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Abstract
For greater autonomy of visual control-based solutions, especially applied to mobile robots, it is necessary to con-
sider the existence of unevenness in the navigation surface, an intrinsic characteristic of several real applications. In
general, depth information is essential for navigating three-dimensional environments and for the consistent param-
eter calibration of the visual models. This work proposes a new solution, including depth information in the Visual
Path-Following (VPF) problem, which allows the variation of the perception horizon at runtime while forcing the
coupling between optical and geometric quantities. A new NMPC (Nonlinear Model Predictive Control) framework
considering the addition of a new input to an original solution for the constrained VPF-NMPC allows the main-
tenance of low computational complexity. Experimental results in an outdoor environment with a medium-sized
commercial robot demonstrate the correctness of the proposal.

1. Introduction

Growing computational power associated with high-performance embedded instrumentation has led to
autonomous vehicles being susceptible to applications in the most varied contexts. Whether for safety or
efficiency reasons, it is necessary to increase the autonomy levels in several applications, such as intelli-
gent transport systems ([1], [2]), search and rescue ([3], [4]) or for navigation in industrial environments
compatible with the precepts of Industry 4.0 ([5], [6]), to name a few.

Especially for these applications, the wide availability of low-cost visual sensors has enabled the
development of controllers capable of generating control actions directly from the image plane, such
as the classical IBVS (Image-Based Visual Servoing) based solutions. For this class of controllers,
recent solutions range from classical probabilistic methods ([7]) to deep reinforcement learning ([8])
approaches.

Among the strategies for robot control based on computer vision, there are relevant techniques for
visual path-following, capable of regulating a robot along an arbitrary visual path acquired at runtime. In
this case, there are significant advances for swimming robots ([9]), humanoids ([10]), UAVs (Unmanned
Aerial Vehicles) ([11]), or even surgical robots ([12]), with the citations limited to the last three years
only.

© The Author(s) 2022.
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The constrained nature of the camera’s field of view, in addition to the peculiar characteristics of lumi-
nosity and frame rate, encourage the application of optimal controllers, with NMPC (Nonlinear Model
Predictive Control) being an ideal strategy, due to its ability to apply directly to nonlinear, multivariable
and constrained models, in addition to its good inherent robustness characteristics ([13]).

Despite the easy adaptation to the requirements of different application scenarios, this class of con-
trollers has been the subject of constant investigations regarding computational cost analysis [14], and
new formulations focused on efficiency [15, 16].

Although visual path-following methods produce good results for planar paths, as proposed by [17]
and [18], even associated with NMPC as in [19], and [20], in several real situations, such as autonomous
navigation on highways or factory floors of mezzanine format, unevenness in the navigation surface
deserve special attention, as the reference paths are non-planar. In this case, path-following solutions
must consider the problem’s three-dimensionality to keep the visual system’s calibration parameters
coherent. This reality justifies the recent effort in evaluating strategies for lane line detection, such as
the systematic review carried out in [21].

An immediate solution to this problem is the use of in-depth information. However, in order not to
increase the computational complexity of the proposals, it is necessary to objectively define what infor-
mation is relevant since the complete treatment of a point cloud for the estimation of a three-dimensional
path, as would be the case of applying formal techniques for semantic segmentation of the path [22, 23]
increases the dimension of the problem, making it impossible to use optimal and interactive controllers
such as the NMPC.

Implementing this class of controllers in the solution of path-following problems has particular com-
putational load requirements due to the prediction and constrained non-linear optimization resolution
stages, which, when added to the demands of sophisticated stages of computer vision, substantially
compromise the available processing bandwidth. In this context, alternatives arise based on analytical
learning [24] through disturbance modeling by Gaussian processes, the human-like concept of visual
memory [25], deep reinforcement learning [26], among others that directly address the problem of path
following of mobile robots with greater computational efficiency since applications do not always allows
high embedded computational power.

