|λ=λ0 = 0.

Here the former equality is justified by Assumption 6(ii) and the latter by (B.1). By similar
arguments it is seen that the second term of E (∂2gt (θ0) /∂σ∂λ) becomes −Iσλ (θ0). �

Remaining parts of the proof of Theorem 1. We demonstrate (B.11) for some typi-
cal components of ∂2gt(θ)/∂θ∂θ

′ and note that the remaining components can be handled
along similar lines. Of ∂2gt(θ)/∂ϑi∂ϑ

′
j i, j ∈ {1, 2} we only consider ∂2gt(θ)/∂ϑ1∂ϑ

′
2. In

what follows, c1, c2, ... will denote positive constants. From the expression of ∂2gt (θ) /∂ϑ1∂ϑ
′
2

(see Appendix A), Assumption 3, and the definitions of the quantities involved (see (A.1),
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(A.6), (A.5), (18)) it can be seen that

Eθ0
(

sup
θ∈Θ0

∥∥∥∥ ∂2

∂ϑ1∂ϑ
′
2

gt(θ)

∥∥∥∥) ≤ c1Eθ0

(
sup
θ∈Θ0

‖et (θ)‖
r∑
i=1

∥∥∥∥ ∂

∂ϑ2

u′t−i (ϑ2)

∥∥∥∥
)

+c2Eθ0

(
sup
θ∈Θ0

r∑
i=1

‖ut−i (ϑ2)‖
∥∥∥∥ ∂

∂ϑ2

e′t (θ)

∥∥∥∥
)

≤ c3Eθ0

( s∑
j=−r
‖yt+j‖

)2

sup
θ∈Θ0

∣∣h (εt (ϑ)′Σ−1εt (ϑ) ;λ
)∣∣

+c4Eθ0

( s∑
j=−r
‖yt+j‖

)4

sup
θ∈Θ0

∣∣h′ (εt (ϑ)′Σ−1εt (ϑ) ;λ
)∣∣ .

Finiteness of the last two expectations can be established similarly, so we only show the
latter. First conclude from (A.2) and Assumption 7 that, with Θ0 small enough,

sup
θ∈Θ0

∣∣h′ (εt (ϑ)′Σ−1εt (ϑ) ;λ
)∣∣ ≤ 2a1 + 2a2

(
sup
θ∈Θ0

εt (ϑ)′Σ−1εt (ϑ)

)a3
≤ c5

(
1 + sup

θ∈Θ0

‖εt (ϑ)‖2a3

)

≤ c6

1 +

(
s∑

j=−r
‖yt+j‖

)2a3
 ,

where the last equality is obtained from the definition of εt (ϑ) (see (18)). Thus, it

follows that we need to show finiteness of Eθ0
((∑s

j=−r ‖yt+j‖
)4+2a3

)
or, by Minkowski’s

inequality and (5), finiteness of

Eθ0
(
‖εt‖4+2a3

)
≤ c7Eλ0

(
ρ4+2a3
t

)
=

πn/2

Γ (n/2)

∫ ∞
0

ζn/2+1+a3f (ζ;λ0) dζ <∞,

where the former inequality is justified by (B.3) and the latter by Assumption 7.
From (18) and the expression of ∂2gt (θ) /∂σ∂σ′ (see Appendix A) it can be seen

that the treatment of ∂2gt(θ)/∂σ∂σ
′ is very similar to that of ∂2gt(θ)/∂ϑ1∂ϑ

′
2 and the

same is true for ∂2gt(θ)/∂ϑi∂σ
′ (i = 1, 2). Next consider ∂2gt(θ)/∂λ∂λ

′. The dominance
assumptions imposed on the third and fifth functions in Assumption 7 together with
the triangular inequality and the Cauchy-Schwarz inequality imply that, with Θ0 small
enough,

Eθ0
(

sup
θ∈Θ0

∥∥∥∥ ∂2

∂λ∂λ′
gt(θ)

∥∥∥∥) ≤ 2a1 + 2a2Eθ0
((

sup
θ∈Θ0

εt (ϑ)′Σ−1εt (ϑ)

)a3)
,

where finiteness of the right hand side was established in the case of ∂2gt(θ)/∂ϑ1∂ϑ
′
2. The

treatment of the remaining components, ∂2gt(θ)/∂ϑi∂λ
′ and ∂2gt(θ)/∂σ∂λ

′, involve no
new features, so details are omitted.
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Finally, because

− (T − s− r)−1 ∂2lT (θ̂)/∂θ∂θ′ = − (T − s− r)−1
T−s∑
t=r+1

∂2gt(θ̂)/∂θ∂θ
′,

the consistency claim is a straightforward consequence of the fact that ∂2gt(θ)/∂θ∂θ
′ obeys

a uniform law of large numbers. �

19


