
Robotica (2020) © Cambridge University Press 2020

doi:10.1017/xxxx

An Obstacle Avoidance Algorithm for Space

Hyper-redundant Manipulators Using

Combination of RRT and Shape Control Method

Xiaobo Zhang†,‡,§, Jinguo Liu†,‡∗ and Yangmin Li†,‡,††
†State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese

Academy of Sciences, Shenyang 110016, China. E-mail: liujinguo@sia.cn

‡Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences,

Shenyang 110169, China

§University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: zhangxiaobo@sia.cn

††Department of Industrial and Systems Engineering, The Hong Kong Polytechnic

University, Hong Kong 999077, China. E-mail: yangmin.li@polyu.edu.hk

(Accepted MONTH DAY, YEAR. First published online: MONTH DAY, YEAR)

SUMMARY

This paper proposes a kinematic obstacle avoidance algorithm for Space hyper-redundant

manipulators, and its basic idea is to use a static and a dynamic curve to constrain the

macro shape of the manipulators simultaneously. The static curve is constructed based on

a traditional rapidly exploring random tree algorithm, and a backbone curve is utilized as

the dynamic curve. For these two curves, two novel shape control methods are proposed to

accomplish the shape constraining process, respectively. Finally, we verify the reliability

and effectiveness of our algorithm through simulations.

KEYWORDS: Obstacle avoidance; RRT; Shape control; Space hyper-redundant

manipulators.

∗ Corresponding author. E-mail: liujinguo@sia.cn

mailto:liujinguo@sia.cn
mailto:zhangxiaobo@sia.cn
mailto:yangmin.li@polyu.edu.hk
mailto:liujinguo@sia.cn

2 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

1. Introduction

Hyper-redundant manipulators have a large or infinite degree of kinematic redundancy,

making them suited for many inspection and operation tasks in highly constrained

environment,1,2 such as search and rescue in earthquake-stricken areas,3 undersea

exploration,4 capturing5 and removing debris missions in space.6,7 All these missions are

inseparable from obstacle avoidance planning which is exactly what we discuss in this

paper. In this study, our proposed obstacle avoidance algorithm is more suitable for space

hyper-redundant manipulators which do not have the problem of insufficient joint torque

as the number of the manipulators’ links increase. Only kinematic planning problems

are considered. As for studies of dynamic coupling and control methods, related works

can be found in refs. [8, 9]. Hereafter we abbreviate the obstacle avoidance algorithm

proposed in this paper as RRTSC (rapidly exploring random tree and shape control)

algorithm. Fig. 1 shows two typical space application scenarios of the RRTSC algorithm.

In the upper half of Fig. 1, the space hyper-redundant manipulator enters into a satellite

for maintenance tasks, and in the lower half of Fig. 1, the manipulator passes through a

truss for inspection tasks. For more on-orbit tasks in space, please refer to the study in

ref. [9].

Fig. 1. Application scenarios of the RRTSC algorithm.

Many studies have been presented to solve the obstacle avoidance issue for redundant

manipulators. Among these works, the first group of works involves the use of

Jacobian pseudo-inverse.10–15 In this kind of method, the inverse kinematics solution

of manipulators is expressed as a sum of a minimum-norm special solution and a

general solution that contains an arbitrary vector. Assigning this vector according to

some performance functions will not affect the pose of the manipulator’s end-effector

(the main task10), but can adjust the configuration state of the intermediate links to

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 3

complete some secondary tasks such as obstacle avoidance,11 singularity avoidance,12 joint

physical limitation avoidance,13,14 and joint torque optimization.15 In ref. [11], a minimum

distance point is detected between all links and obstacles at every instant, and then an

escaping velocity is applied to this critical point to ensure that all links do not collide

with obstacles while the end-effector follows a given trajectory. However, the convergence

rate of this pseudo-inverse-based approach will decrease rapidly owing to the fact that the

increase of the number of links will lead to a huge calculation for Jacobian pseudo-inverse,

which makes this kind of method unsuitable for hyper-redundant manipulators. The

second group of works for obstacle avoidance planning of manipulators is developed by

means of the artificial potential field.16–18 In this kind of method, obstacles are represented

by repulsive surfaces, and the target point is represented by an attractive pole. The end-

effector of the manipulator is pulled by the potential field until it reaches the target point,

and all links are repelled by obstacles to avoid collisions. This kind of method suffers from

the problem that the manipulator may be trapped into local minima. In order to escape

local minima, a randomized path planner is introduced to implement random steps in the

local minima.16,17 However, this planner is implemented in configuration space (C-space)

and is computationally expensive when utilized in high-dimensional cases. Additionally,

in a complex obstacle environment with only narrow passages, the planner can hardly

find a solution to escape the local minima. In ref. [18], the harmonic function is utilized

to construct a local minima-free potential field. The basic idea is to find a smooth path

in the obstacle environment, and develop a point settling algorithm to keep the tip of

each link on this path until the manipulator reaches the target point. However, as the

authors mentioned, this work will become considerably slow when extending it to a

3D calculation, and it may fail to find a solution when an obstacle is located between

the manipulator and the goal point. The third group of works for obstacle avoidance

planning of manipulators involves searching in configuration space (C-space).19–29 The

concept of the C-space is first proposed in ref. [19]. Two processes are needed in this

study: a mapping process (or a C-space constructing process) and a searching process.

The mapping process maps obstacles in Cartesian space to C-space, and this process

is achieved by randomly selecting enough configurations (or angle sequences) of the

manipulator and detecting whether the manipulator collides with obstacles in those

configurations. The searching process is responsible for finding a feasible collision-free

trajectory in the obtained C-space. However, it is not suitable for hyper-redundant

manipulators because the high C-space dimension will cause a huge computational

burden in the mapping process. An example of building a C-space can be found in ref. [30].

4 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

The Probabilistic Roadmap Method (PRM), proposed in ref. [20], replaces the mapping

process19 with a learning process during which a graph is constructed. The graph is

composed of nodes and edges, where the nodes correspond to collision-free configurations

and the edges correspond to feasible trajectories. In ref. [21], a variational approach is

presented to find a feasible collision-free solution after optimization, which takes the

nodes of the graph in PRM as an initial guess. Indeed, PRM speeds up the searching

process of feasible solutions to a certain extent. However, in order to improve the coverage

of the graph in PRM to the C-space, considerable computer memory resources are

needed as a guarantee. Some researchers use the Rapidly-exploring Random Tree (RRT)

to find a feasible trajectory in C-space.25–29 The RRT has been widely utilized in the

obstacle avoidance planning of mobile robots.31 When it is applied to manipulators, IK

solver,25 Jacobian pseudo-inverse27–29 or Jacobian transpose26 should be incorporated to

improving the convergence rates of these RRT-based planners. In ref. [25], given a start

point and a goal point in task space, corresponding to the start and goal configurations

in C-space, obtained via an IK solver. The authors use an RRT-Connect path planner

to establish a connection between the start and the goal configurations via a connect

heuristic. If an IK solver is not available, the newly added node (or angle sequence)

in C-space can be updated by an iterative process based on the Jacobian transpose26

or Jacobian pseudo-inverse.27–29 During this iterative process, collision detections are

executed to make sure that the newly added node is collision-free. These RRT-based

planners can be utilized for pick-and-place tasks25–28 or end-effector trajectory tracking

tasks.29 It should be noted that the work in ref. [28] execute RRT in task space to guide

the search of a feasible trajectory in C-space and that the work in ref. [29] execute RRT

in both task space, guiding the end-effector to follow a collision-free path in task space,

and C-space, guiding the links not to collide with obstacles. However, in the case of

hyper-redundant manipulators, the IK-solver may not be available, and the calculations

for Jacobian transpose or Jacobian pseudo-inverse will become inefficient. Some works

utilize heuristic search algorithms such as genetic algorithm22 and ant colony optimization

algorithm,23 or multi-pass sequential localized search technique24 to find feasible solutions

in C-space. However, the search processes in refs. [22,23] are computationally inefficient

and not suited for hyper-redundant manipulators. The work in ref. [24] involves a process

of discretizing the C-space and arranging them in ascending order, and this process

will consume a lot of calculation time if the discretization accuracy is increased. The

fourth group of works for obstacle avoidance planning of manipulators employs neural

networks.32–34 In this kind of method, the inverse kinematics solution35,36 and obstacle

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 5

avoidance planning32–34 are incorporated as a quadratic programming (QP) formulation,

which can be solved via neural networks. The inverse kinematics solution and obstacle

avoidance are represented via a dynamic equality constraint and a dynamic inequality

constraint respectively. However, whether this kind of method can be applied to obstacle

avoidance of hyper-redundant manipulators in a multi-obstacle environment, with high

computational efficiency, is not mentioned.

The fifth and sixth groups of works for obstacle avoidance planning of manipulators

are tractrix-based method37,38 and backbone-curve-based method39–43 (or shape control

method called in this paper) respectively. The key idea of the tractrix-based method is

that given the motion of a single link, the motion of all links of the manipulators can

be obtained via an iteration process and a kinematics transformation from the first link

to the end link. The motion of a single link is obtained via a tractrix curve. A single

link consists of a leading end and a trailing end, and the leading end can track any 2D

or 3D path in task space while the trailing end follows the tractrix curve formulation,

during which the link’s length remains unchanged. The tractrix-based method can be

utilized to simulate the motion of one-dimensional flexible objects such as cables, ropes,

ribbons, hair, and hyper-redundant manipulators in free space.44–46 When the tractrix-

based method is used in obstacle avoidance planning, optimization techniques must be

incorporated to guide the trailing end of each link to escape away from the obstacles

with a minimal energy cost. In ref. [37], an optimization algorithm based on a calculus

of variation is formulated where obstacles are modeled by smooth and differentiable

super-ellipsoids. As for duct type obstacles, the work in ref. [37] suffers from a problem

that analytical formulation of a duct is not always available. Therefore, the work in ref.

[38] proposes three representations of ducts. The basic idea of the backbone-curve-based

method (or shape control method called in this paper) is employing a backbone curve to

constrain the macro shape of a manipulator by fitting the curve and the manipulator’s

shape as closely as possible.47 In essence, this kind of method reduces the planning

dimension. The degrees of freedom of the manipulator are reduced to the number of

parameters of the backbone curve, thus leading to a low computation cost and making it

suitable for online path planning and real-time control of hyper-redundant manipulators.

In ref. [39], ‘Tunnel’ is defined in task space in which obstacles are present and then

differential geometry is used to make the manipulator to be constrained to the tunnel.

The tunnel (or backbone curve) is time-varying and collision-free with an ability to lead

its endpoint to explore the obstacle space. However, although the tunnel (or backbone

curve) is collision-free, it cannot guarantee that the manipulator is also collision-free

6 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

unless the number of the links of the manipulator is so large that the manipulator’s

shape can approximate the tunnel’s shape. On the other hand, the work in ref. [39]

does not prescribe any strategy for constructing the tunnel and the tunnel is manually

constructed.40 To solve this problem, in ref. [40], a follow-the-leader approach is proposed

and it adopts a roadmap technique, termed Generalized Voronoi Graph (GVG), to

construct the tunnel. In ref. [41], a harmonic potential function and a modified modal

approach1,48 are combined to construct the tunnel to constrain the macro shape of the

manipulator. However, these approaches39–41 suffer from a common problem that the

link model of the manipulator may collide with obstacles. Another interesting backbone-

curve-based method is presented in ref. [42], with a novel modified modal approach.49 In

this work, the macro shape of the manipulator is constrained by the modified backbone

curve. The even joint points of the manipulator are located on the curve, and the odd ones

are released to accomplish the secondary tasks such as obstacle avoidance, by adjusting

two kinds of parameters (the equivalent link length and angle between the adjacent

equivalent links). However, the two kinds of parameters increase the solution dimension

of the manipulator’s configuration, which deviates from the essence of the backbone-

curve-based method. In other words, this work does not significantly reduce the planning

dimension and will be computationally inefficient when dealing with obstacle avoidance

of hyper-redundant manipulators in a highly constrained obstacle environment. Another

interesting work is proposed in ref. [43], in which a serpenoid curve is considered as the

backbone curve to constrain the manipulator and then an obstacle mapping process in

posture space is implemented, similar to a C-space construction. Although the mapping

dimension is reduced to the parameter of the backbone curve, the mapping process will

still cause a huge computation burden. In addition to the above six groups of methods,

two other interesting works are shown in ref. [50] and ref. [51]. In ref. [50], a hybrid

method combing analytical and numerical methods is proposed, in which the analytical

equations are responsible for determining the first two and the last three joint angles

while the numerical technique is utilized for calculating the rest of the joints, and the

obstacle avoidance is formulated as a constraint optimization problem and solved also by

numerical techniques. In ref. [51], a Hyper-BumpSurface is constructed to capture both

the free and the forbidden areas of the environment as one mathematical entity, and then

a genetic algorithm is employed to find a time-optimal trajectory in this hyper-surface. In

summary, among the existing works, the backbone-curve-based method (or shape control

method called in this paper) may be a good choice for dealing with obstacle avoidance

of hyper-redundant manipulators in a highly constrained obstacle environment, without

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 7

a huge computation burden. Our proposed RRTSC algorithm belongs to the category of

the backbone-curve-based method.

