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Abstract

During the past decade, robotics for cochlear implant electrode array insertion has been limited to

manipulation assistance. Going beyond manipulation assistance, this paper presents the new concept

of perception augmentation to detect and warn against the onset of intracochlear electrode array tip

folding. This online failure detection method uses a combination of intraoperative electrode insertion

force data and a predictive model of insertion force profile progression as a function of insertion depth.

The predictive model uses statistical characterization of insertion force profiles during normal robotic

electrode array insertions as well as the history of intra-operative insertion forces. Online detection of

onset of tip folding is achieved using the predictive model as an input into a support vector machine

classifier. Results show that the detection of tip folding onset can be achieved with an accuracy of

88% despite the use of intra-operative insertion force data representing incomplete insertion. This

result is significant because it allows the surgeon or robot to choose a corrective action for preventing

intra-cochlear complications.

1. Introduction

Cochlear implants (CI) (Fig. 1) restore auditory perception in patients with sensorineural hearing

loss. These prothesis are typically a two part system with an externally worn microphone/ audio

processor and an implanted electrode array in the cochlea which is positioned within close proximity

to the auditory nerve. The electrode array is inserted into the scala tympani (one of three helical

chambers within the cochlea). Hearing sensation is restored by using the electrodes to provide direct

electrical stimulation to the auditory nerve - thereby bypassing dysfunctional hair cells which, in normal

anatomy, are responsible for transduction of acoustic energy into electric stimulation of the auditory

nerve.

Previous works on robot-assisted cochlear implant (CI) insertion were motivated by the need for

avoiding intracochlear trauma (as further explained in the background and motivation section). Zhang
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Figure 1: (a) A cochlear implant system [21]: 1 microphone, 2 processor, 3 transmitter, 4 reciever, 5 electrode
array, (b) cross section of the cochlea showing 6 cochlea, 7 scala-tympani, 8 scala-media, 9 scala vestibuli

et al. first introduced the concept of robotic insertion and steerable CI electrode arrays in [40, 38] where

different kinematic arrangements and degrees of freedom in manipulating electrode arrays during the

insertion process were considered. The electrode insertion and steering path planning strategy of [38]

was subsequently adapted to steer perimodiolar electrode arrays (PEA) [23, 25, 24, 26]. In addition,

other works (e.g. [31, 19]) presented clinically adapted versions of electrode array insertion tools.

Past works on electrode array insertion have focused on manipulation augmentation to enable

accurate steering and insertion of electrode arrays into the narrow and delicate anatomy of the scala-

tympani. Because of the hypothesis that large insertion forces are associated with a higher risk of

intracochlear trauma, many works developed and used means for force sensing [28, 33, 31, 37, 40, 17,

23, 25, 20]. Surprisingly, the use force sensing information has been limited to using force data as a

metric for post-evaluation of insertion quality.

In contrast to prior works limited to manipulation augmentation, this paper presents a contribution

by putting forward the notion of perception augmentation by which the robot augments the surgeon’s

perception by using sensory data and inference to perceive and guard against impending undesirable

insertion conditions. According to our new approach, force sensing data can be used to help surgeons

extend their perception abilities by providing them with a means for online detection of onset of

erroneous electrode insertion conditions. To the best of our knowledge, no prior works have presented

the concept of perception augmentation for assisting in the monitoring of the electrode array insertion

process. In-vivo force measurements were used in [26] to facilitate electrode array insertion despite

errors in the registration of the robot to the anatomy. This work aims to extend the concept of

using intra-operative measurements to improve outcomes. Instead of focusing on using the sensory

information for control action as in [26], we focus on using sensory information as a means to derive

inference regarding the normal progression of the insertion process.
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While there are several known erroneous electrode insertion conditions (e.g. extra-cochlear buck-

ling, intra-cochlear scalar crossing) this paper chooses to demonstrate the concept of perception aug-

mentation for detecting the onset of tip fold-over. This erroneous condition can arise from incorrect

electrode insertion technique causing the tip of the electrode array to fold over itself as insertion pro-

gresses. When tip fold-over occurs further advancement of the electrode array into the scala tympani

can cause damage to the electrode array and the intracochlear anatomy.

In our preliminary work [25] we presented an investigation of tip fold over using support vector

machine classifiers. This approach demonstrated an 89% success rate in classification of tip folding

based on data collected during the entire insertion process (i.e. classification was done post insertion)

and guided selection of appropriate feature vectors. However, during surgical insertion one is interested

in detection of the onset of tip fold over in order to warn against a potentially harmful insertion or

in order to guide corrective action during robotic insertion. This work extends [25] by investigating

methods for detecting onset of tip fold-over. This effort is motivated by the desire to reduce the risk

of intra-cochlear trauma.

The remainder of this paper is organized as the following: Section 2 presents background on CI

surgery and motivation for this work, Section 3 presents the kinematic model used to describe PEA

insertion and insertion forces. Section 4 details the experimental protocol. Section 5 proposes an

algorithm for using force information to detect the onset of abnormal insertion events. Finally, Section

6 presents the results of the proposed algorithm with discussion of its meaning and limitations and

Section 7 summarizes the findings.