This article proposes a new solution for navigation along non-planar paths by including RGB-D
sensors, which provide depth information at specific points for generating control actions directly from
the image plane. Starting from the original model proposed by [27] and improved by [28], a degree of
freedom is used to define the visual horizon and, for the maintenance of low computational complexity
indices, the new scheme adds a new input to the NMPC algorithm, forcing the coupling between optical
and geometrical quantities. The main advantage of this proposal is due to its ability to explicitly handle
constraints, being able to control the pose of the robot along a visual reference path, through an optimal
perception horizon, even on irregular and uneven navigation surfaces, among other imperfections.

To the best of the authors’ knowledge, it is the first work that deals with the problem of optimal control
under constraints for following visual paths in uneven outdoor terrain with a view to low computational
cost through an effective load balance between the computer vision and control stages. It is an effective
and generic solution that can be applied individually in structured environments with physical visual
paths or in conjunction with a superior perception layer capable of providing virtual visual paths.

Implementation results through the ROS framework, using the robot Clearpath Husky UGV
(UnmannedGroundVehicle) and the RGB-D sensorMicrosoft Kinetic in an external navigation environ-
ment, demonstrate that the proposed method produces satisfactory results for navigation on non-planar
surfaces.

The remainder of this article is structured as follows: Section 2 briefly formalizes the problem. Section
3 presents the proposed new model and the version of the NMPC algorithm used. Section 4 presents the
results, and Section 5 the main conclusions.
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2. Problem formalization

Figure 1 presents the necessary elements for geometrically modeling the problem of visual path fol-
lowing, as initially proposed by [27]. In this case, for a prespecified linear velocity profile v, the states
(identical to the present case outputs) consist of features extracted from a computer vision system at
each iteration.

Initially, having as a premise that the robot and the visual system are always in front and longitudinal
to the reference path, it defines a Serret-Frenet {SF} system at a point Pr , representing the movement of
a virtual robot that navigates at a constant linear velocity v. Such a point is defined through a distance
H that defines a visual horizon line1 in front of the robot. It intersects the path at Pr perpendicularly.

The geometric states shown in Figure 1(a) are the lateral displacement Z and the error angle θr
between the longitudinal line to the robot and the tangent line to the path at Pr . The visual quantities
corresponding to these states are presented in Figure 1(d), where∆xi is the visual correspondent for Z and
∆α is the visual correspondent for θr . Such correspondences are defined through individual calibration
constants, as detailed further in this section. The H parameter has a component in the camera’s field of
view directly related to ∆yi and is geometrically calculated as follows:

H =
l
2
+ d1 + d2; (1)

d1 = hc tan*
,
θcam −

θv
f ov

2
+
-
; (2)

d2 = kh∆yi, (3)

where:

• l: robot length;
• hc: camera height;
• d1: distance between the camera reference frame and the bottom point of the vertical field of view
(out of the image plane);

• d2: distance between the bottom coordinate of the vertical field of view and Pr in the image plane
(inside the image plane);

• θcam: camera focal axis angle;
• θv

f ov
: vertical field of view angle;

• kh: visual horizon calibration constant;
• yi: pixels in the vertical direction in the image plane.

The original model (Model 1 hereafter) for visual path-following is given as follows:

ue = ω − ωr, (4)

ẋe =

[
Ż
θ̇r

]
=

[
ωH + (ωZ + v) tan(θr )

ue

]
. (5)

where:

• ue: control input;
• ω: robot angular velocity;
• ωr : virtual vehicle angular velocity;
• xe: two-dimensional state vector;

1This is an imaginary line, only for calculating the quantities of interest.
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(a) Coordinate systems. (b) Lateral Sight.

(c) Real image. (d) Image plane.

Figure 1. Modeling the visual path following problem.

• s: Path length;
• c(s): Path Curvature at s, given by ωr

ṡ ;

Note that the underactuated nature of the system justifies the search for alternative models and
controllers to guarantee performance metrics compatible with the most varied types of applications.

