Appendices

In this section, we provide the detailed formulas of membership functions and the extracted fuzzy rules in the paper.

Fuzzy Numbers

The membership functions of the fuzzy numbers with respect to collision time are given as follows.

$$E(\Delta T^c) = \begin{cases} 1, & 0 \le \Delta T^c \le t_1 \\ 0, & \Delta T^c > t_1 \end{cases}$$
$$D(\Delta T^c) = \begin{cases} -\frac{\Delta T^c - t_2}{t_2 - t_1}, & t_1 \le \Delta T^c \le t_2 \\ 0, & \text{others} \end{cases}$$

$$S(\Delta T^{c}) = \begin{cases} 0, & \Delta T^{c} < t_{1} \\ \frac{\Delta T^{c} - t_{1}}{t_{2} - t_{1}}, & t_{1} \le \Delta T^{c} \le t_{2} \\ 1, & \Delta T^{c} > t_{2} \end{cases}$$

The membership functions of the fuzzy numbers with respect to the speed ratio are given as follows.

$$MA(\alpha) = \begin{cases} 0, & 0 \le \alpha < \alpha_0\\ \frac{1}{1-\alpha_0}\alpha - \frac{\alpha_0}{1-\alpha_0}, & \alpha_0 \le \alpha \le 1 \end{cases}$$
$$DS(\alpha) = \begin{cases} \frac{1}{\alpha_0}\alpha, & 0 \le \alpha < \alpha_0\\ \frac{1}{\alpha_0-1}(\alpha-1), & \alpha_0 \le \alpha \le 1 \end{cases}$$
$$DL(\alpha) = \begin{cases} -\frac{1}{\alpha_0}\alpha + 1, & 0 \le \alpha \le \alpha_0\\ 0, & \alpha_0 < \alpha \le 1 \end{cases}$$
$$SU(\alpha) = \begin{cases} 1, & \alpha = 0\\ 0, & \text{others} \end{cases}$$

The membership functions of the fuzzy numbers with respect to the orientation change are given as follows.

$$VS(\Delta\theta) = \begin{cases} -\frac{8}{\pi}\Delta\theta + 1, & 0 \le \Delta\theta \le \frac{\pi}{8} \\ 0, & \Delta\theta > \frac{\pi}{8} \end{cases}$$
$$S(\Delta\theta) = \begin{cases} \frac{8}{\pi}\Delta\theta, & 0 \le \Delta\theta \le \frac{\pi}{8} \\ -\frac{8}{\pi}\Delta\theta + 2, & \frac{\pi}{8} < \Delta\theta \le \frac{\pi}{4} \\ 0, & \Delta\theta > \frac{\pi}{4} \end{cases}$$
$$M(\Delta\theta) = \begin{cases} \frac{8}{\pi}\Delta\theta - 1, & \frac{\pi}{8} \le \Delta\theta \le \frac{\pi}{4} \\ -\frac{8}{\pi}\Delta\theta + 3, & \frac{\pi}{4} < \Delta\theta \le \frac{3\pi}{8} \\ 0, & \text{others} \end{cases}$$
$$L(\Delta\theta) = \begin{cases} \frac{8}{\pi}\Delta\theta - 2, & \frac{\pi}{4} \le \Delta\theta \le \frac{3\pi}{8} \\ -\frac{8}{\pi}\Delta\theta + 4, & \frac{3\pi}{8} < \Delta\theta \le \frac{\pi}{2} \\ 0, & \text{others} \end{cases}$$

$$VL(\Delta\theta) = \begin{cases} \frac{8}{\pi}\Delta\theta - 3, & \frac{3\pi}{8} \le \Delta\theta \le \frac{\pi}{2}\\ 0, & \Delta\theta < \frac{3\pi}{8} \end{cases}$$

Extracted Fuzzy Rules

For the scenarios where there is only one intruder, the final fuzzy rules are:

- 1. IF $L_{\Delta T^c}$ is D, THEN v_c is DL and $\Delta \theta$ is VS
- 2. IF $L_{\Delta T^c}$ is *S*, THEN v_c is *DS* and $\Delta \theta$ is *S*
- 3. IF $F_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *S*
- 4. **IF** $F_{\Delta T^c}$ is *S*, **THEN** v_c is *MA* and $\Delta \theta$ is *M*
- 5. IF $R_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *VS*
- 6. **IF** $R_{\Delta T^c}$ is *S*, **THEN** v_c is *DL* and $\Delta \theta$ is *L*

