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A2.1 Additional Results

A2.1.1 Preference for the dominant option

Out of 82 subjects, 76 chose the dominant option in all three trials and three subjects

chose the dominant option in two out of three trials. Furthermore, one subject only

chose the dominant option once out of three trials and two subjects never chose the

dominant option. Let π be the probability of a random subject preferring the dominant

option in question N v O. If subjects would choose at random we would expect π = 0.5,

that is, subjects would be as likely to choose the dominant option as the dominated

option. Therefore, consider the following hypotheses, which can be tested using the exact

binomial goodness-of-fit test (equation (A2.1)):

H0 : π = 0.5,

H1 : π 6= 0.5.
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The null-hypothesis has a p-value of pBIE = 0.000. Therefore, we reject the null hypothesis

and conclude that subjects do not choose at random.

A2.1.2 Frequency of choices to aid the better off

Table A2.1 shows the percentage of all choices that favour the better off. As mentioned

in the main text, the resulting pattern is very similar to the pattern generated when

we consider the percentage of all subjects who favour the better off (see Table 2 in the

paper).

Table A2.1. Choices expressing a preference for aiding the better off, in percent

Choices Percentage of choices (n = 79·3)
expressing preference for better off

Similar along utility gain A v B 57.4
dimension; aiding better off B v C 53.6

lowers total utility C v D 51.9
D v E 39.7

Possible dissimilarity along A v C 41.4
both dimensions; aiding A v D 33.8

better off lowers total utility B v D 30.0
B v E 30.4
C v E 28.7

Wholly dissimilar; aiding A v E 25.3
better off lowers total utility S v R 16.0

U v T 19.4
W v V 16.5

Wholly dissimilar; aiding G v F 17.3
better off raises total utility Q v P 23.6

Note: n = 79·3. In the pairwise choices in the second column, the alternative which 
involves aiding the better off is always listed first.

Using McNemar’s exact test (see section A2.2.4 for an explanation of this test), we

examine whether the rate of aiding the better off differs between adjacent pairs in the

sequence A through E. Table A2.2 reports the results. We cannot reject the hypothesis

that the rate of aiding the better off is the same throughout A versus B, B versus C and

C versus D. This confirms the hypothesis that, in each of these pairwise comparisons,

only the gain dimension is regarded as similar. But we can reject, at the 5% confidence
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level, the hypothesis that this rate is the same in D versus E as it is for these other

paired alternatives. As mentioned in the main text, we conjecture that this is because

in this choice, a substantial number of subjects find the alternatives similar along both

dimensions, which means the similarity heuristic does not make a judgment at Stage 2,

but instead moves to Stage 3, at which individuals (we assume) have preferences in line

with common theories of distributive justice, and therefore choose E.

Table A2.2. Comparison of the distribution of choices between alternatives similar
along the health gain dimension

B v C C v D D v E
Better
off

Worse
off

Better
off

Worse
off

Better
off

Worse
off

Better
off 40.5 17.7 39.2 19.0 29.1 29.1

A v B 0.69 0.42 0.01∗∗∗
Worse
off 13.9 27.8 12.7 29.1 8.9 32.9

Better
off 39.2 15.2 32.9 21.5

B v C 0.83 0.01∗∗∗
Worse
off 12.7 32.9 5.1 40.5

Better
off 31.6 20.3

C v D 0.03∗∗
Worse
off 6.3 41.8

Note: n= 79. Numbers in the comparisons of distributions across (aiding the better off at a cost in total 
utility, aiding the worse off at a gain in total utility) give percentages of the total population. Numbers in 
the grey boxes give the probability p of obtaining the observed results, or anything more extreme, if the 
answers come from the same distribution according to McNemar’s exact test. We cannot reject the null 
hypothesis that A v B, B v C, and C v D are drawn from the same distribution, but can reject the 
hypothesis that responses to D v E come from the same distribution as other responses.
***p>.01
**p>.05
*p>.10