Despite good performance in controlled environments, the original proposal suffers from several
practical problems. To solve issues with visual path discontinuity and curvature calculation, low ambient
luminosity, among other imperfections of typical navigation scenarios of real applications, [28] proposed
the interpolation of the visual path through a second-degree equation of the type xp = apyp

2+bpyp+cp ,
where xp and yp are coordinates of pixels in the image plane, providing to calculate the curvature as
follows:

c =
2ap

(1 + (2apyp + bp)2)
3
2

. (6)

The existence of a well-defined mathematical object for calculating the states and the curvature
parameter allows us to follow paths with more complex curvature profiles. It makes it possible to propose
new techniques considering the temporal variation of other parameters, such as the visual perception
horizon proposed in the present work.
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With this new way of estimating the visual path, we have an analytical method to obtain the current
system states (Z and θr ), given as follows:

Z = kz *
,

ap

k2
h

d2
2 +

bp

kh
d2 + cp − x0+

-
; (7)

θr = kθ atan
(

khZ
kzd2

)
. (8)

where:

• d2 = H − l
2 − d1 the component of the visual perception horizon in the image plane, as defined in (1);

• x0: horizontal coordinate of the vertex of the second-order function on the image plane
• kz : lateral displacement calibration constant;
• kθ : angular error calibration constant.

As yp is related to H through d2, there is a formal representation for the path, increasing the repre-
sentation of the static visual path-following model. However, it still has limited applicability in some
practical situations, as highlighted below:

• Parameter calibration: As can be seen in (7) and (8), both states depend on the calibration constant
kh , initially obtained by the relation between the number of pixels on the axis yp of the image plane,
for a single visual horizon value. Thus, it is necessary to define three calibration constants, which
increases the uncertainties in the measurements of the states.

• Constant horizon: Assuming a constant visual horizon invalidates the use of Model 1 on uneven
terrain, as it will generate inaccurate measurements of the states due to the slope of the terrain.
Moreover, this model imposes limitations on model-based controllers since it employs the prediction
horizon concept without establishing a physical correspondence with the visual horizon and misuses
the receding horizon concept.

• Model representativeness: Taking the time derivatives of (7) and (8), a substantial kinematic
inconsistency with (5) is observed (for H = cte→ Ḣ = Ż = θ̇r = 0), restricting the potential gains
from the application of model-based techniques. This fact forces the visual quantities to be used only
as an initial guess for the states, having no connection with the kinematic model obtained from the
geometric relations.

For successfully implementing the Model 1 approach, whose path profile in the image plane is illus-
trated in Figure 2(a), it is necessary to position the camera in front of and very close to the path. Thus it
is possible to reduce the effects of distortions in the images and obtain unique calibration constants. This
constraint makes the path appear practically straight in all frames so that the accuracy of the measured
curvatures is not critical. Interpolation using a second-order function, as shown in Figure 2(b), can com-
pensate for imperfections along the path and extend the fixed horizon to higher values. Nevertheless,
obtaining the calibration parameters remains a challenging task

Additionally, Figure 2 still illustrates two practical situations that justify the previous highlights. In
Figure 2(c), the robot moves on an uneven surface, typical of natural outdoor environments, in such a
way that parameter calibration is practically impossible without some preliminary information on the
nature of the irregularities. In Fig 2(d), one can see that the robot cannot navigate on non-planar surfaces,
given that the model used is incapable of considering variations in the horizon.

Finally, one of the most critical problems is the lack of correspondence between the kinematics of
pixels in the image plane and the state variables in the real world since with H constant makes consis-
tency only in a motionless case, since in this case (4) and (5) would become zero, which violates the
assumption of a constant velocity profile v.
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(a) Near path (b) Farthest path.

(c) Uneven surfaces. (d) Slopes.

Figure 2. Typical challenges of real situations.

In order to not further increase the computational complexity of the prior schemes, we solve this issue
by proposing a new model, contemplating variations in the visual horizon through depth information,
and exploring the good inherent robustness characteristics of NMPC controllers, as detailed in the next
section.

3. NMPC-based Visual Path Following Control with Variable Perception Horizon

Aiming for simplicity and considering that low computing power is available, we propose using RGB-D
cameras to acquire depth information at runtime.With such information, it is possible to obtain the visual
horizon directly from the images and efficiently calculate the constant kh through simple trigonometric
relations, partially solving the issue relating to estimating visual parameters.