2. Background and Motivation

The cochlea is a helical structure with three principal chambers; the scala vestibuli (SV), the scala

media (SM), and the scala tympani (ST), Fig. 1-(b). Most electrode arrays are designed to be inserted

into the scala tympani due to evidence that CI placement entirely in the ST results in improved hearing

outcome [34, 35, 13]. This is attributed to the relatively larger size of the ST in comparison to the SV.

Traditionally, the cochlea is accessed by performing a mastoidectomy and exposing the facial recess

[10]. The electrode array is inserted into the scala tympani chamber of the cochlea. Entry into the scala

tympani is typically through the round window membrane or through an anterior-inferior cochleostomy

using a surgical drill on the order of 1 mm in diameter. The implant’s internal receiver, which remains

sub-dermal, is fixed to the patient’s skull. After implantation and a check of device function, the

surgical site is closed. The patient must then wear an external transceiver which attaches by a magnet

transcutaneously to the internal receiver.

The implanted electrode arrays come in several forms ranging from straight electrode arrays that
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follow the lateral wall to pre-curved electrode arrays that follow the mid-scala or hug the inner (modi-

olar) wall of the scala-tympani. In this work, we focus on the perimodiolar electrode array (PEA) as a

case study. This selection was based on the under-actuated structure of PEA’s which can be indirectly

steered during implantation using intelligent control of an embedded stylet.

Figure 2: Coordinate Frames and vectors describing
electrode array insertion kinematics with a paramet-
ric rendering of the cochlea helical geometry and the
standard cochlea coordinate frame.

Intra-cochlear trauma has been a focus of numer-

ous studies [1, 11, 7, 15, 36, 36, 27] with an emphasis

on mitigating damage to the intra-cochlear anatomy.

Clinical evidence suggests that trauma mitigation is

correlated with improved retention of residual hear-

ing [7]. There is also evidence that preserving residual

hearing improves speech recognition in complex sound

environments [14]. Because of these studies there has

been an increased emphasis on the importance of in-

serting PEA’s using "soft" technique in order to avoid

intra-cochlear trauma [13, 1].

In 2005 Roland [28] included the measurement

of insertion force as an additional quantitative post-

operative metric of insertion quality which has subsequently been used by a variety of groups. In

2007, Todd reported insertion forces below 0.05N using PEA’s in highly controlled laboratory inser-

tion experiments[33]. Other reported insertion forces have been mostly below 20 mN in magnitude

across different types of implants. Such low forces are below the threshold of accurate human percep-

tion [16, 3] and have presented a need for new tools with embedded force sensing capability to be used.

Several works have presented prototypes for automated insertion using force sensing as either single

[19, 31, 20] or multi degree-of-freedom (DoF) devices [40, 39].

Different types of complications can occur during the process of inserting the CI into the cochlea.

This work focuses on the tip folding complication. In tip folding cases the distal tip of the electrode folds

over on itself during insertion. This results in some electrode contacts being poorly positioned with

respect to the auditory nerve. It also effectively doubles the cross sectional area of the electrode array

as it moves through the ST. Tip folding has been discussed in several works with Briggs addressing it

during the development of perimodiolar designs [4, 5] and as a consideration in magnetically steerable

electrode array prototypes [8]. The rate of tip folding is not well known in clinical practice although

is expected to be rare with experienced surgeons. However, for a tool intended to autonomously

deploy implants, the clinical risk of folding the implant during insertion requires the presence of safety

algorithms that can mitigate the likelihood of inducing trauma.
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3. Robotic Insertion of CI Electrodes

The kinematics of robotic PEA insertion and the type of data collected are reviewed in this section

with additional details presented in [25, 24]. The insertion of CI electrode arrays into a cochlea

phantom model was carried out using a custom-designed robotic-tool while assuming manufacturer-

recommended insertion technique. This phantom model was provided by Cochlear Ltd. The choice

of the phantom model for the execution of the insertions was motivated by the need to easily observe

the behavior of the PEA’s during insertion to confirm insertion conditions. In our previous studies it

was observed that insertion forces were generally higher in temporal bones than in the plastic model

[25]. However, it was hypothesized that the reason for increased force was due to the uncertainty in

determining the correct point to begin advancing off of the stylet. This was tested through the use

of a hybrid force/position admittance controller and demonstrated that insertion forces in cadaveric

specimens were comparable to the phantom model insertions when the control was capable of correcting

the pre-defined start of advancing off the stylet in the insertion trajectory [26].

It is assumed that access to the cochlea has been created through a mastoidectomy. The entrance to

the cochlea is made through either the round window or an anterior-inferior cochleostomy. Regardless

of the technique, the point of entry into the cochlea will be denoted as the insertion point.