Again using McNemar’s test, Table A2.3 examines the evidence for our prediction

that subjects will switch from favouring the better off in choices between alternatives

that are similar along the gain dimension to favouring the worse off in choices between

wholly dissimilar alternatives. The underlined numbers in the top-right-hand corner of

every comparison indicate the predicted switch. Throughout, this switch is substantial;

moreover, there is no comparable switch in the opposite direction. For example, 50.6%

of all subjects switch from aiding the better off in a choice between A and B to aiding

the worse off in a choice between S and R, while only 5.1% switch in the other direction.
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The grey boxes report the probability of finding this pattern if the underlying rate of

aiding the better off were the same. We can reject this hypothesis at the 1% significance

level for all comparisons but one, and at the 5% level for the remaining comparison.

Table A2.3. Comparison of the distribution of choices between alternatives similar
along the health gain dimension

A v E S v R U v T W v V
Better
off

Worse
off

Better
off

Worse
off

Better
off

Worse
off

Better
off

Worse
off

Better
off 21.5 36.7 7.6 50.6 7.6 50.6 11.4 46.8

A v B 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
Worse
off 1.3 40.5 5.1 36.7 6.3 35.4 2.5 39.2

Better
off 17.7 36.7 8.9 45.6 8.9 45.6 12.7 41.8

B v C 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
Worse
off 5.7 40.5 3.8 41.8 5.1 40.5 1.3 44.3

Better
off 20.3 31.6 11.4 40.5 10.1 41.8 13.9 38.0

C v D 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
Worse
off 2.5 45.6 1.3 46.8 3.8 44.3 0.0 48.1

Better
off 15.2 22.8 5.1 32.9 6.3 31.6 10.1 27.8

D v E 0.02∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗
Worse
off 7.6 54.4 7.6 54.4 7.6 54.4 3.8 58.2

Note: n= 79. Numbers in the comparisons of distributions across (aiding the better off at a cost in total 
utility, aiding the worse off at a gain in total utility) are percentages of the total population. Underlined 
numbers represent the predicted shift from aiding the better off when choosing between partly similar 
alternatives to aiding the worse off when choosing between wholly dissimilar alternatives. Numbers in the 
grey boxes give the probability p of obtaining the observed results, or anything more extreme, if the 
answers come from the same distribution according to McNemar’s exact test. We can confidently reject 
the hypothesis that responses to partly similar alternatives and responses to wholly dissimilar alternatives 
come from the same distribution.
***p>.01
**p>.05
*p>.10

A2.1.3 In choices between dissimilar alternatives, a large major-

ity consistently choose to aid the worse off

Binomial point estimates and confidence intervals

For questions S v R, U v T and W v V, let π be the probability of aiding the worse off

at a gain in total utility, and for questions G v F and Q v P, let it be the probability

of aiding the worse off at a cost in total utility. Table A2.4 shows for each question q
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the estimate for π using the maximum likelihood estimator expressed in equation (A2.3)

and the exact Clopper and Pearson binomial confidence interval expressed in equation

(A2.4). Between 83% and 85% aid the worse off when this also improves total utility, in

S v R, U v T and W v V, and 76% of subjects do so in all three questions. When aiding

the worse off comes at a cost, 83% displaying priority for the worse off in G v F, 73% in

Q v P, and 70% in both questions. Finally, 66% of subjects aid the worse off in all five

choices. The 99% lower bound is greater than 0.5 for all probabilities.

Correlation

Table A2.5 shows the positive correlations between subjects aiding the worse off in S v

R, U v T, W v V, G v F and Q v P.1 The correlation between subjects aiding the worse

off in all three S v R, U v T and W v V, and displaying priority for the worse off in

both G v F and Q v P is 0.64.

Table A2.4. Proportion of subjects aiding the worse off

99% Confidence

Questions π̂ Lower Upper

S v R 0.85 0.73 0.94
U v T 0.83 0.70 0.92
W v V 0.84 0.71 0.93

S v R, U v T, W v V 0.76 0.62 0.87
G v F 0.83 0.70 0.92
Q v P 0.73 0.59 0.85

G v F, Q v P 0.70 0.55 0.82
S v R, U v T, W v V, G v F, Q v P 0.66 0.51 0.79

Note: n = 79. Maximum likelihood estimator (equation (A2.3)),
with Clopper and Pearson confidence interval (equation (A2.4)).