The goal of this paper is to propose a kinematic obstacle avoidance planning algorithm

for space hyper-redundant manipulators, in three-dimensional task space with static

randomly distributed obstacles. Inspired by the works in refs. [40, 41] and aiming at

solving the common problem (the backbone curve is collision-free, but the link model

of the manipulator may collide with obstacles) existing in refs. [40, 41], we present the

RRTSC algorithm. The successful implementation of the RRTSC algorithm is inseparable

from a static curve, a dynamic time-varying backbone curve, and two novel shape control

methods for these two curves. The task space is divided into two parts: obstacle space

and free space. Correspondingly, the manipulator is divided into two parts: the inner

part in the obstacle space and the outer part in the free space. The static curve and its

corresponding shape control method are responsible for constraining the macro shape

of the inner part of the manipulator and guiding it to move towards a goal point from

a start point. The dynamic time-varying backbone curve and its corresponding shape

control method are responsible for dynamically constraining the macro shape of the outer

part of the manipulator. As time goes on, the inner part will be longer and the outer part

will be shorter because the total number of links of the manipulator is constant. Please

refer to section 2.5 for details of how these two shape control methods are achieved. The

main contributions of this study are summarized by the following remarks:

1. Different from the existing backbone-curve-based works40,41 in which only a dynamic

backbone curve is constructed in real-time for constraining the macro shape of the

manipulator, our proposed RRTSC algorithm combines a static curve and a dynamic

backbone curve for the same purpose. To our best knowledge, it is the first attempt

to accomplish obstacle avoidance of manipulators with a combination of a static curve

and a dynamic backbone curve among existing works.

2. The existing backbone-curve-based works40,41 suffer from a common problem that the

backbone curve is collision-free but the link model of the manipulator may collide with

obstacles. Our proposed RRTSC algorithm does not have this problem. For a detailed

comparison between our algorithm and existing works, please refer to section 3.5.

3. The RRTSC obstacle avoidance algorithm architecture for hyper-redundant

manipulators in three-dimensional space is proposed, including four components:

a manual multi-sphere approximation for obstacles, an RRT algorithm, a dynamic

backbone curve, and two novel shape control methods. Before the RRTSC algorithm

is proposed, these four components are described. The implementation rules of the

8 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

manual multi-sphere approximation for obstacles are discussed in detail. The RRT

algorithm is employed to construct a static curve.

4. Novel shape control methods with the static curve and the dynamic backbone curve are

proposed respectively. Shape control with the static curve ensures that the manipulator

in obstacle space is collision-free, and guides the manipulator to move towards a

goal point from a start point. Shape control with the dynamic backbone curve is

responsible for constraining the macro shape of the manipulator in free space. It

should be noted that the reason why we claim that the shape control method with the

dynamic backbone curve is novel is based on the following two considerations. First,

compared to the work in ref. [41], we propose a more general form of the dynamic

backbone curve. Secondly, we adopt a different way to solve the joint points of the

manipulator. In ref. [41], the joint points are solved by iteratively solving each joint

point, and every iteration is an optimization process. In this study, we fix some of

the joint points on the dynamic backbone curve, and the remaining joint points are

obtained through optimization processes, reducing the calculation time.

The remainder of this paper is organized as follows. Section 2 describes the main

components of the RRTSC algorithm architecture, including the manual multi-sphere

approximation for obstacles, the RRT algorithm, the dynamic backbone curve, and the

two novel shape control methods. Section 2.1 introduces an overview of these components

to facilitate readers to have a conceptual and holistic understanding of these components.

The manual multi-sphere approximation for obstacles is discussed in section 2.2. Section

2.3 reviews the RRT algorithm which will be later utilized to construct the static curve

in obstacle space for the RRTSC algorithm. In section 2.4, the dynamic time-varying

backbone curve is constructed in a more general form compared to the one in ref. [41].

Section 2.5 introduces the way to construct the static curve and proposes the two shape

control methods (shape control with the static curve and shape control with the dynamic

backbone curve). Shape control with the static curve is utilized to constraining the macro

shape of the manipulator in obstacle space, while the shape control with the dynamic

backbone curve is responsible for constraining the macro shape of the manipulator in

free space. In section 3, the RRTSC algorithm architecture is proposed, and integrated

simulations are carried out to demonstrate the feasibility of our algorithm. In addition,

a comparison with existing works is also given in this section. Finally, the conclusions

and future works are presented in section 4.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 9

2. RRTSC Algorithm Architecture

In this section, we firstly introduce the obstacle avoidance system model, and then detail

the components of the RRTSC algorithm separately.

2.1. System introduction

The whole obstacle avoidance system is illustrated in Fig. 2, and it is composed

of obstacles, a rapidly exploring random tree (RRT), a RRT path, an environment

boundary, a cubic spline interpolation curve, a backbone curve and a hyper-redundant

manipulator. Let’s introduce them one by one. To facilitate reading, in Appendix part,

all the symbols utilized in this paper are concluded in Tables III-VI, and all the acronyms

are summarized in Table VII.

-0.5

0

0.5

-1.5
-1

-0.5
0

0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x(m)
y(m)

z
(m
)

End point

RRT

RRT path

 Base

coordinate

 Backbone

 curve

 Hyper-redundant

 manipulator

Cubic spline interpolation

 curve

Start point

Leading link

Leading end

Trailing end

Obstacles

Outer part

Inner part

Env
iro

nm
en

t b
ou

nd
ar

y

Fig. 2. Model of the whole obstacle avoidance system.

The obstacles are modeled by spheres in this case, and one sphere corresponds to one

obstacle. However, an obstacle can’t be simply modeled via a sphere when the obstacle is

a truss or a hole. To solve this problem, we adopt a manual multi-sphere approximation

for obstacles in subsequent chapters. RRT algorithm25 is a traditional path planning

10 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

algorithm. The feature of this algorithm is that it can search high-dimensional space

quickly and efficiently, and guide the search to a blank area through random sampling

points in a state space, so as to find a collision-free path from a starting point to a target

point. As shown in Fig. 2, we use blue line segments to represent the RRT, and red line

segments to represent the collision-free RRT path. The start and end points of the RRT

path are colored in red and black, respectively. The environment boundary is utilized to

limit the sampling space of the RRT, and it is represented by a black rectangular external

frame. It can be denoted by En limit = (Xl, Xr, Yl, Yr, Zl, Zr), and the task space is

divided into two parts: the inner part En inner = {P |P ∈ En limit} (or obstacle space)

and the outer part En outer = {P |P /∈ En limit} (or free space), where P is any point

in a 3D task space, and Xl, Xr, Yl, Yr, Zl, Zr are left and right limit coordinate values

of the environment boundary. Considering that the RRT path is not a smooth curve,

the cubic spline interpolation curve (green curve in Fig. 2) is adopted to replace the

original RRT path. Define RRT path and CSI path to denote the RRT path and the

cubic spline interpolation curve, respectively, for the convenience of describing pseudo

codes in subsequent sections. The CSI path is a smooth curve through a series of shape-

value points which are RRT nodes in this study. The backbone curve, colored in black

in Fig. 2, is constructed based on a modal approach,1,48 and in this paper it is extended

to a more general form. The hyper-redundant manipulator is abstracted into cyan line

segments connected end-to-end, and we refer to the line segments as the link model of

the manipulator. The connection points represent joints colored in Indian red with three

degrees of freedom. In this paper, we refer to the link where the end effector of the

manipulator is located as the leading link. The leading link has two points. The end

effector point is called the leading end, and the other is called the trailing end.

2.2. Modeling for Obstacles

The choice of an approach to model obstacles usually is closely related to many factors,

such as modeling accuracy, specific operation tasks, and principles of collision detection

algorithms. Traditional obstacle modeling method commonly makes use of a sphere to

model an obstacle with an irregular shape, and the sphere is located at the obstacle’s

centroid with radius r = dmax, where dmax denotes the maximum distance from the

centroid to envelope boundary. Fig. 3a shows a cube obstacle, and Fig. 3b, 3c illustrate

the corresponding envelope sphere and the radius, respectively. For scenarios where

the operation tasks are simple and require low modeling accuracy, it is wise to choose

this method. However, when encountering the following situations where the tasks are

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 11

passing through obstacles with holes (Fig. 3d, 3g) or truss type obstacles (Fig. 3j), the

traditional method will no longer work. Considering that, an alternative method for

the representation of obstacles must be selected. An interesting method can be found

in ref. [37], in which obstacles are modeled using Minkowski sum19 (a combination or

union of geometric entities) of differentiable super-ellipsoids.52 The formulation of the

super-ellipsoids contains five parameters, and by adjusting these parameters a family of

geometric entities, such as ellipses, rectangles, cylinders, spheres, etc., can be generated.

Another interesting method53,54 employs multi spheres to approximate geometric entities

of arbitrary shape in an automatical way, and in our study, we refer to this method as

the multi-sphere approximation method. Inspired by the works,19,53,54 we use the multi-

sphere approximation method to represent obstacles. The representation in our study is

implemented in a manual form for some simple geometric entities, considering that the

manual representation can achieve better approximation accuracy with fewer spheres

compared with the automatic one. It should be noted that the manual multi-sphere

approximation has two main disadvantages: 1) It is not suitable for handling obstacles

with complex shapes, since the manual discretization process will become difficult; 2)

It is not suitable for large obstacle environments, since manual discretization process

will become tedious. In addition, a lot of computer memory is needed to store the

obstacles’ data. Therefore, for obstacles with complex shapes, the automatic multi-sphere

approximation methods53,54 are needed. For large obstacle environments, an algorithm

can be developed to extract a local obstacle environment from a global one according

to a specific task, and then use the automatic multi-sphere approximation methods53,54

in the local obstacle environment to obtain the spheres’ data. This algorithm essentially

restricts the RRTSC algorithm to find a feasible solution in the local obstacle environment

instead of the global one, which reduces the computational consumption to a certain

extent. If this algorithm cannot be developed, we can also use other obstacle modeling

methods. Our RRTSC algorithm does not rely on specific obstacle modeling methods.

