
i

Appendix

A. Virtual Obstacle
Considering, available image processing algorithms can infer approximate size of a
detected object, let us assume there are several closely spaced obstacles with no passage
space in between. The collection of obstacles can be grouped together to form a larger
obstacle. Considering the centroid of each individual obstacle as a vertex of a planar
polygon, the centroid of the constructed polygon is the centroid of the set of obstacles.
The computed point (centroid) forms the centre of the virtual obstacle, (xobs, yobs). Let,
the largest line segment joining the centroid of the set of obstacles and any of the
centroids of the individual obstacles be denoted as r1. Let, the line segment joining the
corresponding obstacle centroid and its farthest vertex be termed as r2. Then, r1 + r2
forms the radius robs of the virtual obstacle. A single obstacle of arbitrary shape can also
be treated like an irregular non-intersecting polygon and the foregoing procedure can be
followed. Figure 1 explains the mechanism pictorially.

Target

Pursuer

Set of Obstacles

R
ep

re
se
n
ta
ti
v
e
O
b
st
a
cl
e

Pursuer’s Trajectory with avoidance + tracking
Target Trajectory

robs
ǫ

rpursuer

C

C1

C2

r1 = ||C − C1||2

r2 = ||C1 − C2||2

robs= r1+r2

MSM= robs+ǫ+rpursuer

Fig. 1. A virtual obstacle can be created from closely spaced obstacles of arbitrary shapes.

B. Intent Assessment
Suppose, latest poses (of target/obstacle) are available at each sampling time, δt. At t, the
time-to-intercept is Tint − t, which is configured to comprise of a maximum of n = 1 + Tint

δt

datapoints in a planning iteration. With each new measurement at δt, the evolution of
data can be expressed in the form of a polynomial function of time, corresponding to a
polynomial of maximum degree (n− 1).
The procedure of extrapolation by Neville algorithm generates a polynomial of 0th order
when only one data is available at t = 0. Then it proceeds by adding a degree to
the polynomial when a new pose is read from the sensors. As the planning horizon
shrinks, the maximum degree of polynomial constructed can remain same, thereby
reducing the sampling time and possibilities of constraint violation. Here, t represents the
independent variable and x and y are the dependent variables. Thus two polynomials
are constructed in each planning iteration, one for x and the other for y (states may
belong to target/obstacle(s)). It may be recalled again, the parametric form of target
and obstacle motion are used only for intent assessment at a future time, which can
be either the time-to-intercept or a time-to-collide. For target, only the final states at
Tint are utilized from the extrapolation. Initial guess for constructing the polynomials
is usually inaccurate. But as new measurements are obtained, the intent of the moving
entity can be conceived better and the polynomial represents a better approximation of
the actual trajectory (which is not-arbitrary, but unknown). Eventually, the accuracy of
the state estimation at some future instant also increases. Dataflow of the Neville-Aitken
algorithm proceeds in the following manner (see Table I).

ii

Table I . Neville’s Algorithm .

Iteration Independent variable Measured variable Polynomial D(1) Polynomial D(2) Polynomial D(3)
0 t = 0 x0 = f(0) = P0

P01

1 t = δt x1 = f(δt) = P1 P012

P12 P0123

2 t = 2δt x2 = f(2δt) = P2 P123

P23

3 t = 3δt x3 = f(3δt) = P3

Pij =
t−t(j)

t(i)−t(j)f(t(i)) +
t−t(i)

t(j)−t(i)f(t(j)), Pijk =
(t−t(k))Pij−(t−t(i))Pjk

t(i)−t(k)

Thus, at the ith instant in any planning iteration, the resultant polynomial is P012...i,
which is then evaluated at a future instant (for example, Tint for target) to predict states
of the target and the obstacles at that future instant.

C. Solution to Optimal Control Problem
Equations in (9) represent a class of boundary value problems, having the form
ṡ = f(t, s), where s is the 4-element state vector [x, y, λ1, λ2]. The boundary constraint
functions are of the form g(si(0)) = a and g(si(Tint)) = b,∀i ∈ {1, 2, 3, 4}, where, a
and b are real numbers and the independent variable is time t, (t ∈ [0, Tint]). The
existence-uniqueness of such problems have been investigated in ref. [42] using Perov’s
comparison theorem.

In this case, the boundary values of the co-states are unknown. In fact, the co-states
are free to assume any numerical value satisfying the constraint functions, g(si(0)) and
g(si(Tint)). It is justified to reason that, for each unique pair of states (x(t), y(t)) there
is at least a pair of (λ1(t), λ2(t)), ∀t ∈ [0, Tint]. However, it can be proved that there
cannot exist more than one sequence of (λ1, λ2) in the said interval, corresponding to
each unique solution, (x(t), y(t)) defined in that interval. In absence of a closed form
solution to (9), an approximate numerical solution can be computed that satisfy (2).
Then, tracing back to the start of this approximate sequence, one can find a set of
(λ1(0), λ2(0)) corresponding to the solution generated by the numerical solver. The
objective it to determine, if starting with that approximate initial values of the co-states
and the known initial values of the states, it is possible to arrive at two different
solutions (with same initial and terminal values only) in the above mentioned interval.
The short answer is ‘no’ and here is the reason, why.