1The sample Pearson correlation coefficient is

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.
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Table A2.5. Correlation between questions

U v T W v V G v F Q v P
S v R 0.62 0.51 0.51 0.50
U v T 0.68 0.47 0.46
W v V 0.58 0.29
G v F 0.46

Note: n= 79. Correlations between aiding the worse
off in S v R, U v T, W v V, G v F and Q v P.

A2.1.4 Choices between dissimilar alternatives

Table A2.6 shows the frequencies from the choices between dissimilar alternatives and the

p-values from the null hypothesis that choices come from the same distribution. Since

the p-values are close to one, we cannot reject the hypothesis that choices from these

questions come from the same distribution.

Table A2.6. Comparison of the distribution of choices between dissimilar alternatives

U v T W v V
Better
off

Worse
off

Better
off

Worse
off

Better
off 8.9 3.8 7.6 5.1

S v R 1.00 1.00
Worse
off 5.1 82.3 6.3 81.0

Better
off 10.1 3.8

U v T 1.00
Worse
off 3.8 82.3

Note: n= 79. Numbers in the comparisons of distributions across (aiding the better off at a cost in total 
utility, aiding the worse off at a gain in total utility) give percentages of the total population. Numbers in 
the grey boxes give the probability p of obtaining the observed results, or anything more extreme, if the 
answers come from the same distribution according to McNemar’s exact test. We cannot reject any null 
hypothesis.

A2.1.5 Matching individuals with decision rules

As mentioned in the main text, when matching subjects with the decision rule that best

fits their behaviour, the similarity heuristic may benefit unduly from the variability it

allows in individuals’ perceptions of similarity. In the main text, we attenuate this prob-

lem by allowing only two forms of similarity judgments. Here, as a robustness check,
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we consider a version of the similarity heuristic that imposes the following uniform per-

ceptions of (dis)similarity across all subjects: Only and all adjacent alternatives in the

A through E sequence are similar along the gain dimension. This is a very demanding

test of this heuristic, since some diversity in individual perceptions of similarity is to be

expected, and doesn’t imply that individuals do not use the heuristic. Table A2.7 below

shows the results. Unsurprisingly, the share of subjects whose behaviour best matches

this uniform version of the similarity heuristic is somewhat less than the 41.8% that best

fit the version considered in the main text. At 36.7% it is roughly on a par with “always

aid the worse off”, which is the uniquely best match for 35.4% of the population (and

tied for best match for a further 5.1%). As in the version discussed in the main text, the

similarity heuristic remains a reasonably good explanation of the choices of individuals

who were matched with it: it gets 77.5% of their choices right, which is 10.0% better

than the success rate we would achieve if we could not appeal to the similarity heuristic

to explain these subjects’ choices.

Table A2.7. Matching subjects with decision rules when imposing uniform similarity
judgments

Rule Share (%) Fit (%) Fit premium (%)

Similarity heuristic 36.7 77.5 10.0
When no similarity:

Worst off 35.4 77.9
Total utility 1.3 66.7

Worse off 35.4 88.8 8.3
Greater number 17.7 74.8 27.0
Total utility 5.1 79.2 4.8
Worse off/total utility (tie) 5.1 76.8 n.a.

Note: n= 79, with 42 choices per person. “Fit” is the share of choices (in those
subjects in whose behaviour it fits best) consistent with the rule in question. The
“fit premium” is the difference between the share of these subjects’ choices explained
by the given rule and the share of these subjects’ choices explained by the next-best-
fitting rule.
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A2.2 Methodology

A2.2.1 Notation

Using a probabilistic version of the preference relation (see Tversky (1969)), let Pr(0, 1) be

the probability of choosing 0 when choosing between 0 and 1. Hence, Pr(0, 1)+Pr(1, 0) =

1, and 0 is said to be preferred to 1 if is chosen more often than 1:

0 � 1 if and only if #(0) > #(1).