We model obstacles as multiple spheres to simplify the collision detection processes, in

which only distance calculation from point to point is needed. In other words, other

obstacle modeling methods, such as the super-ellipsoids method in ref. [37], can also be

integrated into our algorithm, as long as the three collision detection sub-algorithms in

the RRTSC algorithm are appropriately modified. The way to envelope a geometric entity

with spheres is similar to the principle of a 3D printer, which is traversing the spheres

along the obstacle’s coordinate system. It is wise to choose different coordinate system

types for different types of obstacles, as shown in Fig. 3f and 3i where the coordinate

12 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

systems are chosen as Cartesian and cylindrical ones, respectively. The final envelope

results are shown in Fig. 3e and 3h. As for the envelope process, slice uniformly along

the z -axis to obtain x− y (Fig. 3f) or θ − r (Fig. 3i) cross sections firstly, and then

envelope the spheres along the cross section curves until all cross sections along the

z -axis are finished. In some special cases, the envelope method needs to be adjusted

manually. Taking the truss type obstacles (Fig. 3j) for illustration, the ultimate envelope

result is shown in Fig. 3k. The truss bars are considered as lines (Fig. 3l) instead of

cylinders, therefore it is not necessary to slice along the z -axis. It should be noted that

the number and radius of the spheres must satisfy conditions that there are no gaps, and

at the same time guarantee suitable approximation accuracy. Fig. 4 shows an example of

how to implement a suitable approximation process in one- and two-dimensional spaces

(three-dimensional space has a similar enveloping principle). renv represents the radius

of a sphere. dadj denotes the distance between the centers of adjacent spheres. αenv is the

angle between two tangent lines at the intersection of adjacent circles (the cross-section

of the sphere is a circle). If dadj > 2renv, as shown in Fig. 4a, there will be gaps among

the spheres both in one- and two-dimensional spaces, which is a poor approximation

case and will lead to a false obstacle avoidance detection. If dadj = 2renv, αenv = 0◦, as

shown in Fig. 4b, there is no gap in one-dimensional space, but there is a gap in two-

dimensional space. If dadj < 2renv, αenv = 90◦, as shown in Fig. 4c, there is no gap whether

in one- or two-dimensional space and it is a perfect approximation process. If dadj < 2renv,

αenv > 90◦, as shown in Fig. 4d, although the gap disappears, a phenomenon of over-

approximation appears. For some complex geometry, this phenomenon is inevitable, and

what we need to do is to avoid it as far as possible. Compared with Fig. 4c, renv in Fig.

4d increases, which leads to the decrease of approximation accuracy. In summary, the

approximation process is based on a coordinate system and should choose the proper

radius and number of the spheres and consider modeling accuracy, without affecting

specific tasks.

2.3. RRT Algorithm

RRT algorithm25 is an efficient obstacle avoidance planning method. The basic RRT

algorithm is shown in algorithm 1, and its relevant concept is shown in Fig. 5a.

In algorithm 1, the start tree Tree contains only one node during initialization. First,

check if the start point Start node and the target point End node can be directly

connected (lines 4 and 5). This should satisfy two conditions: 1) Distance between these

two points is less than a given step threshold Steptree; 2) The line segment One RRT path

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 13

Fig. 3. Modeling for obstacles.

between these two points dose not collide with obstacles. If the conditions are met, add

End node to Tree, and if not repeat extending new nodes use function Extend tree()

(line 10) until Tree reaches End node. The procedure of function Extend tree() is not

detailed in the above pseudo code and we describes it as follows: 1) A sample function

randomly selects a rand point Rand node from the inner part of the obstacle environment

En inner; 2) A nearest function selects a node Nearst node closest to Rand node; 3)

Extend a distance Steptree from Rand node to Nearst node and obtain One RRT path.

If a collision occurs, go to step 1, and if not add a new node New node and check whether

New node could be directly connected to End node; 5) Use flag variable flag tree to

denotes whether Tree reaches the End node. When a Tree is available, use function

Find path() to find a collision free path RRT path from the end point to the start

point, with help of index relationship between a leaf node and its parent node. It should

be noted that Col det RRT () detects a collision every time a rand node is generated

(lines 19-30). Principle of this function is easy to understand. First, discretize the line

segment One RRT path via a coefficient vector δ = (0, 0.25, 0.5, 0.75, 1) to get point set

{P1, P2, P3, P4, P5}, and then calculate the distance between OBi and Pj, for i = 1, ..., nob

14 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

(b)

(a)

(c)

(d)

Gap

Gap

No gap

Suitable enveloping

No gap

Over-enveloping

Gap

envr 2adj envd r>

 =2adj envd r

 2adj envd r<

 2adj envd r<

 0enva =
o

 90enva =
o

 90enva >
o

Fig. 4. Illustration example of how to implement a suitable approximation process.

where nob is the number of spheres and j = 1, ..., 5. If the distance is less than the sphere

radius r, a collision has occurred and that means the Rand node must be dropped.

Given a 3D task space where sphere obstacles are randomly distributed, initialize

related parameters and execute the RRT algorithm, and we can obtain a tree shown in

Fig. 5b. The specific parameters will be detailed in section 3. Different from traditional

method which utilize RRT algorithm in C-space,19 our obstacle avoidance algorithm

applies it in task space. There is an example for illustrating the differences between

them. Fig. 5c depicts a two-degree-of-freedom robotic arm, with two obstacles OB1

and OB2 surrounding it, in a plane task space. The corresponding representation of

obstacles in C space, illustrated in Fig. 5d, is obtained by a mapping process. This

process can be described as two steps: 1) Change the joint angles θ1 and θ2 to get every

possible configuration via forward kinematics; 2) Detect collision between the links and

the obstacles to divide the C-space into obstacle area and non-obstacle area. Obviously,

this process will become more difficult as the degrees of freedom of manipulators and the

number of obstacles increase. To avoid this problem, we propose the RRTSC algorithm,

using the RRT algorithm in task space and two shape control methods to drive a hyper-

redundant manipulator. The two shape control methods use shape control curve to

constrain macro the shape of a manipulator as shown in Fig. 5e, and we will describe

these two methods in section 2.5.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 15

Algorithm 1 The procedure of generating collision-free RRT path

Input: OBi, r, En inner, Start node, End node

Output: RRT path

1: function Generate RRT ()

2: Load obstacle envelope spheres’ center data OBi and radius r, and initialize

environment boundary En limit, start and end path points Start node, End node

3: Tree← Start node %Build a start tree

4: if (norm(Start node, End node) < Steptree) and

5: (Col det RRT (OBi, r, One RRT path)) then

6: %The parameter One RRT path is a line segment constructed by one leaf

node and its parent node

7: Tree←Add node(Tree, End node)
8: else

9: while (flag tree) do

10: Tree← Extend tree(Tree,OBi, r, En inner,End node)

11: %Repeat extending the tree until it reaches the end node

12: end while

13: end if

14: %Obtain the collision free RRT path via the tree

15: RRT path← Find path(Tree)

16: return RRT path

17: end function

18:

Input: OBi, r, One RRT path

Output: flag RRT

19: function Col det RRT ()

20: flag RRT ← 0 %No collision

21: for δ = 0, 0.25, ... , 0.75, 1 do

22: P ← δ ∗One RRT path[1] + (1− δ)One RRT path[2] %Discretization

23: for i = 1, ... , nob do

24: if norm(P, OBi) < r then

25: flag RRT ← 1 %Collison occurs

26: end if

27: end for

28: end for

29: return flag RRT

30: end function

2.4. Backbone curve

As mentioned before, the backbone curve is employed to constrain the macro shape of

a manipulator in En outer. This curve is a kind of spatial curve and its mathematical

16 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

x

OB1

(Root node)

Leaf node

Parent node

OB2

y

1q

2q

O

(d)

(e)

(c)(b)

(a)

Mappling

Shape control

Initial configuration

Final

configuration

Collision-free

path

OB1
OB2

1q

2q

O

Shape fitting

 curve
OB1

OB2

y

O
x

OB

_Start node

_End node
Tree

_RRT path

_Rand node

_Nearst node

_New node

_New node_Nearst node

_ _One RRT path

treel Step=
1P 5P

−0.5

0

0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Link

Fig. 5. Relevant illustration of RRT algorithm.

expressions are defined48 as follows:

P (s, t) = Pint(t) +

∫ s

0

l(t)F (σ, t)dσ (1)

where P (s, t), shown in Fig. 6a, denotes an arbitrary point on the backbone curve.

Pint(t) is the initial point of the backbone curve in base frame, and it is defined as

Pint(t) = [xint, yint, zint]
T. s and t are independent variables, representing arc length of

the backbone curve and time, respectively. l(t) indicates the total length of the backbone

curve at time t. F (σ, t) represents the unit vector tangent to the backbone curve at s = σ.

Detailed representation of the backbone curve can be defined as follows:

P (s, t) = Pint(t) + [x(s, t) y(s, t) z(s, t)]T

=



xint(t)

yint(t)

zint(t)


+



∫ s

0

l(t) sinK(σ, t) cosT (σ, t)dσ∫ s

0

l(t) cosK(σ, t) cosT (σ, t)dσ∫ s

0

l(t) sinT (σ, t)dσ


(2)

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 17

where K(σ, t) is the angle between F ′(σ, t) and y aixs of the base frame at s = σ, and

T (σ, t) is the angle between F ′(σ, t) and F (σ, t) at s = σ. Their geometric interpretation

can be found in Fig. 6b. The F ′(σ, t) is the projection vector of F (σ, t) on x− y plane

on the base frame. If functions K(·) and T (·) are specified, P (s, t) can be obtained using

Eq. (2). In ref. [1], K(·) and T (·) are formulated as follows:

K(s, t)=
n1∑
i=1

ci(t)fi(s)

T (s, t)=
n2∑
i=1

di(t)gi(s)

(3)

where fi(s) and gi(s) are mode functions, ci(t) and di(t) are modal participation factors,

n1 is the number of mode functions for K(s, t), and n2 is the number of mode functions for

T (s, t). From the existing works,1,41 trigonometric functions are often used as the mode

functions, and the choice of them must meet two conditions. Firstly, the trigonometric

functions must be linearly independent. Otherwise, some participation factors will be

lost. Secondly, the trigonometric functions can not be all odd functions on the interval

s ∈ [0, 1]. Otherwise, the backbone will be degenerate because the values of x and z for

P (s, t) will always be equal to zero. According to these rules, the trigonometric functions

can be chosen manually. It should be noted that n1 + n2 is the total number of mode

functions, and this number should equal or exceed the number of constraints imposed on

the backbone curve. In a 3D task space without obstacles, a total of seven constraints need

to be satisfied, which means n1 + n2 is at least equal to seven. Three of the constraints are

imposed by the position of the end point of the curve, and the remaining four constraints

come from the intention of controlling the orientation at the start and end points of the

curve. Now, we rewrite Eq. (3) into the following form:

K(s, t) = a1(t)f1(s) + a2(t)f2(s) + b1(t)f3(s) + b2(t)f4(s)

T (s, t) = a3(t)g1(s) + b3(t)g2(s) + b4(t)g3(x)

(4)

where a1(t), a2(t), a3(t), b1(t), b2(t), b3(t) and b4(t) are participation factors. We hope

that the orientation at the start and end points of the curve can be adjusted via intuitively

adjusting one or a combination of the four parameters b1(t), b2(t), b3(t) and b4(t). Indeed,

this can be achieved via a suitable selection of the mode functions. A specific example

18 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

can be found in ref. [41], where K(s, t) and T (s, t) are specified as follows:

K(s, t) = a1(t) sin(2πs) + a2(t)(1− cos(2πs))

+ b1(t) sin(πs/2) + b2(t)(1− sin(πs/2))

T (s, t) = a3(t)(1− cos(2πs)) + b3(t) sin(πs/2)

+ b4(t)(1− sin(πs/2))

(5)

where {b1(t), b3(t)} = {K(0, t), T (0, t)} and {b2(t), b4(t)} = {K(1, t), T (1, t)}, specify the

orientation at the start and end points of the backbone curve, respectively. In fact, the

formulations for K(s, t) and T (s, t) are not unique and can be replaced by other ones.