Let us recall two fundamental assumptions:

1. The co-states, λi(t) are continuous and bounded functions of time; this is true by
definition.

2. There is a unique set of (x(t), y(t)) that satisfy the boundary conditions in the closed
interval [0, Tint] (if there are a number of solutions, (x(t), y(t)), the following discussion
applies to each, separately).

In ref. [43], a detailed explanation has been provided using Picard’s theorem, which
points out the validity of second condition. Now, starting with the said set of initial
values of states and co-states, if the right hand side of (9) can be shown to be
continuous, bounded and Lipschitz, in the closed interval, [0, Tint], then it can be
proved by applying continuous dependence theorem [43] on the initial conditions that a
solution, (x(t), y(t), λ1(t), λ2(t)), starting inside the closed interval, [0, Tint] will evolve
uniquely over the said closed interval. This narrows down the task to verification of the
Lipschitz condition by checking the boundedness property of the partial derivatives of

iii

the expressions in the right hand side of (9).

Let us define s(t):=[x(t) y(t) λ1(t) λ2(t)]
⊤ and rewrite (9) as given below (A1).

ṡ(t) = f(t, s(t)) = [ẋ(t) ẏ(t) λ̇1(t) λ̇2(t)]
⊤ (A1)

Here, f(t, s(t)) is continuous in s(t) and bounded, because, the augmented state
trajectories are continuous and bounded functions of time. Now, the partial derivatives

of f(t, s(t)) with respect to s(t) are computed as ∆fi=
[

∂fi
∂x(t)

∂fi
∂y(t)

∂fi
∂λ1(t)

∂fi
∂λ2(t)

]⊤

, i ∈

{1, 2, 3, 4}. For brevity, let us look at one of the partial derivatives, ∆f1.

∆f1 =

[

0 0 − λ2
2

(

vmax

(λ2
1 + λ2

2)
1.5

+
wv

(λ2
1 + λ2

2)
2

) (

vmax(λ1λ2 − (λ2
1 + λ2

2))

(λ2
1 + λ2

2)
1.5

−
2wvλ1λ2

(λ2
1 + λ2

2)
2

)]⊤

(A2)

Each non-zero element of ∆f1 can be expressed as a rational function, whose denominator
polynomial has a greater degree than that of the numerator, which implies, the partial
derivative with respect to s(t) has a finite limiting value, and that the function is
bounded. The process is same for other partial derivatives. The Lipschitz constant K

can be computed as [K̂1 K̂2 K̂3 K̂4]
⊤, where, K̂i := sup|∆fi|.

The summary is that, a pursuer starting at some point with a set of initial heading and
velocity cannot follow two different routes (route implying state and control vectors)
to interception. For more than one solution of the optimal control problem, the initial
states and co-states must be different for each solution, which is why the numerical solver
generates one of the possible solutions depending on the initial conditions.

D. Client-Server and Optimization Algorithms

Algorithm 1: Client

Activate: UDP Receiver,UDP Sender
Initialize Tint, Tupdate, tol, current time
i←0, flag←0
Start:while (1)
if current time≥Tupdate then

(xtar(0), ytar(0))←(xcam(i), ycam(i))
(x(0), y(0))←(xenc(i), yenc(i))
Tint←Tint − current time
Compute:optimal(x, y), (v, θ)
dist:=‖(x− xtar, y − ytar)‖2

end if
if dist ≤ tol then

flag←1
end if
UDP DataSent←(x, y, v, θ, Tint, flag)
if flag = 0 then

current time←0
i←i+ 1,goto Start

end if
close

enc : encoder.

cam : camera.

Tupdate : Planning horizon update rate.

tol : Tolerance value of closeness with target.

Algorithm 2: Server

Activate: Robot
Initialize: Tupdate, Tidle, t
i←1, flag←0
Start: while (1)
CurrentPose←(xenc(i), yenc(i))
Open: UDP SendSocket
SendBuffer←CurrentPose
t←0
Close: UDP SendSocket
Open: UDP ReceiveSocket
if t≥Tupdate then

goto Reset
end if
if t≥Tidle and RBuff=NULL then

goto Reset
end if
if t<Tidle and RBuff 6=NULL then

if flag = 1 then
break

else
Robot←(v, θ, Tint)
Reset:

Close:UDP ReceiveSocket
Open:UDP SendSocket

i←i+ 1, goto Start
end if

end if
close

RBuff : Receive Buffer

Tidle : Idle Time

iv

Algorithm 3: Optimization

t←current time
Start:while (1)
Receive x(t), y(t), xtar(t), ytar(t), x

i
obs(t), y

i
obs(t), t, i ∈ [1 m]

Initial boundary values←x(t), y(t)
Tint←Tint − t, t←0
if Target/obstacle update available then

goto close
end if
Estimate: (Intent Awareness)xtar(t1), ytar(t1), x

i
obs(t1), y

i
obs(t1), t1 ∈ (t Tint]

Terminal Boundary values←xtar(Tint), ytar(Tint),Ψ(Tint) = [0 0]⊤

Assign: wv, wd, wb

Minimize J
Compute:optimal x∗(t1), y

∗(t1), v
∗(t1), θ

∗(t1), t1 ∈ (t Tint]
close

