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PROBLEMS AND SOLUTIONS

PROBLEMS

03.5.1. A Concise Derivation of the Wallace and Hussain
Fixed Effects Transformation

Badi H. Baltagi
Texas A&M University

Consider the panel regression model with two-way error component distur-
bances defined by

uit:/.Li+At+Vit i:].,...,N t:].,...,T.

Wallace and Hussaif1969 derive the fixed effects transformation for this model
by “trial error and generalizatiohUse the Frisch—-Waugh—Lovell theorem de-
scribed in Davidson and MacKinndii993 p. 19) to obtain a concise deriva-
tion of this Within transformation
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03.5.2. Consistent Standard Errors for Target Variance
Approach to GARCH Estimation

Dennis Kristensen and Oliver Linton
London School of Economics

In a recent paper Engle and Sheppé&2601) have used a “target variance”
approach to estimate a class of multivariate generalized autoregressive condi-
tional heteroskedasticitfGARCH) models The question we pose here is how
to derive the asymptotic distribution of the estimators and find the correct stan-
dard errors for a univariate version of thBuppose that

_ 2 _ 2 2
Yt = &0, o = o+ o+ Yy,

wheree, is independent and identically distributed mean zero and variance one
The parameters are assumed to be positivg,y > 0, and satisfy

B+y <Ll (1)
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Under (1), the unconditional varianger?, is well defined and is given by
w

We can reparameterize the model in termg®f, 3,7):

of =0*(1—y—B)+Bofi+ vy

The target variance approach is to choose the estimatdr of (8,y) as
0 = arg mineeo €7(6, 62) where

o2 = E(0?) =

T 2

17 1
01(0,62) = ——= > logo(0,62) — —= >, %

2T &1 2T & O'tz(g,é'z)
and
02(0,62) = 6%(1—y — B) + Bol1+ yyi1,
1 T
A2 _ T 2
T gllﬁ-

This method has a nice computational advantage over the usual GARCH esti-
mation because the optimization is only with respect to the two parangters
and avoids the usual problem where there is a high covariance between the
maximum likelihood estimates @ andg.

Derive the asymptotic variance ofT(d — 6) and suggest consistent stan-
dard errors
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SOLUTIONS

02.5.1. A Mixingale Inequality Using an Exponential Moment

Robert M de Jong
Michigan State University

First note that for alK > 0,
[E(X|GLM — EXdlp
= [E(X (X = K)GEM — EX (X ] =K,
HIEX (X ] > K)GE™) = EX (X > Kl
= 6a(M)YPK + 2(E|X;| PI (| X;| > K)¥P,
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where the last equation follows from the inequality
[ECVIGEM — EXlp = 6a(m)YPH1 Y],
with r = co and; = X1 (| X;| = K) and the inequality
[ECX (X > K)IGET™ — EX (X ] > K)lp

= 2| X (X > K)lp = 2(E[X [P1( X | > K)YP.

Next, note that for allK = 1,

o]

£ > K) = [ P(X| > 4P ds
KP

= foo P(exp(|X,|) > exp(s*?)) ds

K
= Eexp(\Xt\)f exp(—s¥P) ds
KP

= Eexp(| X;|)Cp K Pt exp(—K)

for some constant,,, where the first inequality is the Markov inequalityn-
plying that for allK = 1,

IE(X ]G — EX[l, = 6Ka(m)™P + (2C,; Eexp(| X ) K P~ exp(—K))/P
= 6Ka(m)P + 2C{P(E exp(| X; ) YPK P exp(—K/p).

Now settingK = 2pEexp(| X;|)log(1 + a(m)~?) (and noting thakK > 1) will
turn the preceding inequality into

IE(X{1G1") — EXillp
= 12pEexp(| X )log(1+ a(m) ) a(m)¥P
+ 2C{P(E exp(| X;|) P (2pE exp(|X])

X log(1+ a(m) 1) YP(1 + a(m)~t) 2EexpIXD)
=a+b, say

Now note thaE exp(| X;|) > 1, implying that the last expression can be bounded
by
a+ CpEexp(| X))@+ a(m)™) "t (log(l+ a(m) 1) +P
= a+ CyEexp(|X])a(m*log(l+ a(m)?)
for constant<C,, andCp;. SettingC, = 12p + C,3 now gives
[E(X|G1M — EXllp = Cpa(m)*Plog(1+ a(m)~*)Eexp(| X)),

which is the stated result
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02.5.2. Durbin—Watson Statistic and Random Individual Effects

Stanislav Anatolyev
New Economic School, Moscow

In all regressionsthe residuals consistently estimate corresponding regres-
sion errors Therefore to find a probability limit of the Durbin—Watson statis-
tic, it suffices to compute the variance and first-order autocovariance of the
errors across the stacked equations

n—oo Qo

plim DW = 2<1— Q—1>,
where

1 T n
pllm—Z Zum 91=p|im—2 Euitui,t—l’
> NT 3175 n—oo NI =52
andu;’s denote regression errorsote that the errors are uncorrelated where
the indexi switches between individugleence summation froh= 2 in p;.
Consider the original regressiofl) where u; = w; + vi. Then gg =
g2+ a'i and

T-1

n
Z (i + o) (i +vi9) = ——— 0.

1
n; T

1 T
= = li
T 2 plim
Thus

_ T-1 o} To?+ o2

n—oo T o2+o0? T(o2+a))

Consider the Within regressid®) whereu;, = vy — ;.. Then

LS imis (T2, 2 T-1
== lim — — _ )
Qo T tZEJ_E)‘I—)w n |21< T Etvlr) T gy,
and
1 é 10 /T-1 1 1
I im - = — Ui s — —
o thza_m n<\ T Vi T T Vit1T g 2 Vir
rAt-1
T-1 1 1
><< T Gt1T TU T Et Uw)
T#FI—1
T-1
= a2




PROBLEMS AND SOLUTIONS 883

Thus

. T+1
plim DWyignin = 2 T
n—oo

Consider the Between regressi@) whereu;; = u; + ;.. Then

= — im— - )2 = —
QO T t:la—mo n i=1 /-LI U|< O-M T O-U
and
1< 12 T-1 1

== lim — 4+ 5 )2=— |02+ =0c2).
0= 2 plm &2 (i +0.)% = (‘T" TU”>
Thus

. 2
p lim DVVBetween= ?

n—oo

The generalized least squares transformation orthogonalizes the;errors
therefore

p ||m DWGLS = 2.
n—oo

Because all computed probability limits except that®Wi,, s do not depend
on the variance componentfie only way to construct an asymptotic test of
Ho: 02 =0vs Ha: 02> 0iis by usingDWo, s. UnderHo, VnT (DWp s — 2) -5
N(0,4) asn — oo (estimation of3 does not affect the limiting distribution
UnderHa, p lim,_,..DWg s < 2. Hence a one-sided asymptotic testzftﬁ'= 0
for a given levelx is

S Z,
Reject ifDWg, s < 2<1+ Vﬁ)

wherez, is the a-quantile of the standard normal distribution