Considering that, we extend the formulations for K(s, t) and T (s, t) to a more general

form. In other words, we give a selection rule for the mode functions. In Eq. (4), we make

{b1(t), b3(t)} equal to {K(0, t), T (0, t)} and {b2(t), b4(t)} equal to {K(1, t), T (1, t)}, and

then the selection rule for the mode functions are given as follows:



f1(0) = f2(0) = f4(0) = 0, f3(0) = 1

g1(0) = g3(0) = 0, g2(0) = 1

f1(1) = f2(1) = f3(1) = 0, f4(1) = 1

g1(1) = g2(1) = 0, g3(1) = 1

(6)

In addition, the f1(s), f2(s), f3(s) and f4(s) must be linearly independent trigonometric

functions and not all odd functions, the same as the g1(s), g2(s) and g3(s). By now the

backbone curve is determined via parameters Pint, l(t), a1(t), a2(t), a3(t), b1(t), b2(t), b3(t)

and b4(t), and we will put them into use in subsequent sections. It should be pointed out

that in the follow-up simulations, we will use Eq. (5) to construct the dynamic backbone

curve.

2.5. Shape control method

The shape control method is utilized to build rules of how to drive a hyper-redundant

manipulator to move with a curve. We divide shape control into two categories: 1) Shape

control with a static curve; 2) Shape control with a dynamic curve. As mentioned in

section 2.3 and 2.4, we select the RRT path and the backbone curve to control the

inner part and the outer part of a manipulator, respectively. The RRT path belongs to

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 19

End effector

Backbone

curve

Base frame

(a) (b)

x
x

y

y

z

z

(,)P s t

(,)F s t (,)F s t

int ()P t

(,)F s t¢

(,)K s t

(,)T s t

Fig. 6. The backbone curve.

the static curve, while the backbone curve is one of the dynamic curves. The successful

implementation of the RRTSC algorithm will use these two shape control methods. Now

we will describe them, respectively.

2.5.1. Shape control with the dynamic backbone curve. First, let’s describe the shape

control method with the dynamic backbone curve. Assuming that a hyper-redundant

manipulator is composed of links with length llink and number nlink. Then we can

simplify the manipulator into line segments connected end to end, which is called the

link model. The purpose of the shape control for the backbone curve is to calculate all

connecting points (joint points), referred as Pi for i = 0, ..., nlink, of the link model. It

can be formulated as the following optimization problem:

Solve : Pi, i = 0, ... , nlink (7)

Minimize :
i=nlink∑
i=0

‖ Pi − P ′i ‖, i = 0, ... , nlink (8)

Subject to : llink − eps ≤ ‖ Pi − Pi−1 ‖ ≤ llink + eps,

i = 0, ... , nlink

(9)

where eps is a coefficient used to adjust the matching accuracy of the link length llink;

Pi
′ denotes a equally spaced point on the backbone curve and it satisfies Eq.(10).

Pi
′ = Pint(t) +

∫ mi

0

l(t)F (σ, t)dσ, i = 0, ... , nlink

mi =
i

nlink

, i = 0, ... , nlink

(10)

Solve : Pi, i = 1, 3, ... , nlink − 1 (if nlink is even) (11)

Minimize : ‖ Pi − P ′i ‖ , i = 1, 3, ... , nlink − 1 (12)

20 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

Subject to :

Pi = Pi
′, i = 0, 2, 4, ... , nlink

llink − eps ≤ ‖ Pi − Pi−1 ‖ ≤ llink + eps,

i = 1, 3, ... , nlink − 1

(13)

Equation (8) guarantees that Pi is as close as possible to the backbone curve. In order to

solve this optimization problem, let some Pi
′ equal Pi

′ (i = 0, ..., nlink), then Eqs. (7)-(9)

are reduced to Eqs. (11)-(13) if nlink is even, or Eqs. (14)-(16) if nlink is odd.

Solve : Pi, i = 2, 4, ... , nlink − 1 (if nlink is odd) (14)

Minimize : ‖ Pi − P ′i ‖ , i = 2, 4, ... , nlink − 1 (15)

Subject to :

Pi = Pi
′, i = 0

Pi = Pi
′, i = 1, 3, ... , nlink

llink − eps ≤ ‖ Pi − Pi−1 ‖ ≤ llink + eps,

i = 2, 4, ... , nlink − 1

(16)

The first lines of Eq. (13) and Eq. (16) specify that Pi|i=0 (manipulator’s base) coincides

with the start point of the backbone curve. The second line of Eq. (13) and the second

line of Eq. (16) specify which points of Pi are equal to Pi
′, for i = 0, ..., nlink, and make

Pi|i=nlink
(manipulator’s end effector) coincides with the end point of the backbone

curve. According to the Eqs. (11)-(16), employ mature optimization algorithms such

as simulated annealing or particle swarm algorithm, and then we can easily get all the

values of Pi, for i = 0, ..., nlink. Fig. 7a and 7b show two shape control examples where

nlink = 4 and nlink = 3, respectively. It can be seen that no matter nlink is even or odd,

the start and the end points always satisfy P0 = P ′0 and Pnlink
= P ′nlink

, which is realistic.

In order to drive the manipulator to move, what we need to do is just changing the

shape of the backbone curve by adjusting its parameters. Given a target point Ptarget,

an initial point Pint(t), total arc length l(t), coefficients b1(t), b2(t), b3(t), b4(t), solve Eq.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 21

(c)

(d)

(e)

(f)

_En limit

_En inner_En outer

_Start node

_End node_Con p

_CSI path

_CLS path

_DSCB curve

1

2

4

3

5

6

7

0

0.2

0.4

0.6

0
0.2

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Link

1P

2P

0P

3P

4P

2P ¢

(a) (b)

0()P ¢

1()P¢

4()P ¢

Link

2P

0P

1P
1P¢

0()P ¢

3P 3()P ¢

2()P ¢

3P¢

(Backbone curve)
Trailing end

Leading link

Leading

end

Fig. 7. Shape control method.

(17) via numerical approximation in Matlab, and then we can obtain parameters a1(t),

a2(t), a3(t).

Ptarget = Pint +

∫ 1

0

l(t)F (σ, t)dσ (17)

If we replace Ptarget with a continuous space curve, the manipulator will move

continuously. Supplementary material shape control dscb curve.mp4 shows an animation

where the end effector of the manipulator and the corresponding end point of the

backbone curve follow a given trajectory (“SIA”). Essentially, this is a process of

constantly seeking inverse solutions. The label 7 in Fig. 7c is the “SIA” end trajectory and

Ptarget is selected from it. Fig. 7c depicts six backbone curves with different parameters

listed in Table I, and the initial points are set as Pint = [0, 0, 0]T. For curves 1 and 2,

target points are set as Ptarget = [0.15, 0.54, 0.30]T. For curves 3 and 4, target points

are set as Ptarget = [0.50, 0.52, 0.30]T. For curves 5 and 6, target points are set as

Ptarget = [0.15, 0.42, 0.30]T. Comparing curves 1 and 2, it can be found that b4 can affect

22 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

the tangent vector of the end point of the backbone curve. b1(t), b2(t) and b3(t) have the

same function as b4(t). Comparing curves 3 and 4, it can be found that the total length

of the backbone curve can be adjusted by changing l(t). Curve 5 and 6 are the shape

fitting results when nlink are set to seven and ten, respectively, which indicates that our

shape control method can be adapted to different number of manipulator links.

Table I . Parameters of the backbone curves in Fig. 6c.

Label b1(t) b3(t) b2(t) b4(t) a1(t) a2(t) a3(t) nlink l(t)

1 π/2 π/2 −π/2 π 0.697 -1.368 0.301 10 1.5

2 π/2 π/2 −π/2 −π/2 0.165 0.586 0.642 10 1.5

3 π/2 π/2 −π/2 −π/2 -0.478 0.924 0.643 10 1.5

4 π/2 π/2 −π/2 −π/2 0.299 0.860 0.576 10 2

5 π/2 π/2 −π/2 −π/2 -0.663 0.646 0.790 7 1

6 π/2 π/2 −π/2 π/2 0.099 0.605 -1.131 10 1

2.5.2. Shape control with the static RRT path. Next, let’s describe the shape control

method with the static RRT path. The purpose of the shape control with the RRT path

is to calculate all connecting points Pi, for i = 0, ... , nlink. It can be formulated as

llink − eps ≤ ‖ Pi − Pi−1 ‖ ≤ llink + eps,

i = 1, ... , nlink

(18)

where Pi, for i = 0, ... , nlink, are points on the RRT path. First, set the value of Pi|i=nlink
,

and then iteratively solve other points via Eq. (18). If we want to drive the link model

of the manipulator to move, what we need to do is just changing the phase of Pi|i=nlink
.

The so-called phase refers to a specific position of the Pi|i=nlink
on the RRT path.

2.5.3. Shape control with SSC curve and DSCB curve. Given that the second

derivative of the RRT path is not continuous, we replace it with a cubic spline

interpolation curve, referred as CSI path. To avoid collision between the end link

constrained to the backbone curve and the environment boundary, we introduce an

additional connecting line segment between CSI path and the backbone curve. We

call it as CLS path. The CSI path and CLS path belong to the static curve, having

the same shape control principle as the RRT path, and they are collectively referred

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 23

to as SSC curve (static shape control curve). Accordingly, we call the backbone

curve as DSCB curve (dynamic shape control backbone curve). When SSC curve and

DSCB curve are available, we could use them to drive a manipulator as depicted in

Fig. 7d-7f. Fig. 7d-7f show initial, intermediate and final stages, respectively, of the

manipulator’s movement. The essence of the whole movement is a process of continuously

solving the connecting points, referred as P j
hrm(m), of the manipulator. We summarize

this process into algorithm 2, and for the convenience of descriptions, some symbolic

representations are defined. Compared to the previous definition of the connecting points,

we add the upper right corner mark j to indicate the phase of the manipulator, and

add the lower right corner mark hrm(m) to indicate which connecting point of the

manipulator is solved. If m = 0, P j
hrm(m)|m=0 corresponds to the base of the manipulator

which is fixed. If m = nlink, P j
hrm(m)|m=nlink

represents the end point of the manipulator.

Considering that P j
hrm(m) is partly calculated by SSC curve and partly calculated by

DSCB curve, we define the lower right corner marks hrm ssc(i) and hrm dscb(k) to

distinguish them. nlink ssc and nlink dscb denote number of links constrained by SSC curve

and DSCB curve, respectively. The point connecting SSC curve and DSCB curve,

shown in Fig. 7e, is denoted as Con p.

Algorithm 2 describes the whole process of the shape control method with SSC curve

and DSCB curve. Before introducing algorithm 2, we need to clarify the principle

of how the manipulator’s configuration is updated. During a shape control cycle, the

configuration of the manipulator is updated by following steps: 1) Change the position

of the end effector (P j
hrm(m)|m=0) on CSI path; 2) Calculate all positions of the connecting

points (P j
hrm(m)) via the two shape control methods; 3) Repeat the steps 1 and 2 until the

end effector reaches a goal point. In other words, if we want to update the configuration

of the manipulator, we should update the position of the end effector first. We use the

superscript j = 1, 2, ... , nconfig or j = 1, 2, ... , nphase to indicate that the manipulator

is in a different configuration. The nconfig represents the total number of configurations

of the manipulator during a shape control cycle. The nphase represents the total number

of phases during the shape control cycle, and the phase, in this study, means a specific

position of the end effector (P j
hrm(m)|m=0, P j

hrm ssc(i)|i=nlink ssc
, or the leading end of the

leading link) on CSI path. nconfig and nphase are equal, because the configuration of the

manipulator and the position of the end effector have a one-to-one correspondence. Given

a specific task that the manipulator passes into an obstacle space from a start point to a

goal point, the end effector should be placed at the start point in the first phase (Fig. 7d)

and the goal point in the last phase (Fig. 7f).In our study, CSI path is a path (or curve)

24 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

from the start point to the goal point (Fig. 7d), and it is stored in the form of discrete

points in the computer. Consider that the end effector is always placed on CSI path,

what we need to do is find a set of indexes of the discrete points of CSI path for updating

the position of the end effector. This can be achieved by following steps: 1) Suppose that

CSI path is stored as discrete points, with index number Indp dis csi=1, 2, ... , np dis csi

where np dis csi is the total number of the discrete points; 2) Select a proper value of

nphase (or nconfig), and then calculate an index increment ∆Indp dis csi via Eq. (19). If it

is not divisible, we can adjust the value of the ∆Indp dis csi in the last phase; 3) A set of

indexes of the discrete points for updating the position of the end effector, denoted by

Indp dis csi ee, can be expressed to a form of Eq. (20). Eqs. (19) and (20) are as follows:

∆Indp dis csi=
np dis csi − 1

nphase

(19)

Indp dis csi ee = 1, 1 + ∆Indp dis csi, ... , 1 + nphase∆Indp dis csi (20)

Using Indp dis csi ee, all positions of the end effector (P j
hrm ssc(i)|i=nlink ssc

), during a shape

control cycle (j = 1, 2, ... , nphase), can be obtained. Now let’s introduce algorithm 2.