Additionally, it will be possible to modify the camera’s pose so that the path in the image plane
becomes more representative, enabling the identification of broader profiles through longer perception
horizons. For this purpose, it is necessary to adjust the Model 1, starting from the geometric relations
illustrated in Figure 1 and from the side views illustrated in Figures 2(c) and 2(d), as follow:

Pr (s(t)) = P(t) + H (t) ~xr (θ(t)) − Z (t) ~yr (θ(t)). (9)

From the time derivative of the previous expression:

˙sT ~T (s) + ˙sN ~N (s) =

= ẋ ~xr (θ(t)) + ẏ ~yr (θ(t)) + Ḣ ~xr (θ(t)) + H (t)θ̇ ~yr (θ(t))+

+Z (t)θ̇ ~xr (θ(t)) − Ż ~yr (θ(t)). (10)
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Knowing that ˙sT = ṡ and ˙sN = ẏ ~yr = 0 due to non-holonomic constraints, omitting the angular and
temporal dependencies:

ṡ~T (s) = ( ẋ + Ḣ + Z θ̇) ~xr + (H θ̇ − Ż ) ~yr . (11)

The relationship between the robot coordinate system {r } and the Serret-Frenet {SF} system is given
as follows:

[
~xr
~yr

]
=

[
cos θr sin θr
− sin θr cos θr

] [
~T
~N

]
. (12)

Projecting this expression in the Serret-Frenet system and replacing the kinematic model of the
differential drive (ẋ = v cos θ; ẏ = v sin θ; θ̇ = ω):

Ż = ωH + (v + Ḣ + ωZ ) tan θr ; (13)

ṡ =
v + Ḣ + ωZ

cos θr
. (14)

Since θ̇r = ω − ṡc(s), we have:

Ż = ωH + (v + Ḣ + ωZ ) tan(θr ); (15)

θ̇r = ω − c(s)
(v + Ḣ + ωZ )

cos θr
. (16)

The current development makes it possible to establish a direct relationship between the measure-
ments of quantities in pixels, measured in the image plane, for the quantities measured in meters,
obtained from geometric modeling. This fact is noticeable when observing that the time derivative of
(7) and (8) are no longer null (Model 1 case) since Ż and θ̇ are given as follows:

Ż = *
,
2

ap

k2
h

d2 +
bp

kh
+
-

Ḣ; (17)

θ̇r =
kθ khkz (Żd2 + Z Ḣ)
(kzd2)2 + (kH Z )2

. (18)

As can be seen with the proposed model, Ż and θ̇ are related to Ḣ through optical quantities and
calibration parameters, providing greater representativeness of the model and coherence between the
visual and geometric quantities.

For a preliminary analysis of the proposed model non-linearity, we get the equilibrium points of the
system (13) and (14) as follows:

θr = sin−1(−Hc); (19)

Z =
ω
√
1 − (Hc)2

c
− (v + Ḣ). (20)
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Thus, there are no equilibrium points for Hc outside the interval [-1,1] and a discontinuity in c = 0.
Consequently, there is no trivial way to apply analytical linearization techniques directly and use tradi-
tional schemes to handle the stability of NMPC controllers. Also, it is possible to note the importance of
H for the present model, even if restricted to instrumental aspects, since there is no direct way to control
the curvature parameter.

Considering the availability of distance information to calculate the current H , we propose to use Ḣ
as a degree of freedom for changes in the visual horizon by adding a new input to the NMPC algorithm
as follows:

u1 =
Ḣ

cos θr
. (21)

Another control action, referring to angular velocity errors, is maintained like Model 1 approach, that
is:

u2 = ω − c(s)
(v + ωZ )
cos θr

. (22)

The new model (Model 2 hereafter) for the visual path-following problem, considering variations in
the perception horizon and compatible with the non-linear representations in state space, typically used
in the application of predictive controllers, is finally written as follows:

ue =

[
u1

u2

]
(23)

ẋe =

[
Ż
θ̇r

]
=

[
ωH +

(
ω−u2

c(s)

)
sin θr + u1 sin θr

u2 − c(s)u1

]
. (24)

Considering that the outputs are the states themselves, the problem of following visual paths, with
variable perception horizon, for differential robots can be summarized as follows:

Find Ḣ and ω, such that u1, u2 Z and θr are feasible.