For the scenarios where there are two intruders in two of the three regions, the generated 12 fuzzy rules are:

- 7. IF $L_{\Delta T^c}$ is *D* and $F_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *S*
- 8. IF $L_{\Delta T^c}$ is D and $F_{\Delta T^c}$ is S, THEN v_c is DL and $\Delta \theta$ is VS
- 9. IF $L_{\Delta T^c}$ is S and $F_{\Delta T^c}$ is D, THEN v_c is DS and $\Delta \theta$ is S
- 10. IF $L_{\Delta T^c}$ is S and $F_{\Delta T^c}$ is S, THEN v_c is MA and $\Delta \theta$ is VS
- 11. IF $R_{\Delta T^c}$ is *D* and $F_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *S*
- 12. IF $R_{\Delta T^c}$ is *D* and $F_{\Delta T^c}$ is *S*, THEN v_c is *DL* and $\Delta \theta$ is *S*
- 13. IF $R_{\Delta T^c}$ is *S* and $F_{\Delta T^c}$ is *D*, THEN v_c is *DS* and $\Delta \theta$ is *VS*
- 14. **IF** $R_{\Delta T^c}$ is *S* and $F_{\Delta T^c}$ is *S*, **THEN** v_c is *DS* and $\Delta \theta$ is *M*
- 15. IF $L_{\Delta T^c}$ is *D* and $R_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *M*
- 16. IF $L_{\Delta T^c}$ is D and $R_{\Delta T^c}$ is S, THEN v_c is DL and $\Delta \theta$ is S
- 17. IF $L_{\Delta T^c}$ is *S* and $R_{\Delta T^c}$ is *D*, THEN v_c is *DL* and $\Delta \theta$ is *VS*
- 18. IF $L_{\Delta T^c}$ is *S* and $R_{\Delta T^c}$ is *S*, THEN v_c is *DS* and $\Delta \theta$ is *S*

The fuzzy rules obtained in the scenarios where each region contains an intruder are given as follows.

- 19. IF $L_{\Delta T^c}$ is D and $F_{\Delta T^c}$ is D and $R_{\Delta T^c}$ is D, THEN v_c is DL and $\Delta \theta$ is VL
- 20. IF $L_{\Delta T^c}$ is S and $F_{\Delta T^c}$ is D and $R_{\Delta T^c}$ is D, THEN v_c is DL and $\Delta \theta$ is L
- 21. **IF** $L_{\Delta T^c}$ is *D* and $F_{\Delta T^c}$ is *D* and $R_{\Delta T^c}$ is *S*, **THEN** v_c is *DL* and $\Delta \theta$ is *L*
- 22. IF $L_{\Delta T^c}$ is D and $F_{\Delta T^c}$ is S and $R_{\Delta T^c}$ is D, THEN v_c is DL and $\Delta \theta$ is M
- 23. **IF** $L_{\Delta T^c}$ is *D* and $F_{\Delta T^c}$ is *S* and $R_{\Delta T^c}$ is *S*, **THEN** v_c is *DL* and $\Delta \theta$ is *M*
- 24. **IF** $L_{\Delta T^c}$ is *S* and $F_{\Delta T^c}$ is *S* and $R_{\Delta T^c}$ is *D*, **THEN** v_c is *DL* and $\Delta \theta$ is *M*
- 25. IF $L_{\Delta T^c}$ is S and $F_{\Delta T^c}$ is D and $R_{\Delta T^c}$ is S, THEN v_c is DL and $\Delta \theta$ is VS
- 26. IF $L_{\Delta T^c}$ is *S* and $F_{\Delta T^c}$ is *S* and $R_{\Delta T^c}$ is *S*, THEN v_c is *DS* and $\Delta \theta$ is *L*

Finally, we also introduce three fuzzy rules for emergence.

- 27. IF $L_{\Delta T^c}$ is E, THEN v_c is SU
- 28. IF $F_{\Delta T^c}$ is E, THEN v_c is SU
- 29. IF $R_{\Delta T^c}$ is E, THEN v_c is SU