First, use Eqs. (19) and (20) to obtain Indp dis csi ee, and then use funtion Cal SSC p(),

which is based on Eq. (18), to calculate all the points P j
hrm ssc(i), for i = 0, 1, ..., nlink ssc

and j = 1, 2, ..., nphase, via SSC curve (line 5). During the shape control cycle, in the

first phase, P j
hrm ssc(i)|j=1,i=nlink ssc

coincides with Start node, as shown in Fig. 7d, and in

the final phase, P j
hrm ssc(i)|j=nphase,i=nlink ssc

coincides with End node, as shown in Fig. 7f.

Next calculate all the points P j
hrm dscb(k), for i = 0, 1, ..., nlink dscb and j = 1, 2, ..., nphase,

via DSCB curve (lines 9-13). It should be noted that function Build DSCB curve() is

programmed via Eqs. (2) and (5), and function Cal DSCB p() is based on Eqs. (11)-(16).

Finally, employ function Combine p() to combine P j
hrm ssc(i) and P j

hrm dscb(k) to obtain the

complete connecting points P j
hrm(m), of the manipulator.

3. Integrated Simulations of the RRTSC Algorithm

In this section, we further refine the RRTSC algorithm by adding two collision detection

sub-algorithms in addition to the existing RRT collision detection sub-algorithm, and

then propose the RRTSC algorithm frame. After that, the feasibility and effectiveness of

the RRTSC algorithm are verified through integrated simulations utilizing the abstract

link model of the hyper-redundant manipulator. When applying our algorithm to a

specific real hyper-redundant manipulator, the mapping relationship between the link

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 25

Algorithm 2 Shape control of the hyper-redundant manipulator

Input: llink, nlink, CSI path, CLS path

Output: P j
hrm(m)

1: function Shape control()

2: Initialize link length and number parameters llink and nlink, and load path data

CSI path, CLS path

3: Connect CSI path and CLS path, forming static shape control curve SSC curve

4: %Calculate the connecting points P j
hrm ssc(i) of the hyper-redundant manipulator

links via SSC curve

5: P j
hrm ssc(i) ← Cal SSC p(SSC curve, llink, nlink)

6: for j = 1, ... , nphase do

7: Con p← P j
hrm ssc(i)|i=nlink ssc

%Find the point Con p

8: nlink dscb ← nlink − nlink ssc

9: %Calculate the number of links which are obtained by dynamic shape control

backbone (DSCB) curve

10: Ldscb ← nlink dscb∗llink %Length of the DSCB curve

11: DSCB curve← Build DSCB curve(Base p, Con p, Ldscb)

12: %Build the DSCB curve, given base position

13: P j
hrm dscb(k) ← Cal DSCB p(DSCB curve, nj

link dscb, llink)

14: %Calculate the connecting points P j
hrm dscb(k) of the hyper-redundant

manipulator links via DSCB curve

15: end for

16: %Combing P j
hrm ssc(i) and the P j

hrm dscb(k) to obtain the complete connecting points

P j
hrm(m)

17: P j
hrm(m) ← Combine p(P j

hrm ssc(i), P
j
hrm dscb(k))

18: return P j
hrm(m)

19: end function

model and the robot must be established, and it depends on a specific joint configuration

of the robot. We give an example of how to build this relationship.

3.1. RRTSC Algorithm Frame

RRT algorithm guarantees that the RRT path and obstacles do not collide, but it can’t

guarantee that the cubic spline interpolation curve and obstacles do not collide. In

addition, even if the cubic spline interpolation curve and obstacles do not collide, the link

model of the manipulator may collide with obstacles. Therefore, additional two collision

detection sub-algorithms are necessary. Fig. 8 is a schematic diagram of the collision

detection sub-algorithms. All the collision detections are implemented in En inner. Fig.

8a shows all the components, including obstacles, link model of the manipulator, the cubic

spline interpolations curve, the RRT and the RRT path, inside an obstacle environment.

26 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

Fig. 8b is a local enlarged drawing of Fig. 8a. Fig. 8c-8e show three cases: Case 1 indicates

that no collision occurred; Case 2 indicates that the cubic spline curve collides with the

obstacle; Case 3 indicates that the link model collides with the obstacle. For the latter

two collision situations, Fig. 8g and 8h show the corresponding collision detection sub-

algorithms. Their principles are similar to function Col det RRT (), which is defined in

section 2.3 and used to detect collision between One RRT path and obstacles (Fig. 8f).

First, discretize the detected objects and then detect whether the distance, between each

discrete point and each sphere’s center, is smaller than the radius of the sphere. It should

be noted that only all the positions of the first link (or the leading link shown in Fig.

2) of the manipulator in different phases are required for collision detection in Fig. 8h,

because the other links of the manipulator will follow the trajectory of the first link. The

first link is obtained via Eq. (18).

Now let’s put all the components of the RRTSC obstacle avoidance algorithm together

and organize them, forming the RRTSC algorithm frame described briefly in algorithm 3.

The RRTSC algorithm is implemented according to following steps: 1) Utilize the multi-

sphere envelope method (section 2.2) to model obstacles, and obtain the spheres’ center

data OBi and radius r; 2) Build an obstacle environment and determine environment

boundary En limit; 3) In En inner space, give an Start node and an End node and

then run a loop (lines 4-13 in algorithm 3). In the loop, keep running the function

Generate RRT (algorithm 1 in section 2.3) to generate a RRT path until no collision

occurs. Each time a RRT path is generated, two collision detection sub-algorithms (line

10 and line 12 in algorithm 3) need to be executed. Use function Generate CSI() to

obtain a cubic spline interpolation curve CSI path and run function Col det CSI() to

detect whether CSI path collides with obstacles (collision detection 2 in Fig. 8g). Use the

function Col det L() to detect whether the first link in each phase collides with obstacles

(collision detection 3 in Fig. 8h); 4) Generate a CLS path with function Generate CLS()

; 5) Determine nphase, and in each phase execute function Shape control() to obtain

P j
hrm(m) (shape control method, algorithm 2 in section 2.5). Utilize P j

hrm(m) to construct

the link model of the manipulator, and with the phase shift, the manipulator, constrained

via SSC curve and DSCB curve, moves to End node from Start node without collision

with obstacles. There is a failure condition for the RRTSC algorithm where path planning

might fail, and it can be avoided. In the RRTSC algorithm, we attach the leading link

to the static shape control curve (SSC curve) and move continuously to detect if the

leading link collides with obstacles, during which the solution of the trailing end of the

leading link may not exist due to a poor discretization process of SSC curve. As long as

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 27

RRT path

 RRT path

discretization
Cubic spline interpolation

 curve discretization

 Link

discretization

 step

OCubic spline interpolation curve

Collision

Collision

Link

Start node

Start phase

Phase i

......

End phase

End node

Obstacle

Obstacle

(c) Case 1

(e) Case 3

(b) Local enlarged drawing(a) Elements in inner part

(f) Collision detection 1 (g) Collision detection 2

(h) Collision detection 3(d) Case 2

i
d r>

i
d r>

i
d r>

D

−0.5

0

0.5

−0.5
0

0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 8. Collision detection sub-algorithms.

we improve the discretization accuracy of SSC curve through interpolation, this problem

can be avoided.

3.2. Base-movable hyper-redundant manipulators simulation

Now the RRTSC algorithm is available, and it can be used for base-movable hyper-

redundant manipulators. A simulation is carried out in this section, as shown in Fig.

10. Table II provide all the simulation-related data. Obstacles are modeled by the

traditional single-sphere enveloping method, and spherical center coordinates are set

randomly within En limit and listed in supplementary material fig10 ob.xlsx. Without

loss of generality, we assume that all the spheres’ radius r are the same, and here we

set them as 0.06. Given an initial point (Start node), a target point (End node) and

28 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

(a) (b)

(c)

(d)

_DSCB curve

How to describe?

Shape contrained to a line segment

_En limit

_En inner_En outer

_CSI path

_CLS path

Mobile car

(Movable base)

Distance moved by the base

Mobile car

(Movable base)

Ground

Ground
Fixed base

(Backbone curve)

_Con p

_Con p

_Start node

_Start node

_End node

_End node

Ground

(e)

(f)

Ground

_Con p

_Con p

_Start node

_Start node

_End node

_End node

Ground

Shape contrained to a line segment

Shape contrained to a backbone curve

Shape contrained to a backbone curve

Fig. 9. Illustration for the reason why the line segment and the backbone curve are selected for the
base-movable and base-fixed manipulators respectively.

a sample step length Steptree, execute the RRT algorithm and then a RRT path is

obtained. The RRT path is smoothed by cubic spline interpolation to get a CSI path.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 29

Algorithm 3 Obstacle avoidance based on RRT and shape control method (RRTSC)

Input: OBi, r, llink, nlink, nob, En limit, Start node, End node

Output: P j
hrm(m)

1: function RRTSC

2: Determine obstacle envelope spheres’ center data OBi and radius r, and initialize

link length llink, link number nlink and environment boundary En limit

3: for j ← 1, ... , nphase do

4: while (flag path = 1) or (flag link = 1) do

5: %Generate RRT path in inner part of environment boundary

6: RRT path← Generate RRT (Start node,End node,OBi, r, En limit)

7: %Cubic spline interpolation of a RRT path

8: CSI path← Generate CSI(RRT path)

9: %Collision detection of the cubic spline interpolation curve

10: flag path← Col det CSI(CSI path,OBi, r)

11: %Collision detection of links

12: flag link ← Col det L(llink, CSI path,OBi, r)

13: end while

14: %Generate a connecting line segment between cubic spline interpolation curve

and backbone curve

15: CLS path← Generate CLS(CSI path, llink)

16: %Shape control method

17: P j
hrm(m) ← Shape control(llink, nlink, CSI path, CLS path)

18: end for

19: return P j
hrm(m)

20: end function

Combining the CSI path and a CLS path we can obtain static shape control curve

SSC curve. TheRRT path, the CSI path and the CLS path are listed in supplementary

materials fig10 rrt path.xlsx, fig10 csi path.xlsx and fig10 cls path.xlsx, respectively. In

this study, for the base-movable manipulator, a straight line segment of varying length

is employed to constrain the macro shape of the manipulator in En outer, and for base-

fixed manipulators, the dynamic backbone curve is utilized for the same purpose. If

the manipulator’s base is fixed, the straight line segment will be no longer applicable,

and it is necessary to choose the dynamic backbone curve. Fig. 9 is shown for detailed

explanations. As shown in Fig. 9a, the working environment (or task space) is divided into

two parts: obstacle space (En inner) and free space (En outer). When the manipulator

passes into En inner, the manipulator in En outer will be a free state if we do not

add constraints. We want to control the movement of the whole manipulator, so the free

state must be avoided. It is wise to choose a straight line segment to constrain the shape