With this proposal, it is possible to use depth information at specific points of interest without
requiring a complete point cloud treatment to estimate a three-dimensional path, thus maintaining low
computational cost requirements.

It is worth mentioning that the approach proposed here can be directly applied to structured environ-
ments, such as those commonly found for AGVs (Automated Guided Vehicles) navigation on the factory
floor or docking stations in general. A prominent case can be found in [29], where controllers for VPF
based onNMPCwere responsible for essential navigation tasks in a case study of additive manufacturing
operations by a mobile manipulator within a practical application2.

However, the path does not necessarily need to be physical. It is possible to explicit the generality of
the proposal by considering that the physical path can be used only in a training step and then removed
or even eliminated by using a virtual path that can be generated at runtime by a layer added on top of
the proposals in this article.

2More details at http://www.fastenmanufacturing.eu/index.php/visual-path-following-control/

http://www.fastenmanufacturing.eu/index.php/visual-path-following-control/
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3.1. NMPC Control scheme

The model represented by (23) and (24) is nonlinear, time-varying, and has constraints on inputs and
states (outputs), justifying the use of computationally efficient optimal control strategies. Predictive
control-based approaches meet some requirements due to their performance with constrained, time-
varying, multivariable problems. Due to the moving horizon principle, such controllers have good
inherent robustness characteristics and adapt well to disturbances, nonlinearities, and modeling errors.
In order to obtain effective solutions for the regulation of states around the origin (Z = θr = 0) with low
computational complexity requirements, this article deals with the following continuous-time NMPC
approach:

Jmin = min
ue

∫ t+Tp

t

F (xe (τ), ue (τ))dτ, (25)

subject to: ẋe (τ) = f (xe (τ), ue (τ)), (26)
ue (τ) ∈ U,∀ τ ∈ [t, t + Tc], (27)
xe (τ) ∈ X,∀ τ ∈ [t, t + Tp], (28)

with the stage cost F given by:

F (xe (τ), ue (τ)) = xTeQxe + u
T
eRue, (29)

where:
Tp: Prediction horizon;
Tc: Control horizon; With Tc ≤ Tp;
U : Set of feasible Inputs;
X: Set of feasible states;
Q, R: Positive definite matrices that weight deviations from required values.

Due to the characteristics of the proposed model and the need to evaluate the proposal in compari-
son with the original method (based on Model 1), this work does not address techniques to guarantee
feasibility or stability. Thus, the robustness characteristics inherent to NMPC controllers are explored
by including a direct correspondence between the prediction and perception horizons.

After solving the optimization problem referring to the NMPC algorithm ((25) to (29)), as the final
implementation step, the visual reference horizon Hre f , for the definition of Pr (s(t)) along the visual
path, and the physical control effort ωre f , are obtained using the optimal control inputs, u1opt and u2opt ,
as follows:

Hre f =

∫ t=tk+Ts

t=tk

u1(t)opt cos(θr (t))du1(t); (30)

ωre f =
u2(tk )opt cos θr (tk ) + c(s)v

cos θr (tk ) − cZ (tk )
, (31)

where tk the actual sampling instant.
The Algorithm 1 provides a pseudocode of the proposed solution to characterize the proposal better.

After that, the physical control actions (v, ωre f ) are sent to the internal control loop embedded in the
robot (PID for the wheels), and the new reference visual horizon is updated for the calculation of new
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features. Figure 3 illustrates more details of the elements necessary for the implementation. In this figure,
the expressions implemented in each block are highlighted.

This new visual control method directly from the image plane makes it possible to navigate on irreg-
ular and non-planar surfaces, in addition to increasing the levels of robustness concerning imperfections
in the visual system, as demonstrated in the experimental results of the next section.