The implant electrode used exclusively in these experiments was the Cochlear Contour Advance

PEA. This type of implant is actuated through the removal of an embedded metal stylet in the pre-

shaped silicone body of the electrode array. When the stylet is completely removed, the PEA is curled

so as to maintain close proximity of the modiolar (inner) wall of the cochlea. As the PEA is inserted

into the cochlea’s scala tympani chamber, the removal of the stylet is coordinated with the insertion

progress using a technique called Advance Off Stylet (AOS). With this technique, the stylet is not

disturbed until approximately 7mm of the PEA has entered the scala tympani. A small mark on the

exterior body of the Contour Advance indicates this depth of insertion for the surgeon. To insert

the PEA past the 7mm depth the surgeon holds the stylet fixed and advances the electrode array off

the stylet. Figure 3 (A) thru (C) presents a rendering of the AOS technique in a 2D profile of the

ST chamber shape. The figure shows the PEA and the ST in an accurate size scale relative to each

other. This study included purposely selected and modified prototypes of the Contour Advance, with

manufacturing defects and malfunctions, aimed to induce or facilitate tip folding events, at rates very

significantly higher to any experience reported in clinical practice with this electrode design.

The insertion depth of electrode arrays is often parameterized by either linear depth, q [33, 25, 38,

31, 20, 28], or by the insertion angle about the cochlea helix, θ [36, 5, 1, 2, 9], that points to the distal

tip of the electrode array. In this work we present insertion force based on linear depth q ∈ [0, L] where

L is the electrode array length. This representation was chosen because linear depth estimates may
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Figure 3: Advance Off Stylet insertion technique. (A) The PEA is inserted until the distal end reaches the basal turn.
(B) Stylet retraction is coordinated with continued insertion into the scala tympani. (C) At full insertion depth the
stylet is completely. (D) Normal insertions result in the PEA electrodes being in close contact with the modiolus. (E)
Tip-folding results in the distal tip of the PEA bending over itself inside the cochlea.

be made in real time by the robot controller. Instead of using the absolute insertion depth q ∈ [0, L]

we use a normalized insertion depth λ = q
qrange

because it was observed in [25, 24] that in the final

millimeter of electrode insertion the gripper contact with the facial recess may corrupt measurement of

purely intra-cochlear reaction force. The constant qrange is a fraction of L used to exclude contact of

the gripper holding the PEA with the facial recess. By specifying qrange = 14mm we removed contact

events from all insertion data and allowed for fair comparison of intra-cochlear forces.

A rendering of the robotic insertion system is shown in Figure 4. A Stewart/Gough parallel robot

1 carries a force sensing and stylet actuation module 2 and a gripper holding a PEA 3 . The has

an attached frame {A} located at a pose x expressed in the robot’s base frame {B}. The pose vector

x ∈ R7 contains the homogeneous transformation with a three element cartesian translation vector

and a unit quaternion.

The insertion trajectory was calculated as a linear interpolation between an initial and final position

of the gripper holding the PEA as described in [25]. The pose of the gripper as a function of insertion

depth is denoted as x(q). At the beginning of insertion q0 = 0 and at the end of the insertion

q = qmax ≥ qrange. The PEA design requires coordinated actuation of the embedded stylet with the

magnitude of stylet retraction denoted by the variable qs(q). Once reaching the proper insertion depth

to start AOS (qAOS) the stylet is retracted at the same rate that the PEA advances into the cochlea.

In the observer’s frame of reference the PEA will appear to advance off of the stylet. The magnitude

of stylet retraction is expressed as:

qs(q) =


0, q ≤ qAOS

q − qAOS , q > qAOS

(1)
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Figure 4: Robotic insertion system with frame definitions. The gripper frame {A} is located at point x in the robot base
frame {A}. The force sensor measurements are expressed in frame {F}. The key components of the system include (1)
the 6 dof Stewart-Gough style robotic manipulator, (2) the gripper module that both holds and actuates the PEA, and
(3) the PEA implant.

4. Experimental Design

The objective of this research was to characterize insertion forces of PEA’s and to test methods in

which this force information could be used to identify an insertion complication before the insertion

completed. The transparent model allowed microscope observation of the PEA’s during insertion.

Using these observations the data could be classified by the resulting type of insertion. The resulting

types of insertions were defined into two groups. Normal insertions correspond to proper placement of

the PEA, with electrodes contacting the modiolar wall. Folding insertions were any cases where the

tip of the PEA bent back toward the base of the PEA.

Premature disruption of the stylet before insertion can lead to tip folding and although uncommon

in clinical execution, intelligent autonomous or cooperative tools need the ability to determine if their

actions are leading to unintended and undesirable outcomes. The set of insertions performed are

detailed in Table 1. Visual presentations of normal and folding insertions are shown in Figure 3 (D)

and (E) respectively. Tip folding was deliberately induced by using selected research electrodes with

manufacturing defects and deploying them prematurely in the phantom model of the cochlea. The

purpose of this set up was to achieve as many cases of tip folding as possible (in contrast with real

electrode/product behavior in clinical cases).

The phantom model mimics the shape of a left side temporal bone with the mastoidectomy and

cochleostomy performed. The cochlea was removed from the model and placed in a new holder to allow

a digital microscope to monitor inter and extra-cochlear PEA mechanical behavior. Before proceeding
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Table 1: Experimental Matrix

Set Specimen Insertion Type Rate (mm/s) # of trials
1 Phantom Normal 1 51
2 Phantom Folding 1 51

Figure 5: Experimental setup. {A} The insertion system is suspended over the phantom model of the cochlea. Before
experiments begin, the robotic system is registered to the phantom model. After loading a PEA into the insertion
system, the force sensor is unbiased for the weight of the PEA and the insertion trial would then be executed. Sub-figure
{B} presents a closer view of the robotic end effector, force sensor and the phantom cochlea model.

with PEA insertions the cochlea was filled with a 50% glycol solution to mimic lubrication properties

of perilymph. Using glycol solution for lubrication has been presented in [28] and validated against

other lubrication alternatives in [18]. After preparation, the phantom model was secured within the

workspace of the robotic insertion system.