30 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

of the manipulator in En outer when the base of the manipulator is movable, which is

exactly what we did in our study. However, when the base of the manipulator is fixed

with the ground as shown in Fig. 9b, the straight line segment will no longer work. That

is determined by the essence of our RRTSC algorithm. In our RRTSC algorithm, all

the joint positions of the manipulator are calculated from the end-effector to the base

iteratively. As depicted in Fig. 9c-9d, when the manipulator’s end-effector moves from the

starting point to the target point, its base must move passively. Therefore, the straight

line segment can not be applied to a base-fixed manipulator. It is necessary to choose

a curve with variable length to ensure that the position of the base of the manipulator

remains unchanged, and we choose the backbone curve in our study. We characterize the

backbone curve as a dynamic curve because the length of the backbone curve changes

with time, which is described in Fig. 7d-7f. When the manipulator moves from the starting

point to the target point, the number of links exposed in En outer will be reduced, and

the length of the backbone curve should be reduced accordingly. If the manipulator’s

base is movable, it is not a good choice to use the backbone curve as the dynamic shape

control curve, because adopting a straight line segment will make the process of solving

P j
hrm dscb(k) more efficient. As shown in Fig. 9e-9f, if the manipulator is movable, it is

feasible to use the backbone curve to constrain the manipulator in En outer. When

adopting the backbone curve, there exist three cases for updating P j
hrm dscb(k) if P j

hrm ssc(i)

is updated: 1) Only Pint(t) and l(t) are updated; 2) Only a1(t), a2(t), a3(t) and l(t) are

updated; 3) Both Pint(t), a1(t), a2(t), a3(t) and l(t) are updated. Cases 2 and 3 have

low computational efficiency compared to case 1. When the line segment are adopted,

only Pint(t) and l(t) are needed to update (case 4). Compared with the corresponding

case 1 where the backbone curve is utilized to calculate P j
hrm dscb(k) numerically, it will

more computationally efficient to use the straight line segment (case 4) since analytical

solutions for solving P j
hrm dscb(k) are available. We stipulate that manipulator’s links

in En outer are arranged in a straight line, and the first two links are perpendicular

to the ground. Then P j
hrm dscb(k) can be calculated easily. Set values of parameters:

link number nlink, link length llink, total number of phases nphase, and coefficient eps.

Then run function Cal SSC p(), thus getting P j
hrm ssc(i) in En inner. Finally, combine

P j
hrm dscb(k) and P j

hrm ssc(i) to obtain P j
hrm(m). The P j

hrm ssc(i), P
j
hrm dscb(k), P

j
hrm(m) are listed

in corresponding excel files. The nlink ssc and nlink dscb are also constantly changing with

phase j, and they are collected in fig10 n.xlsx. Fig. 10a shows the obstacle environment,

the RRT, the RRT path, the CSI path, and the CLS path. Fig. 10b depicts the initial

configuration of the manipulator in the first phase (j = 1), and Fig. 10c represents the

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 31

final configuration of the manipulator in the last phase (j = 90). In order to visually

show all phases of the obstacle avoidance movement of the manipulator, we provide an

animation in supplementary material fig10 ani.mp4. Through animation, it can be found

that the manipulator successfully avoids all obstacles and reaches a target point from an

initial point.

(a)

Initial configuration

Manipulator’s joint

Manipulator’s link

Start point (end effector)

Goal point

RRT tree

Obstacle

(b)

(c)

Final configuration

Base

 _CSI path

 _CLS path
 _SSC curve

 _CSI path

Fig. 10. Simulation of the base-moving manipulator in sphere obstacle environment.

3.3. Base-fixed hyper-redundant manipulators simulation

The RRTSC algorithm is proposed mainly for base-fixed hyper-redundant manipulators,

and three simulations are carried out in this section, as depicted in Figs. 11-13. Table

II show all the simulation-related data. When the RRTSC algorithm is employed for a

base-movable manipulator, the DSCB curve is a line segment of varying length. When

RRTSC algorithm is utilized for a base-fixed manipulator, the backbone curve is selected

32 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

as DSCB curve. Therefore, compared to the simulation-related data in Fig. 10, Figs.

11-13 add the parameters of the backbone curve: Pint(t), a1(t), a2(t), a3(t), l(t), b1(t),

b2(t), b3(t), and b4. To verify generality of the RRTSC algorithm, in this part, three

obstacle environments are selected. In Fig. 11, the obstacle environment is the same as

in Fig. 10. In Fig. 12, the obstacle is a hollow cabin and it is simplified to a combination

of a cylindrical surface and a tapered surface. Fig. 13 shows a truss obstacle composed of

many slender rods. Using manual multi-sphere approximation method, the cabin and the

truss are modelled as shown in Fig. 3h and Fig. 3k, respectively. For display convenience,

Figs. 12 and 13 only show half of the envelope spheres here. Obstacle environment, RRT,

RRT path, CSI path and CLS path are shown in Figs. 11a-13a. Figs. 11b-13b, 11c-

13c, and 11d-13d depict initial, intermediate and final configurations, respectively. For

complete movement animations, refer to corresponding supplementary materials.

(a)

(c)

(b)
Initial

configuration

(d)
Final

configuration

Fig. 11. Simulation of base-fixed manipulators in sphere obstacle environment.

3.4. Mapping relationship between a simplified prototype model and its link model

Simulations in Figs. 10-13 are carried out through the abstract link model of the

manipulator. When the RRTSC algorithm is applied on a real manipulator, the link

model must have enough information to drive the robot, which needs specific joint angle

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 33

Table II . Simulation-related data.

Object Fig. 10 Fig. 11 Fig. 12 Fig. 13

OBi fig10 ob.xlsx fig11 ob.xlsx fig12 ob.xlsx fig13 ob.xlsx

r 0.06 0.06 150 2

En limit
(-0.9,0.7,

-0.8,0.8,

-0.8,0.8)

(-0.9,0.7,

-0.8,0.8,

-0.8,0.8)

(-100,4600,

-1800,1800,

-1800,1800)

(-60,60,

-60,160,

-20,120)

Start node (-0.2,-0.8,0.2) (-0.2,-0.8,0.2) (0,0,10) (0,-50,50)

End node (-0.8,0.6,0) (-0.8,0.6,0) (2000,700,700) (20,80,80)

Steptree 0.1067 0.08 300 13

RRT path fig10 rrt path.xlsx fig11 rrt path.xlsx fig12 rrt path.xlsx fig13 rrt path.xlsx

CSI path fig10 csi path.xlsx fig11 csi path.xlsx fig12 csi path.xlsx fig13 csi path.xlsx

CLS path fig10 cls path.xlsx fig11 cls path.xlsx fig12 cls path.xlsx fig13 cls path.xlsx

nlink 18 16 22 33

llink 0.2 0.2 300 10

nphase 90 87 93 97

eps 0.002 0.02 3 0.1

nlink ssc

and
nlink dscb

fig10 n.xlsx fig11 n.xlsx fig12 n.xlsx fig13 n.xlsx

Con p fig10 cp.xlsx fig11 cp.xlsx fig12 cp.xlsx fig13 cp.xlsx

P j
hrm ssc(i) fig10 p ssc.xlsx fig11 p ssc.xlsx fig12 p ssc.xlsx fig13 p ssc.xlsx

P j
hrm dscb(k) fig10 p dscb.xlsx fig11 p dscb.xlsx fig12 p dscb.xlsx fig13 p dscb.xlsx

P j
hrm(m) fig10 p.xlsx fig11 p.xlsx fig12 p.xlsx fig13 p.xlsx

Animation fig10 ani.mp4 fig11 ani.mp4 fig12 ani.mp4 fig13 ani.mp4

Pint(t) – [-0.2;-1.4;-0.2] [-600;0;-1190] [0;-70;0]

a1(t),a2(t)
and
a3(t)

– fig11 a.xlsx fig12 a.xlsx fig13 a.xlsx

b1(t),b2(t),b3(t)
and b4(t)

–
(0.51,-

3.15,1.56,3.2)
(0.51,-

1.58,1.56,3.2)
(0.51,-

3.15,1.56,3.2)

sequences. To fulfill that, a coordinate system must be established on the link model.

Fig. 14 shows a simplified prototype model and its link model with coordinates, and

it is convenient for us to understand their mapping relationship. The prototype models

(Figs. 14a, 14c, 14e, and 14g) are composed of same modules and each module has a joint

34 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

(a) (b)

(c) (d)

Initial

configuration

Final

configuration

Fig. 12. Simulation of base-fixed manipulators in cabin obstacle environment.

(a) (b)

(c) (d)

Initial

configuration

Final

configuration

Fig. 13. Simulation of base-fixed manipulators in truss obstacle environment.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 35

with three degrees of freedom (roll angle γ, yaw angle α, and pitch angle β). The link

models (Figs. 14b, 14d, 14f, and 14h) are obtained by the RRTSC algorithm. The local

coordinates are obtained via following steps: 1) every origin of the local coordinates is

located on jPhrm(m); 2) y axis is the unit vector from jPhrm(m) to Phrm(m+1); 3) x axis is

selected by satisfying two conditions. One is that it is vertical to the y axis, and the other

is that it is on a plane parallel to the ground plane; 4) z axis is calculated via a right

hand rule. When the local coordinates are available, the angle sequences can be solved

by matrix transformation, and the detailed solution process can be found in ref. [47]. It

should be pointed out that different rotating sequences or joint configurations lead to

different matrix transformation processes. On the other hand, the link model must take

the enveloping diameter into consideration when applying the RRTSC algorithm on a

real manipulator. This problem can be easily solved by adjusting the threshold value of

distance detection when executing algorithm 1.

3.5. Comparision with existing works

The RRTSC algorithm belongs to the backbone-curve-based method, the same as the

existing works in refs. [40, 41]. In this section, a comparison with these two works is

conducted, and the similarities and differences are summarized.

3.5.1. Similarity.

1. Task space is divided into two parts: obstacle space and free space.

2. In obstacle space, a collision-free path from a given start point to a goal point, denoted

by CF path, is constructed based on a Generalized Voronoi Graph (GVG) in ref. [40],

a harmonic potential function in ref. [41] or an RRT algorithm in our study.

3. A dynamic shape control backbone curve in free space, denoted by DSCBFS curve,

is constructed in ref. [41] and our study.

3.5.2. Difference.

1. The usage of CF path is different. In refs. [40, 41], CF path is utilized to form a

dynamic shape control backbone curve in obstacle space, denoted by DSCBOS curve

and DSCBOS curve to obtain a new dynamic shape control curve in the entire task

space, denoted by DSCBETS curve. In our study, CF path is utilized to form a

static shape control curve, denoted by SSC curve.

2. Different from the works in refs. [40, 41] in which only a dynamic shape control

backbone curve in the entire task space (DSCBETS curve) is constructed in real-time

for constraining the macro shape of the manipulator, our proposed RRTSC algorithm

36 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

hrm()

j

m
P

hrm(1)

j

m
P -

hrm(+1)

j

m
P

mLink Link -1m

j

m
x

j

m
y

j

m
z

-1

j

m
x

-1

j

m
y

-1

j

m
z

j

m
x

j

m
x

j

m
x

j

m
x

j

m
y

j

m
y

j

m
y

j

m
y

j

m
z

j

m
z

j

m
z

j

m
z

-1

j

m
x

-1

j

m
x

-1

j

m
y

-1

j

m
y

-1

j

m
z

-1

j

m
z

（b）

（c）

（d）

（e）

（f）

（g）

（h）

（a）

Roll angle
Yaw angle

Pitch angle

a

b

g

j

m
g

j

m
a

j

m
b

Fig. 14. Mapping relationship between a simplified prototype model and its link model.

combines a static shape control curve (SSC curve) and a dynamic shape control

backbone curve in free space (DSCBFS curve) for the same purpose. It should be

noted that DSCBFS curve is abbreviated as DSCB curve in our study. This form

is written here to distinguish between DSCBFS curve and DSCBOS curve more

clearly. To our best knowledge, it is the first attempt to accomplish obstacle avoidance

of manipulators with a combination of a static shape control curve and a dynamic

shape control backbone curve among existing works. How to achieve this combination

is described in detail in our study.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 37

3. Regarding how to dynamically generate DSCBETS curve, the work in ref. [40]

only provides conceptual descriptions, and no specific mathematical formulations

or algorithms are given. In ref. [41], these conceptual descriptions in ref. [40]

come to a realization mathematically. However, how to use CF path to determine

DSCBOS curve, and how to choose the specific length of DSCBFS curve are not

mentioned clearly. In our study, detailed information about the generating process of

the SSC curve and the DSCBFS curve are provided via the RRTSC algorithm.