Algorithm 1: Pseudocode of the Visual Path Following with variable horizon
Data: IRGB, ID ; /* Gets RGB and Depth Images */
Result: Hre f , ω; /* Provide optimal Horizon and Angular velocity */

1 while true do
; /* with N ∈ N+ and Ts the sampling instant */

2 if t = tk = NTs then
3 [I∗, Hre f ] = f it_curve(IRGB, ID ) ; /* fit a second order fuction to image;

detailed in: [28] */
4 [Z0, θr0, u10, u20 ] = get_ f eatures(I∗, Hre f ) ; /* get the initial states and control

inputs initial guess from (7) and (8) */
5 [Z1..TP , θr1. .TP , u10. .TP−1

, u20. .TP−1
] = preditor (Z0, θr0, u10, u20 ) ; /* states propagation

by truncated Taylor series based on (23) and (24) */
6 [u1opt , u2opt ] = optimizer (Z1..TP θr1. .TP , u10. .TP−1

, u20. .TP−1
) ; /* nonlinear

optimization by SQP algorithm; detailed in: [30] */
7 [Hre f , ωre f ] = get_actions(u1opt , u2opt ) ; /* calculates the optimal physical

control actions with (30) and (31) */
8 end
9 end

4. Results

Initially, the proposedmodel was validated in a realistic simulation environment, built using the software
gazebo, as seen in the video available at https://youtu.be/Ob7pSZ3O7_Q. These simulations show that
only the method based on Model 2 can follow the path completely, enabling the assembly of a setup to
acquire practical results.

For experimental evaluation, we define a scenario composed of a reference path with an arbitrary
curvature profile, in yellow color, drawn along a non-planar navigation surface, as illustrated in Figure
4(a). The algorithms were developed using the ROS framework and applied to the Clearpath Husky
UGV robot, illustrated in Figures 4(b) and 4(c), equipped with a sensor RGB-D Microsoft kinect with
the following pose in relation to the robot’s center of mass: xcam = 0.4m; ycam = 0m; zcam = 0.5m;
θcam = π/4 rad.

The embedded computer system where the proposal is implemented as the following specifications:
intel® CORE® i5 vPro 7th Gen, 8GB RAM, Ubuntu 16.04 LTS.

For an adequate comparison between the models, variations were made in the reference path to meet
the cases of navigation between two different levels and curves in unevenness. Additionally, the evalu-
ation criteria consider a scenario with significant variability of ambient lighting and long paths, aiming
to show, in a practical sense, that the proposed technique is robust to errors in the acquisition of visual
parameters and invariant to path length.

https://youtu.be/Ob7pSZ3O7_Q
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Figure 3. Proposed scheme for NMPC-based visual path-following control with variable perception
horizon. OLS: Ordinary Least Squares - The method used to fit the second-order curve to the path image
(further details in [28]); SQP: Sequential Quadratic Programming - Non-linear optimization method
used (further details in [30]).

(a) Path on non-planar surface.

(b) Mobile Robot - View 1.

(c) Mobile Robot - View 2.

Figure 4. Experimental environment.
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For the implementation of the NMPC controller, we considerTp = Tc = 3Ts due to the non-linearities
mentioned above, andTs = 0.2s, due to the dynamics of the open-loop system. The optimization problem
was solved using the general-purpose non-linear optimizer DONLP2 ([30]).

In both Model 1 and 2 evaluations, Table 1 presents the tuning parameters, and Table 2 shows the
constraints on states and inputs.

Table 1. NMPC Tuning parameters.
Q R

Model 1 diag(0.1; 0.1) 0.001
Model 2 diag(0.1; 0.1) diag(1; 0.01)

Table 2. NMPC inequality constraints.
|Z[m]| |θr [rad]| u1[rad/s] u2[m/s]

Model 1 0.5 0.5 2 -
Model 2 0.5 0.5 0.05 2

As it can be seen, the tuning parameter related to variations in the visual horizon has greater weight.
The idea is to avoid high variations that would lead the controller to produce a horizon estimate outside
the reference path due to imperfections in the visual system used for the test environment. This behavior
is also specified via a low value for the constraint corresponding to this parameter.

The following subsections provide the main results obtained.3

4.1. Models comparison

A high curvature loop was added to the path in a high slope area for the present evaluation, as illustrated
in Figure 5. The curved path is approximately 10m long and connects two uneven environments with
a vertical distance of approximately 1.6m. We consider the start plan as level 0 and an artificial light
environment.