This definition for preferences implies that for each question, instead of three, we only

have one observation on each subject. Therefore, for the analysis, each subject i is given

one observation for each question q:

yi,q =

 0 if #(0) > #(1),

1 if #(0) < #(1).

A2.2.2 Goodness-of-fit

Exact binomial and multinomial tests for goodness-of-fit

Let π be the probability of yi,q = 1, and x be the number of times that yi,q = 1 in the

obtained data:

π = Pr(yi,q = 1),

x = #(yi,q = 1).

Consider the null hypothesis that the true probability is π0, and the alternative hypothesis

that it is not π0:

H0 : π = π0,

H1 : π 6= π0.
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The p-value from the exact binomial goodness-of-fit test is the probability of observing

the obtained data, or any other data that is less likely to occur under the null hypothesis:2

pBI ≡
∑

z:Pr(z | n,π0)≤Pr(x | n,π0)

Pr(z | n, π0). (A2.1)

Exact trinomial tests for goodness-of-fit for H0 : π1 = π2 = π0
12

As explained in Section 4.4 of the main text, to assess whether intransitivities are more

frequent in the direction explicable by use of the similarity heuristic, we need a trinomial

test. Let yi,T be a trinomial random variable taking values k = 1, 2, 3. Furthermore, let

πk be the probability of yi,T taking the value k and, and xk be the number of times that

yi,T takes the value k in the obtained data:

π =


π1

π2

π3

 , πk = Pr(yi,T = k),

x =


x1

x2

x3

 , xk = #(yi,T = k).

The null hypothesis we want to test is that π1 = π2 = π0
12.3 There is a number of ways this

can be tested, since π0
12 can be any number between 0 and 0.5. One approach would be

to construct a test statistic that integrates over values of π0
12, giving each equal weight.

Doing so would, however most likely give very small p-values since the data we have

observed will be very unlikely given a number of values for π0
12. The most conservative

test statistic is constructed by picking π0
12 such that the the probability of observing the

2For the binomial distribution, the probability of an outcome that occurs with probability π occurring
x times in n independent observations, is (Forbes et al., 2011)

f(x;n, π) = Pr(x | n, π) =

(
n
x

)
πx(1− π)n−x.

3We will use a two-sided test, which is more conservative than a one-sided test and more straight-
forward to carry out. In our sample x1 > x2 and therefore, if we reject π1 = π2 we can conclude that
π1 > π2.
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obtained data is maximized. Now, if π1 = π2 = π0
12, and therefore π3 = 1 − 2π0

12, the

probability of observing the obtained data x′ = (x1, x2, x3) is

Pr(x | π1 = π2 = π0
12) = a(π0

12)
b(1− 2π0

12)
c ≡ P (π0

12),

where a ≡ n!
x1!x2!x3!

, b ≡ x1 + x2 and c ≡ x3.4 The most conservative p-value is therefore

found by maximising P (π0
12) with respect to π0

12. That is, by setting π̂0
12 = x1+x2

2n
and

1− 2π̂0
12 =

x3
n
.5 Therefore, our hypothesis formally reads:

H0 : π = π̂0
12 = (π̂0

12, π̂
0
12, 1− 2π̂0

12) ≡ argmax
π0
12

P (π0
12),

H1 : π 6= π̂0
12,

and the p-value can be formally stated as:

pTRIπ̂0
12
≡

∑
z:Pr(z | n,π̂0

12)≤Pr(x | n,π̂0
12)

Pr(z | n, π̂0
12), (A2.2)

π̂0
12 = (π̂0

12, π̂
0
12, 1− 2π̂0

12) ≡ argmax
π0
12

P (π0
12).

4For the trinomial distribution, the probably of an outcome x under the probability vector π, is
(Forbes et al., 2011)

f(x;n,π) = Pr(x | n,π) = n!

3∏
k=1

πxk

k

xk!
.