The experimental setup for the insertion of PEA is shown in Fig. 5. The insertion system is a

custom made 6 DoF Stewart/Gough parallel robot rigidly fixed with respect to the phantom first

presented in [39]. A gripper module with one dof to actuate the PEA’s stylet is mounted on a six

axis force/moment transducer (Nano43, ATI Industrial, Apex, NC ) which is in turn connected to the

moving platform of the robot. The controller for the robotic system ran under the xPC Target real

time OS from Mathworks.

During each insertion experiment the specimen was fixed in position relative to the robot. Next,

the gripper was tele-manipulated to the insertion point x(qmax) in the cochlea in order to digitize

this point for calculation of the insertion trajectory. The gripper was then retracted to enable loading

the PEA. After loading, the electrode tip was guided to the insertion point. Once the PEA was in

position, the insertion trajectory was calculated and then executed. Once insertion was completed,

the electrode was retracted and the force data exported from the control computer for processing.

Each insertion was executed at a fixed rate (i.e. q̇ = 1mm/s) with force measurements sampled at
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1000kHz and processed through a 25ms moving average filter. The insertion speed was selected based

on the range defined in prior works in phantom models [17, 37]. The force resolution for the sensor

was 4 mN per axis and moment resolution was 0.025 N-mm per axis. The force and moment vector

is denoted as a wrench w = [fx, fy, fz, fxx, fyy, fzz]T and presented in the force sensor frame {F} as

shown in Figure 4.

Tip folding cases were generated by actuating (retracting) the stylet by 0.5mm before the insertion

(off the stylet, AOS) into the cochlea begins. This simulates improper loading of the PEA into the

gripper or other significant disturbances to the distal tip of the PEA or its stylet prior to use. In

practice, the PEA should not have its stylet retracted until after the electrode is fully inserted into

the scala tympani.

The force component fz is referred to as the insertion force, fx, fy are the lateral forces, and fxx, fyy

are the lateral moments. The moment fzz is the twisting moment along the electrode array’s long axis

and due to the PEA’s compliance reaction moments in this direction are too small to be perceptible

by the sensor used in this study.

5. Detection of the Onset of Tip Folding

There are several basic clinical objectives that must be fulfilled in the process of detecting tip

folding to make the algorithm useful in a realistic setting:

1. The detection algorithm should not be identifying folding events before initiating AOS since it

is not consistent with the conditions required for real folding to occur.

2. The detection algorithm should identify a folding event as close to the start of AOS as possible

to prevent forcing a folded electrode array deeper into the cochlea.

3. There is increased risk of trauma in removing an implant and inserting a new one so the detection

algorithm is biased to reducing false positives. This particular goal is a judgement call we have

made as an assumption that will be evaluated in future clinical research studies. Regardless our

proposed method is inherently tunable to later adjust the acceptable rates of false positive and

negatives based on a larger set of experimental data.

The key weakness with our preliminary classification method [25] was that the entire insertion must

be completed before a decision could be made. This is undesirable since the folded PEA will have been

forced into the scala tympani thus increasing the risk of trauma. The adjusted approach is to make a

continuous estimation of the entire insertion wrench throughout the insertion process.

Our approach for tip folding detection is presented in Figure 6. A tip folding event is determined

by a support vector classifier (SVC); a supervised machine learning algorithm applied to tip folding

detection. In [25] the SVC rendered a classification decision after the insertion was completed. To

9



detect a folding event earlier we have added a model predictor which uses experimental measurement

distributions with the current measurements in order to produce the necessary feature vector to be

used by the SVC.

The wrench data is sampled at a high rate with m total measurements for any given insertion. The

indexing subscript k references one measurement or prediction with 1 ≤ k ≤ m. All data is expressed

in terms of the normalized insertion depth vector λ ∈ Rm with the use of λk indicating the k’th

step of the insertion. In Fig. 6 a model estimator is used to augment the current component wrench

measurement fj(λk) with the experimental distribution f̄j(λ) to produce a prediction of the insertion

wrench component f̃j(λ). A subset of the predicted wrench components f̃j(λ), j ∈ [x, y, z, xx, yy, zz]

are then used to generate a feature vector φ (λk) which is used as an input to the SVC.

To generate the predicted wrench components f̃j(λ) we use an insertion force model f̂j(λk). Details

of the insertion force model to reduce the amount of numerical data processed are first presented. This is

followed by how the insertion force predictions for use with the SVC is generated. Lastly, a modification

of the SVC decision function to enable continuous online detection of tip folding throughout the

insertion process is presented.