The objective here is to directly confront the methods based on Models 1 and 2 for a navigation
velocity of 0.3m/s, producing the results illustrated in Figure 6. It is observed in Figure 6(a)4 that the
method based onModel 1 loses the visual path in the section with high curvature and unevenness, around
25s. In contrast, the proposed method follows the entire path, regardless of its curvature or unevenness.

Figure 6(b) shows the runtime instantaneous curvature profiles, which are pretty noisy due to the
performance of the visual parameters acquisition system for the scenario in question. As they are very
similar profiles, we credited the impossibility of varying the perception horizon as the main reason for
the poor performance of the method based on Model 1, confirming the existence of practical limits for
the inherent robustness of NMPC controllers.

Figure 6(c) shows themeasures of visual horizon variation given by∆H = H (k)−H (k−1), measured
in centimeters. It is possible to verify values coherent with the surface’s unevenness both with the robot
facing the unevenness and, laterally, at the point of most significant curvature.

Figure 6(d) shows the state errors, from which one can verify that the state constraints were satisfied
throughout the experiment, even in the most critical stretch, where the errors came close to the max-
imum value due to the parameters of tuning used. Figure 6(e) shows control actions compatible with

3Videos with the results presented here are available in the supplementary materials.
4The color bar on the right side represents the measure of the unevenness along an axis transverse to the world plane.
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Figure 5. Environment for comparison between models.

the experimental platform, reserve capacity for regulating more significant disturbances, and coherent
activity of the proposed controller.

The following subsection investigates why Model 1 does not work in the present scenario more
closely.

4.2. Limitation of Model 1

Calibration parameters were defined to level 0, related to the quota at the beginning of the experiment.
Thus, it is natural to expect the method based on Model 1 to work correctly for just this case. To show
this, Figure 7 illustrates the loop closing the path between the starting and ending points of the previous
experiment. The idea is to evaluate the behavior of model 1 when returning to the level at which the
parameters were originally calibrated.

Figure 8 illustrates the results obtained for a navigation velocity of 0.2m/s, a value even lower than
in the previous experiment, aiming to increase the regulation capacity of this method. As expected,
the robot gets lost when the curve is on the inclined surface, which it does not, even with degraded
performance, at the flat level, where the approach has been calibrated to work.

Figure 8(b) shows correctly regulations within limits established for the constraints, with an abrupt
loss occurring when passing through the stretch of the greater curvature. In these results, we perform a
manual rotation to repose the robot after losing its visual reference path in the image plane. From figure
8(c), one can see that it was not due to the platform’s movement physical limitation since the control
actions are far low from the maximum practicable. Thus, we confirm that the model has a significant
limitation for this navigation scenario.

On the other hand, we confirmed the proposal’s validity by running this same path for three different
velocities, all of which the path was followed thoroughly. Without loss of generality to more straight-
forward and better direct analyses, we get two quantitative metrics, more specifically, the integral of
absolute error (IAE) and the total control variation (TV ). The IAE index, calculated by

∫ TEND

0
|e(t) |dt,

is widely used to compare the performance of different strategies in similar experiments on the other
hand, the TV index, calculated by

∑kEND

k=0
|u(k)−u(k−1) |, aims to evaluate the effect of noise on control

signals. Table 3 presents the results.
As can be seen, the parameters remained coherent and compatible with the specifications of the

experimental platform in all cases.
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vnav[m/s] I AEZ [m] I AEθr [rad] TVv[m/s] TVω[rad/s]
0.3 1.4914 2.2777 0.3 6.5415
0.5 2.1075 3.2305 0.5 10.0321
0.7 2.5687 3.6943 0.7 18.3398

Table 3. Three velocity quantitative comparison.

(a) Poses plane - Red crosses: Model 1 Result; Green circles: Model 2 Result.

(b) Model parameters. (c) Visual horizon variation.

(d) State Error. (e) Control efforts.

Figure 6. Models 1 and 2 based methods experimental results.
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4.3. Detailed analysis of Model 2

This section provides a detailed evaluation of the proposed method’s performance. We define a long
path arranged on an uneven surface, with significant variability of ambient lighting, in stretches with
bifurcations and high curvature, as illustrated in Figure 9. The curved path is approximately 15m long
and connects two uneven environments in approximately 3.8m. Additionally, an object was positioned
in the transition zone between the lowest level and the ascent ramp, subjecting the proposed method to
an even more aggressive disturbance.