5Find the value π̂0
12 such that the probability of obtaining the observed data, x1, x2 and x3, is

maximised, constrained on π1 = π2 = π0
12. That is

0 =
∂P (π0

12)

∂π0
12

∣∣∣
π0
12=π̂

0
12

= ab(π̂0
12)b−1(1− 2π̂0

12)c − 2ac(π̂0
12)b(1− 2π̂0

12)c−1.

Rearranging, we see that

π̂0
12 =

b

2(b+ c)
=

x1 + x2
2(x1 + x2 + x3)

=
x1 + x2

2n
,

1− 2π̂0
12 = 1− 2

x1 + x2
2n

= 1− 2
n− x3

2n
=
x3
n
.
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A2.2.3 Exact binomial estimation

Maximum likelihood estimation, the π̂ that maximizes the probability of observing the n

independent observations, can be used to estimate the π:6

π̂ =
x

n
. (A2.3)

The Clopper and Pearson (Clopper and Pearson, 1934) exact confidence interval is

{
π |

x∑
j=0

f(j;n, π) >
α

2

}
∩
{
π |

n∑
j=x

f(j;n, π) >
α

2

}
, (A2.4)

where
∑x

j=0 f(j;n, π) is the probability that a binomial random variable with probability

of success π has x or less successes in n trials and
∑n

j=x f(j;n, π) is the probability that

the same random variable has x or more successes in n trials. Therefore, the interval

includes all values between the lowest π such that the probability of obtaining x or more

successes in n trials is α/2 and the largest π such that the probability of obtaining x or

less successes in n trials is at least α/2. It is conservative in the sense that the coverage

probability is at least 1 − α, and it is sometimes said to be unnecessarily conservative

(Newcombe, 1998).

A2.2.4 Choices drawn from same distribution

Consider a sample of n randomly selected subjects. Each subject i is examined under

two different scenarios, that is, two different questions, q = qa, qb. We want to know if

the question affects the choice. The McNemar test is appropriate, since each subjects is
6The log-likelihood function is

lnL(π|x) = ln

(
n
x

)
+ x lnπ + (n− x) ln(1− π),

which is maximized at

0 =
∂

∂π
logL(π|x)

∣∣∣
π=π̂

=
x

π̂
− n− x

1− π̂
.

Rearranging we get (A2.3).
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observed twice.7 Let xlk be the number of subjects choosing l in qa and k in qb, see Table

A2.8.

Table A2.8. McNemar contingency table

qb

0 1

qa
0 x00 x01
1 x10 x11

What is of interest are x01 and x10 since they represent subjects who responded

differently under the two experimental conditions. Let xp01 and x
p
10 denote the frequencies

of x01 and x10 in the underlying population, and

π01 ≡
xp01

xp01 + xp10
,

π10 ≡
xp10

xp01 + xp10
.

If there is no difference in choices between the experimental conditions, these two prob-

abilities should be the same, π01 = π10 = 0.5. Therefore, the null hypothesis and the

alternative hypothesis are the following:

H0 : π01 = π10 = 0.5,

H1 : π01 6= π10.

That is, the null hypothesis is that the probability of giving response 1 in the first question

and 0 in the second question is the same as the probability of giving response 0 in the

first question and 1 in the second question.

Let x ≡ max(x01, x10), x ≡ min(x01, x10) and m ≡ x01 + x10. If the true probabilities

are π01 = π10 = 0.5, then the likelihood of obtaining a frequency of x or greater in either

x01 or x10, which is the same as the likelihood of obtaining a frequency of x or less in
7See for example Hoffman (1976) and Sheskin (2003, p. 507). Amongst authors using McNemar test

are Rutström and Williams (2000),Faravelli (2007) and Manzini and Mariotti (2010).
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either x01 or x10, is

Pr(x01 or x10 ≥ x | π01 = π10 = 0.5) = Pr(x01 or x10 ≤ x | π01 = π10 = 0.5)

=
m∑
j=x

 j

m

 (0.5)j(0.5)m−j.

Using the null and alternative hypothesis described above, the p-value (the probability

of obtaining the observed data, or anything more extreme, given the null) is

pM = 2 ·
m∑
j=x

 j

m

 (0.5)j(0.5)m−j. (A2.5)
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