5.1. Insertion Force Model

Figure 7 depicts average insertion direction forces for normal (blue, left side) and tip folding (red,

right side) insertions. The force and moment data collected during the insertion has thousands of sam-

ples for each wrench element. Both real time processing and tip folding detection require a numerically

compact representation that maintains the measured signal fidelity. The purpose of the force model is

to provide this compact representation. It can be seen that one normal insertion appears to terminate

early. A large impulse was detected during insertion which caused the system to stop with a shallow

insertion. In this case a final decision must be made by that point in the insertion. Since the insertion

was still normal, it was included in the set of experimental data.

Figure 6: Tip folding detection process. The subscript j refers to one of the measured wrench components. As a force
component measurement fj is made at depth λk, is combined with a known population of normal insertion data with
mean f̄j and variance σj to generate an estimate of a likely complete insertion force vector f̃j . This estimate is then
used to construct a feature vector φ that is passed to a SVC decision function to decide whether a tip fold has occurred.
In the case of tip folding, the robot is instructed to stop further insertion of the PEA into the cochlea.
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Figure 7: Insertion force magnitudes based on cases of normal insertion (left) and tip folding insertions (right). Plots
are represented in normalized insertion distance λ.

Each wrench component is assumed to be a continuous function in the domain of λ ∈ [0, 1]. The

vector containing the values of the function representing each wrench component is designated by

fj(λ) where j is the particular wrench subscript. This vector is the discrete sampling at m points

λ = [λ1, λ2, . . . , λm] of the continuous signal of the F/T sensor during the entire PEA insertion. For

the remainder of this section, the component subscript will be omitted. At a given depth of insertion λ

a wrench component f(λ) is approximated by a Bernstein polynomial basis representation f̂(λ) defined

as:

f̂(λ) =
n∑
i=0

ciBi(λ) (2)

where ci is a fitting coefficient, n is the fitting order, and Bi(λ) is the Bernstein basis computed by

the following equation.

Bi(λ) = n!
i!(n− i)!

(
λi (1− λ)n−i

)
, ∀i = 0, . . . , n (3)

The advantages of the Bernstein polynomial basis include orthogonality in the unit domain, its

computational efficiency through recursive calculation of the coefficients and its excellent conditioning

which reduces the effect of rounding errors in the coefficients [12]. For a given order n and set of m

sample points a fitting matrix is constructed:

B =


B1(λ1), . . . , Bn(λ1)

...,
. . .

...

B1(λm), . . . , Bn(λm)

 ∈ Rm×n+1 (4)

The coefficients vector c ∈ Rn+1 is determined from the force vector f(λ) through the least squares

solution:

c = B−1f(λ) (5)
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Table 2: Insertion Force Summary

Coef. c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
f̄m,z -0.00368 0.00322 -0.09043 0.27410 -0.66837 0.48569 -0.32705 0.08950 -0.09196 -0.02012 -0.09988
σm,z 0.00754 0.00454 -0.07346 0.31662 -0.53801 0.81025 -0.77213 0.51994 -0.15782 0.07319 0.11535
f̄m,xx -0.02584 -0.30809 1.67939 -3.86249 2.56596 3.16762 -4.02440 3.20528 0.00664 -0.12767 -0.41673
σm,xx 0.06385 -0.19397 1.17943 -3.78169 9.13224 -5.35123 4.77472 0.43311 1.75574 1.35499 1.47611
f̄m,yy 0.01062 -0.10120 0.67325 -2.18398 4.65950 -6.10697 2.50529 -1.68914 -0.12048 -0.69473 -0.19172
σm,yy 0.04616 -0.07260 0.39600 -1.43339 4.16891 -3.64368 3.21728 -0.37063 0.87301 0.46814 1.06752

Given c, a vector containing the values of the insertion force model (2) is designate by f̂ ∈ Rm.

This vector can be calculated in matrix form as:

f̂ = B c (6)

Using the polynomial coefficients will not produce the same vector as the original measurement

(i.e. f̂ 6= f) and the root mean square error, εRMS , of this discrepancy is defined as:

εRMS =

√√√√(f̂ − f
)T (

f̂ − f
)

m
(7)

The order of the polynomial series was set to n = 10 to fit the data with a RMS error comparable

to the force sensor noise of 0.004N (force) and 0.025Nmm (moment).

Using this polynomial fitting, the force vector can be resized by changing the number of sample

points in λ. Based on our work [25], the number of samples per wrench component was set to m = 25.

From the collection of measured normal insertion data, the average and variance as a function of

insertion depth λ are denoted as f̄m and σm respectively. A second subscript denotes the axis of

the measurement (i.e. f̄m,z is the average force for the z axis in the force sensor frame {F}). Table

2 presents the fitting coefficients for the averages and variances of the insertion forces and lateral

moments from the set of normal insertion data used in the folding detection.

5.2. Estimation of Future Forces

Our previously trained classification model relied on the entire insertion data set to make a suc-

cessful classification. The present goal is to make a determination on the detection of tip folding as

close to the onset of the event as possible. To do this, a prediction of the future insertion forces, based

on what has been currently recorded, is required. The update to this prediction is made at each of the

m measured points in the force vector f ∈ Rm.

