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PROBLEMS AND SOLUTIONS

PROBLEMS

03.6.1. The Central Limit Theorem for Student’s Distribution
Karim Abadir
University of York, UK

Jan Magnus
Tilburg University, The Netherlands

Let Xy,..., X, be a random sample from Studentig 't distribution where
v € R,. Investigate whethez, := X", x; /A, is asymptotically NO,1) for a
suitable choice of,,.

03.6.2. Unbiasedness of the OLS Estimator with Random Regressors

Michael Jansson
UC Berkeley

Consider the linear regression model

y=XB+u,
where X is ann X k matrix of random regressqgrs is an n-vector of error
terms andg is ak-vector of parametersSupposeX has full column rank with
probability one It is a standard textbook claim that the ordinary least squares
(OLS) estimator8 = (X'X) X'y of B is unbiased ifE(u|X) £ 0, where®=
signifies almost sure equalit$pecifically it is claimed that unbiasedness fol-
lows from the law of iterated expectations and the relaiiB|X) £ 8 +
(X'X)"IX'E(u| X). As it turns ouf this argument is flawed

(8 Show by example tha (u|X) ¥ 0 does not imply existence &(B).

(b) Provide stronger conditions under whiEli3) exists(and equal$3).

SOLUTIONS

02.6.1. Oblique Projectors— Solution

Gotz Trenkler(the poser of the problem
University of Dortmund, Germany

It is well known that an oblique projectdt can be written as
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wherer denotes the rank d* andU is a unitary matriXcf. Hartwig and Loewy
1992. BecauseK is not Hermitian we hav& # 0.
Consider the matrix

RUCOU*
- D 0/~

whereC = (I, + KK *)"* andD = K*C. Then

PRU"OU*
- \o o/

C CK
RP=U ) ) Uk
K*C K*CK

are both HermitianFurthermoreRPR = R andPRP = P. ThusR satisfies the
four conditions of the Moore—Penrose inversePof.e, R = P*.

If P™ were a projector we would get? = C, which impliesC = 1, and
consequentlK = 0. This is a contradiction

NOTE

1. Two solutions are publishegproposed independently by Go6tz Trinkléhe poser of the
problem and by Hans Joachim Werndtxcellent solutions have been independently proposed by
G. DhaenelL. Lauwers S. Lawford, and H Neudecker

REFERENCE

Hartwig, R.E. & R. Loewy (1992 Maximal elements under the three partial orddrmear
Algebra and Its Applicationd75 39-61

02.6.1. Oblique Projectors— Solution

Hans Joachim Werner
University of Bonn, Germany

The claimed result is an immediate consequence of the following more in-
formative characterization

THEOREM 1 Let P be an idempotent matrix; i.e., leP- P. Then P is
idempotent if and only if B= P*, with P™ and P* denoting the Moore-Penrose
inverse and the conjugate transpose of P, respectively.

Proof. Let P?2 = P = P*. ThenP = P32 = (P?)*, which in turn directly im-
plies that the Penrose defining equation®dfare satisfied foP* = P, and so
our proof of sufficiency is completd-or proving necessifyet P be such that
P2=Pand(P*)?=P*. If P =0, then triviallyP™ = 0 = P*. Next, let P # 0
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and letr denote the rank oP. According to the well-known singular value
decomposition theoren can then be written aB = UD,V*, whereU andV
are (column-unitary matricessuch thatu *U = V*V = |, and whereD, is an

r X r diagonal matrix with the positive singular values d®? along its main
diagonal In view of this decompositigrclearly

P2=PoD,V'U=1,VU=D1=U".

BecauseP™ = V(D,) U *, which again is easily seen by checking the Penrose
defining equations oP*, we likewise obtain

(P2 =P* o (D,)U*V=1, & U*"V=D, = V*U.

Combining these observations necessarily resultB,in= | = U*V = V*U.
Consequently(V — U)*(V — U) = 0, or, equivalentlyV = U. As claimed we
thus arrive aP = UU* = P*, and so our proof is complete u

Further equivalent conditions for an idempotent ma®ixo be Hermitian
are given in the following theorem

THEOREM 2 Let P be an idempotent matrix. The following conditions are
then equivalent:

(@) P=P* i.e., P is Hermitian.

(b) P= PP*P;i.e., Pis a partial isometry.
(c) R(P) =R(P*); i.e., P is an EP matrix.
(d) (PH)2=P".

(e) P =P.

(f) P* =P*.

That(a) & (b) © (c) has been shown recently in Wern@002. That (a) <
(e) & (f) can be shown on similar lines and is therefore left to the reader

REFERENCE

Werner H.J (2002 Partial isometry and idempotent matric€®lution 28-75 to Problem 28-7by
Gotz Trenkley. IMAGE: The Bulletin of the International Linear Algebra Soci@9 (October
2002, 31-32

02.6.2. Autoregression and Redundant Instruments— Solution

Stanislav Anatolye\ithe poser of the problem
New Economic School, Moscow

The vector of regressorsig = (Yi—1 Yi—2...Yi—«)". Lety; = y_; = E[ Y1V ]
andI} = (¥ ¥j-1...¥j-¢+1)- The matrix of cross-covariances xfandz; is
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Yp-1 Yp coo Yptk—2 - Yp+e-2

Yp—2  Yp-1 -+ VYp+k-3 -+ VYp+e-3
Qxz= . . . . . .

Yp—k VYp—kt1 - Yp-1 ceo o Ypte—k-1

= (I Owsc (=) Tp1 Ty ==+ Tp—2),

where |,, denotesm X m identity matrix and @, ..,,, — zeromy X m, matrix.
The covariance matrix of g, is

Yo Y1 o Ye-1
Y1 Yo - Ye—2
VZ.&‘:(TZ . . . . ZUz(Forl...I}_l).
Ye-1 Ye-2 -+ Yo

The efficient generalized method of moments estimator based on the instrumen-
tal vectorz, effectively uses the instrument optimal in the class of linear trans-
formations ofz,. This optimal instrument is QV,.'z (see e.g., West 2001.
We will show that in the matrix QV,.* the rightk X (¢ — k) submatrix is zerp
so that the optimal combination of elementsoinvolves only the firsk entries

Recall that the Yule—Walker equations for an &R model contain the fol-
lowing recursion

Yi = P1Yj—1 Tt p2Yj2t ot PYike j=1
This implies that
(prl Fp"'rp+€72) = P(prz prl"'rp+{’73)

= Pp_l(ro Fl‘ .. Fg,l),
where

P Opak
P = Oe
I€fl

and Q, denotes zeron X 1 vector Thus

Quz = (I O o) Tpoa Ty o T p—2) = 0~ 2(1 O (p—1) ) PP 1V,

It follows that Q,V,.* equalso ~?(Iy Oyx(¢—k)PP~%, a matrix whose righk X
(€ — k) submatrix is indeed zero
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