The results obtained from the complete experiment, at v = 0.2 m/s, are illustrated in Figure 10. It
is possible to note that the path was followed entirely, in both directions (down and up), even with the
various imperfections added (see Figure 10(a)). Figure 10(b) shows the physical parameters acquired at
runtime. As can be seen, even with intentional perturbations that make the equilibrium points undefined,
the system can regulate the state errors, as shown in Figure 10(d).

Figure 10(c) shows the instant visual horizon variation measures. It is possible to notice minor vari-
ations due to the lower speed and an abrupt disturbance due to the object positioned along the path. The
physical control actions are fully compatible with the experimental platform, as shown in Figure 10(e).
Also, for this experiment, the instantaneous values of the internal control actions are shown in Figure
10(f), confirming that the inputs’ constraints were fully satisfied.

Regarding computational performance, the instantaneous processing times were acquired throughout
the experiment, as illustrated in Figure 10(g). It is possible to notice the computational efficiency of
the proposal since, in just one sample, the processing time Tproc was close to the sampling period Ts ,
highlighting an average of approximately 10% of Ts .

Finally, to attest to the repeatability of the proposal, the same experiment was performed three more
times, producing the results in Figure 11. One can note similar and satisfactory performances, especially
when considering a robot of about 50 kg weighing navigates a long and uneven path based only on visual
information.

Tables 4 and 5 gather some statistical data obtained through these experiments. It is worth highlighting
mean values for the error states and the physical control action close to zero, low standard deviations,
including for the quantitative metrics IAE and TV.

Z[m] σZ [m] θr [rad] σθr [rad] I AEZ [m] σI AEZ [m] I AEθr [rad] σI AEθr [rad]
-0.0041 0.0314 -0.0061 0.0460 4.2468 2.5435 6.9137 3.9525

Table 4. Three experiments state data analysis..

Figure 7. Environment for Model 1 analysis..
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(a) Poses plane.

(b) State Error.

(c) Control efforts.

Figure 8. Model 1 analysis.

Figure 9. Environment for Model 2 analysis.

v[m/s] σv[m/s] ω[rad/s] σω[rad/s] TVv[m/s] σTVv [m/s] TVω[rad/s] σTVω [rad/s]
0.2 0.1067 -0.0012 0.0793 0.2 0.005 24.6209 16.8627

Table 5. Three experiments control actions data analysis..
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(a) Poses plane.

(b) Model parameters.

(c) Visual horizon variation.

(d) State error. (e) Control efforts.

(f) Internal control variables.
(g) Processing time.

Figure 10. Model 2 analysis.
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(a) Comparizon 3D view.

(b) Comparizon XY view.

(c) Comparizon XZ view.

(d) Comparizon YZ view.

Figure 11. Three experiments comparison..

5. Conclusions

This article proposes a new model for the visual perception horizon variation of NMPC-based visual
path-following control. With this new model, navigation problems on uneven and non-planar surfaces
are solved, in addition to calibrating visual parameters and ensuring consistency between optical and
geometric quantities by including RGB-D sensors, enabling the extension of real applications.

To maintain the requirements of low computational complexity, we include specific and local depth
information and define a degree of freedom used for the variation of the visual horizon, even if limited
to the physical field of view, so that we detect the optimal point for parameter acquisition at runtime.
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The inherent characteristics of the NMPC algorithm allow the application of the new proposed model,
even without the explicit treatment of feasibility and stability, which could interfere with the overall
computational cost of the strategy.

Experimental results in an outdoor navigation environment, using a commercial robot and visual
sensor, demonstrated that, with the proposed approach, it is possible to follow visual paths in sev-
eral adverse situations safely and efficiently, even on non-planar surfaces. These results also show the
validity of proposals based on exploring the inherent robustness levels of NMPC controllers, to the detri-
ment of sophisticated solutions, with high theoretical load in analytical terms or computationally costly
implementation.

Future work includes investigating strategies for explicit horizon variation depending on a specific
application, detailed analysis and treatment of feasibility and stability, and an explicit metric to forward
velocity variation.
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