At the k’th sample (where 1 ≤ k ≤ m) the predicted force vector is denoted by f̃(λk). In the

following section we explain the prediction approach depicted in Fig. 8. At each prediction update the

estimated coefficient vector c̃(λk) is determined and then used in (8) to provide the latest estimation:

f̃(λk) = B(λ) c̃(λk) (8)

The coefficients in c̃(λk) converge to c from (5) at the final sample (c̃(λm) = c). Our estimation
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of c̃(λk) is a weighted least squares solution of the form:

c̃(λk) =
(
BTW−1

k B
)−1 BTW−1

k g (λk) (9)

where Wk is the weight matrix and g(λk) is the augmented force vector at the k’th sample. The

vector g(λk) is a combination of measurements taken by the robot up to the present position λk and

an estimated average force f̄k for future measurements:

g (λk) =

fk

f̄k

 , fk ,


f (λ1)

...

f (λk)

 , f̄k ,


f̄ (λk+1)

...

f̄ (λm)

 (10)

The weight matrix Wk ensures that f̃(λk) agrees with the currently known data and passes through

the estimated future force averages with weight proportional to an estimated variance. Typically the

best weight matrix would be the covariance matrix of the data set [32] but this is unknown a-priori

in practice. Instead, the m measurements are considered independent Gaussian distributions with

a known variance σ(λ). The measured force data also has a degree of uncertainty based on sensor

accuracy that is parameterized by β. The weighting matrix is thus diagonal and of the form:

Wk =

 1
β I[k×k] 0[m−k×m−k]

0[m−k×m−k] Σ−1
k

 (11)

given that:

Σk =


σ2
m(λk+1) . . . 0

...
. . .

...

0 . . . σ2
m(λm)

 ∈ Rm−k×m−k (12)

When constructing the augmented force vector g(λk) the most naive future force input would be to

use the previously measured averages and variance. In this case f̄(λk) = f̄m(λk) and σ(λk) = σm(λk).

This method will cause the prediction to quickly match the experimental average and does not take

into account the current magnitude of the insertion forces nor the rate at which they are currently

changing. To improve the prediction of f̄(λ) and σ(λ), the average force distribution f̄m(λk) and

σm(λk) are combined with an extrapolated distribution f̄e(λk) and σe(λk). The two distributions are

combined using the method described in [6] such that:

f̄(λj) = f̄m(λj)σ2
e(λj) + f̄e(λj)σ2

m(λj)
σ2
e(λj) + σ2

m(λj)
(13)

σ2(λj) = σ2
e(λj)σ2

m(λj)
σ2
e(λj) + σ2

m(λj)
(14)

The extrapolated distribution is a first order approximation based on the current force measurement
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f(λk) and the measured rate of change of insertion force f ′(λk) = df
dλ and its standard deviation as

σ′(λk). The extrapolation is first order and starting at the current sample k, the distance in normalized

insertion space to the j’th predicted sample is defined as:

∆λk,j = λj − λk ∀k ≤ j ≤ m (15)

This means that the average extrapolated force has mean f̄e and is estimated by starting at the

current measurement f(λk) and linearly extrapolating based on the fixed rate f̄ ′ such that:

f̄e(λj) = f(λk) + ∆λk,j f̄ ′(λk) ∀k ≤ j ≤ m (16)

We assume a linear propagation of the uncertainty distribution with insertion depth. The un-

certainty grows proportionally to σ′ and the distance travelled ∆λk,j . The extrapolated distribution

standard deviation σe equal to:

σe(λj) = ∆λk,j σd(λk) ∀k ≤ j ≤ m (17)

This update procedure generates the elements in f̄ from (10) and the variance matrix Σk from

(12). The steps in the predictive calculation are reviewed in Algorithm 1. After generating predictions

for the wrench components using (8) the data is used in the trained classifier to determine if a folding

event has begun.

Algorithm 1 Generation of Estimated Force
Require: f̄m, σ̄m, f̄ ′m, σ̄′m
for j = k, . . . ,m do

∆λk,j from 15
Calculate f̄e(∆λk,j) from (16)
Calculate σe(∆λk,j) from (17)

end for
Calculate f̄ from (13)
Calculate σ from (14)
Construct g(λk) from (10)
Calculate c̃(λk) from (9)
Calculate f̃(λk) from (8) return f̃(λk)

Figure 8 shows how the information is combined to form a prediction for insertion force at λk = 0.4.

The current point in the insertion process for the shown prediction is designated by a large dot. The

average insertion force for a prior sample set of normal insertions is shown as a dashed line. The final

insertion force for this particular insertion is shown in the fine solid line. A thick solid line is used to

show the predicted force.
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Figure 8: Example of force prediction. The dashed line is the measured force average f̄m(λ) from prior data. The thin
solid line is the true final measurement f(λ) for this insertion. The dot represents the current point of the insertion λk

where the prediction is made. A linearly extrapolation f̄e(λk) from the current measurement f(λk) is made based on
the average rate of change f̄ ′m(λk). The thick solid line indicates the final prediction f̄(λk) based on a combination of
f̄m(λk) and f̄e(λk).

5.3. Tip Folding Classification

To address the separation of normal and tip folding insertion data our previous work [25] used a

SVC machine learning algorithm which will be reviewed here.