4. In ref. [41], DSCBFS curve is given with a specific mathematical form, and how this

form is constructed is not mentioned. In our study, we detail the construction process

of this form and extend it to a more general form. In other words, the mathematical

form is not unique and can be replaced by other ones if proper mode functions are

selected via our proposed general form.

5. The most important difference is that our proposed RRTSC algorithm can avoid a

common problem existing in the works in refs. [40, 41]. Based on the Generalized

Voronoi Graph,40 or the harmonic potential function,41 the works in refs. [40, 41]

ensure that DSCBETS curve is collision-free with obstacles. However, when utilizing

DSCBETS curve to constraining the macro shape of the manipulator, the links of the

manipulator may collide with obstacles, because the links can not fully approximate

the shape of DSCBETS curve unless the number of the links is large enough (this is

not realistic). Our proposed RRTSC algorithm does not have this problem. In order

to avoid this problem, an RRT algorithm and a cubic spline interpolation are adopted

to construct a smooth collision-free path (CF path) from a start point to a goal

point in obstacle space, and then two ends (a leading end and a trailing end) of

a leading link of the manipulator are attached to this collision-free path and move

continuously until the leading end of the leading link reaches a given goal point,

during which collision detections are executed between the leading link and obstacles.

If a collision occurs between the leading link and obstacles, a new collision-free path

(CF path) is generated until no collision occurs. The motion of the remaining links

follows the motion of the leading link in turn, so all links will not collide with obstacles

(this phenomenon is called ‘follow-the-leading-link’ in this study). The essence of our

RRTSC algorithm is to reduce the multi-link collision detection to single-link one,

which provides the algorithm with high computational efficiency. It should be noted

that the phenomenon of the ‘follow-the-leading-link’ in this study is different from

a similar phenomenon of the ‘follow-the-leader’ in refs. [40, 41]. The phenomenon

of the ‘follow-the-leading-link’ means that the motion of the remaining links follow

38 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

the motion of the leading link in turn, while the phenomenon of the ‘follow-the-

leader’ means that the entire manipulator is advanced into a goal point by the

‘leader’ (head, end-effector, or leading end of a leading link). Let us explain in more

detail how the phenomenon of the ‘follow-the-leader’ is produced. In refs. [40,41], the

manipulator is advanced by three steps: 1) Add an δs increment via the GVG40 or the

harmonic potential function41 to form DSCBOS curve; 2) Connect DSCBFS curve

and DSCBOS curve to form DSCBETS curve; 3) Utilize an optimization algorithm

to fit the macro shape of the manipulator to DSCBETS curve as closely as possible,

during which the ‘leader’ (head, end-effector, or leading end of a leading link) is always

put on the δs while the remaining joint positions are calculated via the optimization

algorithm; 4) Repeat the steps 1-3 continuously until the ‘leader’ reaches a given goal

point. Steps 1-4 make the movement of the manipulator seem to be driven by the

‘leader’, and this phenomenon is denoted as ‘follow-the-leader’.

4. Conclusions and Future Work

In this study, a kinematic obstacle avoidance algorithm, referred to as the RRTSC

algorithm, mainly for space hyper-redundant manipulators is proposed. Different from

the existing backbone-curve-based works in which only a dynamic backbone curve is

utilized to constraining the macro shape of the manipulator, our algorithm successfully

combines a static curve and a dynamic backbone curve for the same purpose. In

addition, our algorithm solves the common problem (the backbone curve is collision

but the manipulator may collide with obstacles) existing in the previous backbone-

curve-based works. Our algorithm can be applied to both base-movable and base-fixed

manipulators, and four simulations are conducted to verify the effectiveness of the

RRTSC algorithm. Space hyper-redundant manipulator plays an important role in space

station maintenance, because it has more flexible obstacle avoidance ability compared to

other conventional manipulators. Therefore, this proposed algorithm is meaningful.

However, the RRTSC algorithm has drawbacks which can be further improved in our

future works. Firstly, the collision-free path is not optimal. Some optimization algorithms

can be combined to shorten the path length as much as possible. Secondly, this planning

method is designed for static obstacles in this study. If obstacles’ positions are time-

varying, the RRT path should be time-varying accordingly. In order to obtain the time-

varying RRT path, the original RRT algorithm may be modified by integrating multi-level

RRT in series, rules of obstacles’ motion and other detection sub-algorithms. It will be

the main direction of our future works.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 39

Acknowledgements

This work is supported by the National Key R&D Program of China (2018YFB1304600),

the National Natural Science Foundation of China (51775541) and the CAS

Interdisciplinary Innovation Team (JCTD-2018-11).

References

1. G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-redundant manipulator kinematics,”

IEEE Trans. Rob. Autom. 10(3), 343–354 (1994).

2. G. S. Chirikjian and J. W. Burdick, “Hyper-redundant Robot Mechanisms and Their Applications,”

In: Proc. IEEE RSJ Int. Workshop Intell. Robots Syst. (IROS) (1991) pp. 185–190.

3. A. Wolf, H. B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas and H. Choset, “A Mobile

Hyper Redundant Mechanism for Search and Rescue Tasks,” In: Proc. IEEE Int. Conf. Intell. Rob.

Syst. (2003) pp. 2889–2895.

4. J. Tang, Y. Zhang, F. Huang, J. Li, Z. Chen, W. Song, S. Zhu and J. Gu, “Design and kinematic

control of the cable-driven hyper-redundant manipulator for potential underwater applications,” Appl.

Sci. 9(6), article number 1142 (2019).

5. W. Wan, C. Sun and J. Yuan, “Adaptive caging configuration design algorithm of hyper-redundant

manipulator for dysfunctional satellite pre-capture,” IEEE Access 8, 22546–22559 (2020).

6. X. Zhang and J. Liu, “Effective motion planning strategy for space robot capturing targets under

consideration of the berth position,” Acta Astronaut. 148, 403–416 (2018).

7. X. Zhang, J. Liu, J. Feng, Y. Liu and Z. Ju, “Effective capture of nongraspable objects for space

robots using geometric cage pairs,” IEEE/ASME Trans. Mechatron. 25(1), 95–107 (2020).

8. Z. Mu, T. Liu, W. Xu, Y. Lou and B. Liang, “Dynamic feedforward control of spatial cable-driven

hyper-redundant manipulators for on-orbit servicing,” Robotica 37(1), 18–38 (2019).

9. T. Rybus, “Obstacle avoidance in space robotics: Review of major challenges and proposed solutions,”

Prog. Aeosp. Sci. 101, 31–48 (2018).

10. M. D. Marcos, J. A. T. Machado and T.-P. Azevedo-Perdicoulis, “A fractional approach for the motion

planning of redundant and hyper-redundant manipulators,” Signal Process. 91(3), 562–570 (2011).

11. A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinematically redundant manipulators in

dynamically varying environments,” Int. J. Robot. Res. 4(3), 109–117 (1985).

12. C. Qiu, Q. Cao and S. Miao, “An on-line task modification method for singularity avoidance of robot

manipulators,” Robotica 27(4), 539–546 (2009).

13. B. Liao and W. Liu, “Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution

of robot manipulators,” Robotica 33(10), 2100–2113 (2015).

14. J. Wan, H. Wu, R. Ma and L. Zhang, “A study on avoiding joint limits for inverse kinematics

of redundant manipulators using improved clamping weighted least-norm method,” J. Mech. Sci.

Technol. 32(3), 1367–1378 (2018).

15. S. Ma and D. Nenchev, “Local torque minimization for redundant manipulators: A correct

formulation,” Robotica 14(2), 235–239 (1996).

40 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

16. J. Barraquand, B. Langlois and J.C. Latombe, “Numerical potential field techniques for robot path

planning,” IEEE Trans. Syst. Man. Cybern. 22(2), 224–241 (1992).

17. J. Barraquand and J.C. Latombe, “Robot motion planning: A distributed representation approach,”

Int. J. Robot. Res. 10(6), 628–649 (1991).

18. E. S. Conkur, “Path planning using potential fields for highly redundant manipulators,” Robot. Auton.

Syst. 52(2–3), 209–228 (2005).

19. T. Lozano-Perez, “Spatial planning: a configuration space approach,” IEEE Trans. Comput. 32(2),

108–120 (1983).

20. L.E. Kavraki, P. Svestka, J.C. Latombe and M.H. Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,” IEEE Trans. Rob. Autom. 12(4), 566–580 (1996).

21. B. Dasgupta, A. Gupta and E. Singla, “A variational approach to path planning for hyper-redundant

manipulators,” Robot. Auton. Syst. 57(2), 194–201 (2009).

22. M. D. Marcos, J. A. T. Machado and T.-P. Azevedo-Perdicoulis, “Trajectory planning of redundant

manipulators using genetic algorithms,” Commun. Nonlinear Sci. Numer. Simul. 14(7), 2858–2869

(2009).

23. J. Zhao, L. Zhao and H. Liu, “Motion Planning of Hyper-redundant Manipulators Based on Ant

Colony Optimization,” In: Proc. IEEE Int. Conf. Robot. Biomim., (ROBIO) (2016) pp. 1250–1255.

24. H. Ananthanarayanan and R. Ordóñez, “A fast converging optimal technique applied to path planning

of hyper-redundant manipulators,” Mech. Mach. Theory 118, 231–246 (2017).

25. J. J. Kuffner and S. M. Lavalle, “RRT-connect: A Efficient Approach to Single-query Path Planning,”

In: Proc. IEEE Int. Conf. Rob. Autom. (2000) pp. 995–1001.

26. M.V. Weghe, D. Ferguson and S.S. Srinivasa, “Randomized Path Planning for Redundant

Manipulators without Inverse Kinematics,” In: Proc. IEEE-RAS Int. Conf. Humanoid Rob. (2007)

pp. 477–482.

27. N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner and R. Dillmann, “Humanoid Motion Planning

for Dual-Arm Manipulation and Re-Grasping Tasks,” In: Proc. IEEE Int. Conf. Intell. Rob. Syst.

(IROS) (2009) pp. 2464–2470.

28. A. Shkolnik and R. Tedrake, “Path Planning in 1000+ Dimensions using a Task-Space Voronoi Bias,”

In: Proc. IEEE Int. Conf. Rob. Auto. (2009) pp. 2061–2067.

29. G. Mesesan, M.A. Roa, E. Icer and M. Althoff, “Hierarchical Path Planner using Workspace

Decomposition and Parallel Task-Space RRTs,” In: Proc. IEEE Int. Conf. Intell. Rob. Syst. (IROS)

(2018) pp. 1–9.

30. A. A. Maciejewski and J. J. Fox, “Path planning and the topology of configuration space,” IEEE

Trans. Rob. Autom. 9(4), 444–456 (1993).

31. J. Wang, M.Q. Meng and O. Khatib, “ EB-RRT: Optimal motion planning for mobile robots,” IEEE

Trans. Autom. Sci. Eng. 17(4), 2063–2073 (2020).

32. Y. Zhang and J. Wang, “ Obstacle avoidance for kinematically redundant manipulators using a dual

neural network,” IEEE Trans. Syst. Man. Cybern. 34(1), 752–759 (2004).

33. D. Guo and Y. Zhang, “A new inequality-based obstacle-avoidance MVN scheme and its application

to redundant robot manipulators,” IEEE Trans. Syst. Man. Cybern. 42(6), 1326–1340 (2012).

34. D. Guo and Y. Zhang, “Acceleration-level inequality-based MAN scheme for obstacle avoidance of

redundant robot manipulators,” IEEE Trans. Ind. Electron. 61(12), 6903–6914 (2014).