SVC’s can be used to address a variety of problems and a brief review of the SVC algorthm is

provided here with greater detail provided in [29, 30]. Our problem is a binary classification task to

which the SVC is well suited. In the binary classification problem, a collection of N data sets are

classified by the binary vector f(v) ∈ RN with values of −1 or 1. Each data set is defined by a feature

space v ∈ Rd whose values represent the pertinent attributes of that set. The SVC algorithm searches

for a hyperplane defined by a vector of weight coefficients w ∈ Rd and a scalar bias b which classifies

any data set by the decision function:

h(v) = sgn ((w · v) + b) ∈ [−1, 1] (18)

This decision function is inherently linear but the feature space may be mapped into higher dimensions

through a kernel function k〈v,vi〉. The kernel function relies on a set of feature vectors vi taken from

a set of training data and each weighted by a coefficient αi which are collectively called the support

vectors. The new decision function is written as:

h(v) =
l∑
i=1

αik〈vi,v〉+ b (19)

15



The kernel functions used in SVC’s are varied but the four most common kernels are the linear,

polynomial, radial basis, and sigmoid. Our previous investigation [25] looked at several combinations of

feature spaces and kernel functions. It was determined that a linear kernel with a descretized sampling

of insertion direction force and the orthogonal moment components (fz,fxx, and fyy) had the highest

classification accuracy at approximately 90%. The linear kernel defined as:

k〈vi,v〉linear = vTi v (20)

The feature space was 75 elements which required the completed insertion before a classification

could be made. The vector λ is rescaled to m = 25 with λm = 1. We propose that the predictive

model detailed in the previous section can be used at the k’th sample measurement to generate a new

feature vector:

ṽ(λk) =
[
f̃Tz,k, f̃Txx,k, f̃Tyy,k

]T ∈ Rd=3m=75 (21)

where f̃z,k, f̃xx,k and f̃yy,k are the estimated future insertion force and lateral moments with the frame

indices referring to frame {F} in Fig. 4.

SVM classifiers can be sensitive to scaling differences between the various features so precondition-

ing is applied before training the classifier. The vector o ∈ Rm is an offset vector with each element

equal to the mean of the same element in the the collection of feature vectors used in training the

SVM. The matrix S ∈ Rm×m is a diagonal matrix with the diagonal elements equal to the standard

deviation of the corresponding feature in the training data. A new preconditioned feature vector φ is

then defined as:

φ(λk) = S−1 (ṽ(λk)− o) (22)

which is substituted into (19) in place of vi and results in the decision function:

h(φ) =
l∑
i=1

αik〈φi,φ(λk)〉linear + b (23)

This scaling method lets the SVC algorithm find a best fit separation hyperplane where each feature

has zero mean and has a variance of unity.

5.4. Folding Onset Detection

In addition to its high accuracy in our preliminary work, the major advantage of the linear kernel

is that prediction error can be linearly propagated through the decision function (23). The estimated

feature vector can then be written as:

ṽ(λk) = v + ε(λk) (24)
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where ε(λk) is the error in the prediction estimation at step k. Substituting (24) into (22) and (23)

using a linear kernel and differentiating with respect to ε yields:

dh

dε
=

l∑
i=1

αiS−1vi (25)

Individual elements of the vector ε(λk) have their i′th index denoted as εi(λk). We assume that only

samples estimated beyond the current measurement have a significant effect on the decision function

and therefore εi(λk) = 0, ∀ i ≤ k. Since errors are not considered up to the k′th measurement, two

auxilary vectors ak and bk are defined as:

ai(λk) = [vi,k+1, . . . , vi,m]T ∈ Rm−k

b(λk) = [εk+1, . . . , εm]T ∈ Rm−k
(26)

which are substituted into (25), replacing ṽ(λi) and ε respectively without loss of information.

dh

db(λk) =
l∑

i=k
αiS−1ai(λk) = z(λk) (27)

The effect of b(λk) on the deviation of the decision function (parameterized as δh) is not known

precisely but can be bounded using the Cauchy-Schwarz inequality:

δh(λk) ≤ ‖z(λk)‖‖bk‖ (28)

The value of z(λk) is easily calculated from the trained support vectors and ‖bk‖ is estimated

from evaluating the prediction model error as a function of λ as shown from the set of data used in

training the SVC. The bound on the uncertainty from (28) is highly conservative and can be tuned by

introducing a scalar constant ρ ∈ [0, 1]. The final real time classification of folding event then becomes:

g(λk) =


−1 if h(ṽk) + ρ‖z(λk)‖‖b(λk)‖ ≤ 0

1 otherwise
(29)

Since a negative value in (29) indicates a tip folding event, this approach is biased toward false

negative as stated previously in our list of clinical objectives.

6. Results and Discussion

The SVC training used a randomized set of 40 insertions using a ten-fold sampling process as

discussed in [25]. The training result from our prior work was used with an additional 20 insertion

experiments added for testing the classifier. Our objective was to quantify the overall detection accu-

racy and determine at which point in the insertion process the tip folding could be detected from the

set of purposely induced folding events.
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Classification was treated as a one way process, once the algorithm returned a tip-folding event the

insertion could not be classified as normal. A false positive is defined as identifying a normal insertion

as a tip folding event. A false negative is defined as a tip folding insertion that the SVC identifies as

normal. The combined accuracy is defined as the ratio of the correctly identified normal and folding

insertions compared to the total number of insertions.