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 41

35. A. Hassan, M. EI-Habrouk and S. Deghedie, “Inverse kinematics of redundant manipulators formulated

as quadratic programming optimization problem solved using recurrent neural networks: a review,”

Robotica 38(8), 1495–1512 (2020).

36. Z. Zhang, L. Zheng, J. Yu, Y. Li and Z. Yu, “Three recurrent neural networks and three

numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators,”

IEEE/ASME Trans. Mech. 22(3), 1423–1434 (2017).

37. M.S. Menon, V.C. Ravi and A. Ghosal, “Trajectory planning and obstacle avoidance for hyper-

redundant serial robots,” J. Mech. Robot. 9(4), 041010 (2017).

38. K. P. Ashwin, A. N. Chaudhury and A. Ghosal, “Efficient representation of ducts and cluttered spaces

for realistic motion planning of hyper-redundant robots through confined paths,” Comput.-Aided Des.

119, article number 102777 (2020).

39. G. S. Chirikjian and J. W. Burdick, “An Obstacle Avoidance Algorithm for Hyper-redundant

Manipulators,” In: Proc. IEEE Int. Conf. on Robotics and Automation (1990) pp. 625–631.

40. H. Choset and W. Henning, “A follow-the-leader approach to serpentine robot motion planning,” J.

Aerosp. Eng. 12(2), 65–73 (1999).

41. F. Fahimi, H. Ashrafiuon and C. Nataraj, “Obstacle avoidance for spatial hyper-redundant

manipulators using harmonic potential functions and the mode shape technique,” J. Rob. Syst. 20(1),

23–33 (2003).

42. Z. Mu, T. Liu, W. Xu, Y. Lou and B. Liang, “A hybrid obstacle-avoidance method of spatial hyper-

redundant manipulators for servicing in confined space,” Robotica 37(6), 998–1019 (2019).

43. S. Ma, M. Watanabe and H. Kondo, “Dynamic Control of Curve-Constrained Hyper-redundant

Manipulators,” In: Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. (CIRA) (2001) pp. 83–

88.

44. S. Sreenivasan, P. Goel and A. Ghosal, “A real-time algorithm for simulation of flexible objects and

hyper-redundant manipulators,” Mech. Mach. Theory 45(3), 454–466 (2010).

45. M.S. Menon, G.K. Ananthasuresh and A. Ghosal, “Natural motion of one-dimensional flexible objects

using minimization approaches,” Mech. Mach. Theory 67, 64–76 (2013).

46. M.S. Menon, B. Gurumoorthy and A. Ghosal, “Efficient simulation and rendering of realistic motion

of one-dimensional flexible objects,” Comput. -Aided Des. 75, 13–26 (2016).

47. X. Zhang, J. Liu, Z. Ju and C. Yang, “Head-raising of snake robots based on a predefined spiral curve

method,” Appl. Sci. 8(11), 1-20 (2018).

48. F. Fahimi, H. Asharafiuon and C. Nataraj, “An improved inverse kinematic and velocity solution for

spatial hyper-redundant robots,” IEEE Trans. Rob. Autom. 18(1), 103–107 (2002).

49. W. Xu,Z. Mu, T. Liu and B. Liang, “A modified modal method for solving the mission-oriented inverse

kinematics of hyper-redundant space manipulators for on-orbit servicing,” Acta Astronaut. 139, 54–66

(2017).

50. H. Ananthanarayanan and R. Ordóñez, “Real-time inverse kinematics of (2n+1) DOF hyper-

redundant manipulator arm via a combined numerical and analytical approach,” Mech. Mach. Theory

91, 209–226 (2015).

51. E. K. Xidias, “Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces,”

Robot. Comput.-Integr. Manuf. 50, 286–298 (2018).

42 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

52. A. H. Barr, “Superquadrics and angle-preserving transformations,” IEEE Comput. Graph. Appl. 1(1),

11–23 (1981).

53. G. Bradshaw and C. O’Sullivan, “Adaptive medial-axis approximation for sphere-tree construction,”

ACM Trans. Graph. 23(1), 1–26 (2004).

54. S. Stolpner, P. Kry and K. Siddiqi, “Medial spheres for shape approximation,” IEEE Trans. Pattern

Anal. Mach. Intell. 34(6), 1234–1240 (2012).

Appendix: Symbols Utilized in this Study

Symbols utilized in this study are summarized in Table III-VI, and acronyms utilized in

this study are concluded in Table VII.

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 43

Table III . Symbols utilized in this study (part 1).

Symbol Definition

RRT Rapidly exploring random tree

RRTSC
The obstacle avoidance algorithm, proposed in this study,

using combination of RRT algorithm and shape control method

En limit

Environment boundary which is utilized to limit the sampling

space of the RRT algorithm and represented by

En limit = (Xl, Xr, Yl, Yr, Zl, Zr)

Xl

Left limit coordinate value of En limit on x axis,

the same as Yl and Zl

Xr

Right limit coordinate value of En limit on x axis,

the same as Yr and Zr

En inner
Inner part of 3D task space which is represented by

En inner = {P |P ∈ En limit}

En outer
Outer part of 3D task space which is denoted by

En outer = {P |P /∈ En limit}

RRT path Collision free path obtained via the RRT algorithm

CSI path
Cubic spline interpolation curve obtained after

smoothing RRT path

r Obstacle envelope sphere’s radius

dmax

Maximum distance from the centroid of an arbitrary geometry

entity to its envelope boundary

OBi Obstacle envelope sphere’s center data

Tree
Representation of a rapidly exploring random tree when

writing pseudo code

Start node Start path point of RRT path

End node End path point of RRT path

One RRT path A line segment constructed by one leaf node and its parent node

Steptree

Length of One RRT path, or sampling step length

of the RRT algorithm

44 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

Table IV . Symbols utilized in this study (part 2).

Symbol Definition

Col det RRT ()
A function utilized to detect collision between

One RRT path and obstacles

Add node() A function utilized to add New node to Tree

flag tree
A flag variable to determine whether Tree

has reached to End node

Extend tree() A function to continually add New node to Tree

F ind path() A function used to obtain RRT path form Tree

flag RRT
A flag variable to judge whether One RRT path

collides with obstacles

δ
A coefficient vector used to get discretization

point of One RRT path

Rand node Random sampling points in En inner

Nearst node A node in Tree closest to Rand node

New node A new node which can be added to Tree

nob Number of envelope spheres

OB1 Obstacle representation in Figs. 5c-5e, the same as OB2

θ1 Joint angle of a manipulator in Fig. 5c, the same as θ2

P (s, t) An arbitrary point on a backbone curve

Pint(t)
Initial point of a backbone curve in base frame,

defined as [xint, yint, zint]
T

xint x value of Pint, the same as yint and zint

s
Independent variable representing arc length

of a backbone curve

t Independent variable representing time

l(t) Total length of a backbone curve at time t

F (σ, t) Unit vector tangent to a backbone curve at s = σ

F ′(σ, t) Projection vector of F (σ, t) on x− y plane of base frame

K(σ, t) Angle between F ′(σ, t) and y axis of base frame at s = σ

T (σ, t) Angle between F ′(σ, t) and F (σ, t)

b1(t)
A coefficient to specify orientation at the start point of

a backbone curve, the same as b3(t)

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 45

Table V . Symbols utilized in this study (part 3).

Symbol Definition

b2(t)
A coefficient to specify orientation at the end point

of a backbone curve, the same as b4(t)

a1(t)
A coefficient which can be used to adjust shape

of a backbone curve, the same as a2(t) and a3(t)

ci(t) Modal participation factors, the same as di(t)

fi(s) Mode functions, the same as gi(s)

n1 The number of mode functions for K(s, t)

n2 The number of mode functions for T (s, t)

llink Length of links for a hyper-redundant manipulator

nlink Number of links for a hyper-redundant manipulator

eps A coefficient used to adjust matching accuracy of llink

Pi

Connecting points of link model for

a hyper-redundant manipulator

P ′ Equally spaced points on a backbone curve

Ptarget

Target point for a backbone curve or

a hyper-redundant manipulator

Pi|i=nlink
Connecting point Pi at i = nlink

CLS path
Additional connecting line segment between a cubic

spline interpolation curve and a backbone curve

SSC curve
Static shape control curve combing

CLS path and CSI path

DSCB curve Dynamic shape control backbone curve

P j
hrm(m)

The connecting point, labeled m, of the link model

for a hyper-redundant manipulator, at phase j and

the phase refers to the position of

Phrm(m)|m=nlink
on SSC curve or DSCB curve

P j
hrm ssc(i) P j

hrm(m) on static shape control curve SSC curve

P j
hrm dscb(k) P j

hrm(m) on dynamic shape control curve DSCB curve

nlink ssc

Number of links constrained via static shape control

curve SSC curve

46 An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators

Table VI . Symbols utilized in this study (part 4).

Symbol Definition

nlink dscb

Number of links constrained via dynamic shape control

backbone curve DSCB curve

Con p Point connecting SSC curve and DSCB curve

Cal SSC p()
A function to calculate P j

hrm ssc(i) via SSC curve,

based on Eq. (18)

nphase

Total number of phases during a shape control cycle, and

the phase, in this study, means a specific position of the end

effector on CSI path

nconfig

Total number of configurations of the manipulator during a

shape control cycle

Indp dis csi

Full index number of discrete points of cubic spline

interpolation path

np dis csi

The total number of discrete points of cubic spline

interpolation path

∆Indp dis csi Index increment of Indp dis csi

Indp dis csi ee

Partial index number of discrete points of cubic spline

interpolation path for updating the position of the

end effector

Build DSCB curve()
A function, programmed via Eqs. (2) and (5),

to build the DSCB curve

Cal DSCB p()
A function, programmed via Eqs. (11)-(16),

to calculate P j
hrm descb(k)

Combine p()
A function utilized to combine P j

hrm ssc(i)

and P j
hrm descb(k) to obtain P j

hrm(m)

Generate RRT () A function that integrates a RRT algorithm

Shape control() A function that integrates two shape control methods

CF path A collision-free path from a start point to a goal point

DSCBFS curve Dynamic shape control backbone curve in free space

DSCBOS curve Dynamic shape control backbone curve in obstacle space

DSCBETS curve Dynamic shape control backbone curve in entire task space

δs A small curve increment added to an existing curve

An Obstacle Avoidance Algorithm for Space Hyper-redundant Manipulators 47

Table VII . Acronyms utilized in this study.

Acronym Full spelling

P Position or point

n Number

l Length

r Radius

d Distance

CLS Connecting line segment

CSI Cubic spline interpolation

SSC Static shape control

DSCB Dynamic shape control

hrm Hyper-redundant manipulator

hrm ssc
Hyper-redundant manipulator constrained by the static

shape control (curve)

hrm dscb
Hyper-redundant manipulator constrained by the dynamic

shape control backbone (curve)

RRT Rapid exploring random tree

RRTSC Rapid exploring random tree and shape control

CF Collision-free

DSCBFS Dynamic shape control backbone (curve) in free space

DSCBOS Dynamic shape control backbone (curve) in obstacle space

DSCBETS Dynamic shape control backbone (curve) in entire task space

OB Obstacle

En Environment

int Initial

Con Connecting

Cal Calculate

Col Collision

det Detection

config Configuration

Ind Index

dis Discrete or discretization

ee End effector

p dis csi Discrete points of cubic spline interpolation (path)

	Introduction
	RRTSC Algorithm Architecture
	System introduction
	Modeling for Obstacles
	RRT Algorithm
	Backbone curve
	Shape control method

	Integrated Simulations of the RRTSC Algorithm
	RRTSC Algorithm Frame
	Base-movable hyper-redundant manipulators simulation
	Base-fixed hyper-redundant manipulators simulation
	Mapping relationship between a simplified prototype model and its link model
	Comparision with existing works

	Conclusions and Future Work