The primary goal of the predictive model is to identify tip folding events as soon as possible. Figure

9 presents a histogram of onset detection with the insertion domain divided into 10 equal bins. Five

values of ρ are shown to see the effect of the uncertainty margin on the point of onset detection. The

vertical dashed line represents the point of initiation for AOS technique. Due to the mechanics of tip

folding, the detection algorithm should not detect folding event until after AOS begins.

Figure 9: Tip Folding Onset Detection. The grouped histogram shows the number of detected folding insertions at
normalized insertion points from 0 to 1 in 0.1 increments. The dashed vertical line is the point where AOS begins. No
folding events should be reported before this point. Five values of ρ used in the decision function are shown at each
histogram group. The higher the value of ρ the more conservative the detection algorithm becomes in declaring a folding
event.

As the uncertainty margin increases as ρ approaches 1, the tip-folding detection is delayed as the

SVC decision function must have a stronger degree of confidence to declare a folding event early. With

higher margins (ρ > 0.5) the accidental declaration of a folding event before AOS is eliminated. With

no margin applied, there are cases of accidental folding detection early in the insertion process.

Table 3 shows the number of false positives and negatives for different values of ρ. The 25 insertions

used in the SVC were removed from the processing of the results. Adjusting the uncertainty margin

has little effect on the number of false negatives, with the most conservative bound (ρ = 1) allowing

one additional tip folding event to be missed. Without the uncertainty margin (ρ = 0), the number of

false positives increases drastically. Based on the results shown in Table 3 we have selected ρ = 0.75

for our insertion system.
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Table 3: Classification Errors

ρ 0 0.25 0.5 0.75 1
false positives (%) 12 6 6 5 5
false negatives (%) 2 4 4 4 4

combined accuracy (%) 81 87 87 88 88

As expected, from Table 3 we see that classification accuracy reaches a comparable value of 88%

to our preliminary result using full insertion depth data.

6.1. Discussion

The results of our classification method have demonstrated that force and trajectory data can be

used to infer intra-cochlear tip folding with a reasonable degree of success. We have made several

simplifications in the design of this classification method that must be addressed to provide the proper

context to our results. In this work we have restricted our experiments to a single nominal cochlea

geometry while there is some variation in practice between different cochlea in regards to cross sectional

area of the scala chambers and the contour of the helical spiral. In live patients, this geometric data

can be retrieved through pre-operative imaging and segmentation as demonstrated by Noble et al [22].

We plan to expand our feature space in future work to include geometric parameterization of the

cochlea. For example, Cohen [9] has proposed modelling locations in the cochlea spiral through a

parametric equation with only a few independent variables. Such a model is well suited to SVM

classification since it does not add a large number of dimensions to the feature space. Our existing

results exist in a sub-space of this larger feature set and can be incorporated into new training data

where cochlea geometry varies. The inclusion of geometric variability will require a larger set of

experiments but so long as the geometric data can be measured it does not represent a significant

impediment to our method. What will be required of this study is the determination of a compact

and complete set of features to describe the geometry of the cochlea.

As discussed in the introduction, we have focused on tip folding detection in this work but mentioned

two other insertion failure modes. The first is extra-cochlear buckling of the electrode array during

insertion. This failure mode typically occurs early in the insertion process where the distal tip of

the electrode array is not well supported. The forces and moments required to deform the implant

are significantly higher than the magnitudes we report here (greater than 200 mN) and our system

stops insertion for such high loads. Also, visual observation may be a better metric for extra-cochlear

buckling since the electrode is still visable to the surgeon/robotic system.

A second insertion complication where this type of force based identification is useful is in identi-

fying scala crossing during insertion. This is when the tip of the electrode array punctures the basilar

membrane and moves from the scala tympani to scala vestibuli. It is highly likely that such a puncture
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can be detected through force measurements and may alter the results of our classification method.

This motivates a future research direction to examine the insertion forces observed during scala cross-

ings. Since this complication requires the full cochlea, it will be a clinically focused study in fresh

cadaveric specimens.

7. Conclusion

The goal of this work was to expand the use of real time force sensing in the CI robotic insertion to

provide a means of detecting complications in the insertion process. Thus far in the literature, robotics

applied in the CI procedure have not used real time sensing in this capacity. Tip folding of PEA’s was

induced by using selected research electrodes with manufacturing defects and improper manipulation,

in a phantom (plastic) model of the cochlea, and used as a case study to demonstrate that intra-cochlear

phenomenon could be perceived through extra-cochlear measurements. For our work the tip folding

event was deliberately induced on defective research PEA’s to replicate the phenomenon. We plan to

expand this machine learning method to detect other adverse events such as scala crossing in the future.

The Bernstein polynomial basis presented here also allows us to report insertion force measurements

in a compact and accurate way that can allow the measurements to be more accurately disseminated

in the literature. Combined with our prior work in force admittance control to CI insertion this work

continues to build a force-based CI insertion control algorithm with application in laboratory electrode

evaluation and future clinical deployment.
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