Appendix A: Figure 1 R code

Note: R commands given in Arial font (if you have downloaded this document, you should be able to just paste these into R and see results)

ten=rnorm(10,0,1)
x<-seq(-3.5, 3.5, .1)
dn<-dnorm(x)
hist(ten,prob=T, ylim=c(0,.4), xlim=c(-3,3), col='lightgray', border='darkgray')
lines(x, dn, col='red', lwd=2)

The R command rnorm() seen in the first line of the code is a normal distribution where the mean is zero (the second argument of the command) and the standard deviation is one (the third argument). The sample size is determined by the number in the first argument. For all of the histograms in Figure 1 except for E, the sample size was 10. For E, the sample size was 500.

Appendix B: Getting started with R and R Commander

Download R:
Go the R web site (www.r-project.org) and under some graphics you will see a box entitled ‘Getting Started’. Click on the link to go to a CRAN mirror. In order to download R you will need to select a download site, and you should choose one near you.
After you have navigated to any download site, you will see a box entitled ‘Download and Install R’. Choose the version that matches the computing environment you use (Linux, Mac and Windows are available). For Windows, this choice will take you to a place where you will see ‘base’ and ‘contrib’ highlighted. Click on ‘base’ and then the link to the executable (.exe) file. Save the file to your desktop, then click on it and install it on your computer. For Mac users, click on the first highlighted version if your Mac OS version will support it. Once you have downloaded R, install it.
When you open your downloaded program you will see the ‘R console’ graphical user interface (GUI), and you will be staring at an empty prompt, not a lot of pull-down menus. What do you do now? Add the R commander package so you will have some menus!

Adding R Commander (or other packages):
In the R Console, navigate to the menu PACKAGES > INSTALL PACKAGE(S). You will need to select your CRAN mirror site in order to do this (you can either do this under the Packages drop-down menu, or by just clicking on ‘Install Package(s)’). A list of packages will pop up. For now, just scroll down alphabetically to the ‘R’s and choose Rcmdr. Press OK and the package will load. Instead of doing the menu route, you can also type the following command in the R Console:>install.packages('Rcmdr'). Once R Commander has been downloaded, start it by typing the following line in the RGui window:

library(Rcmdr)

This must be typed exactly as given above; there is no menu command to obtain it. Notice that because R is a scripted environment (such as Unix), spelling and punctuation matter. The ‘R’ of R commander must be capitalized, and the rest of the letters (‘cmdr’) must be lower-case. The arrow (command prompt) is used to indicate that this is a command used in R, so do not type the arrow.
Note that once you have downloaded files from the internet, you do not need to be connected to the internet to use R or R Commander.

Adding data:
Using the R Commander drop-down menus, choose DATA> IMPORT DATA and then choose the format your data is in. R can import SPSS files, Excel files, or just plain text files where data is separated by spaces or commas. Once your data is imported you will see its name in the Data set box like this (my data set is named ‘forget’):

[image:]

You could view your data by pressing the View data set button.

Getting Wilcox’s robust test commands:
Go to Rand Wilcox’s website (http://r-forge.r-project.org/R/?group_id=468). There are instructions there on the command to type into R to install the package. This package is different from the packages that can be downloaded within the R system. The command:

install.packages('WRS',repos='http://R-Forge.R-project.org')

will get this package into R if you have access to the internet.

Entering data for t-test
First, I’ll need to get my data into R. I do this by using the R Commander menu sequence DATA > NEW DATA SET. A window will pop up and I will name my dataset ‘Vocab’:

[image:]

After pressing OK a spreadsheet will open and I type my numbers in, using one column for all of the data and another column to categorize the data into groups. I use the first entry in the column to name the column, labeling my scores as ‘numerical’ and my group categorization as ‘character’. My data looks like this:

[image:]

Appendix C: T-tests

Performing a normal parametric t-test in R
t.test(score~group, data=Vocab)

[image:]

Performing a robust t-test in R
For Wilcox’s trimpb() command we need to have two separate datasets. Because these are small sets and there's not much to type, I will just tell R to make them into datasets using the following syntax:

vocab.ctrl=c(1,2,3,4,5,6,7,8,9,10)
vocab.exp=c(4,5,6,7,8,9, 10,11,12,25)

Next I have to make sure I have loaded Wilcox’s WRS library, and then I can use the trimpb() command. The first argument of the command is the first group, and the second command is the second group. The last argument indicates how much means trimming should be done (here I have found that 10% gives me the most power, so I use it).

library(WRS)
trimpb2(vocab.ctrl, vocab.exp, tr=.1)

[image:]
Appendix D: Correlations

Performing a normal correlation test in R
The data set larsonhall2008 is available on the Routledge website that accompanies my 2010 book (www.routledge.com/textbooks/9780805861853). When you download this from the site it will be a .sav file (an SPSS file). R Commander can easily import SPSS files. Follow the menu sequence DATA > IMPORT DATA > FROM SPSS DATA SET. Enter a name for the dataset and leave the other boxes alone. Press OK and your dataset will import into R.
The classical correlation command in R is cor.test().

cor.test(larsonhall2008$totalhrs, larsonhall2008$aptscore)

[image:]

Performing a robust correlation in R
To use the mvoutlier library, you must download this into R first (see Appendix B for instructions on how to download packages). You must type in a command to load the mvoutlier library before R will recognize the cor.plot() command.

library(mvoutlier)

The robust command cor.plot() needs two arguments, which are two columns of data, just like the classical command. It then returns two numbers, one the classical correlation coefficient, and the other, the robust correlation coefficient.
cor.plot(larsonhall2008$totalhrs,larsonhall2008$aptscore)

[image:]

Appendix E: One-way ANOVAs
Performing a normal one-way ANOVA test in R
The data set used for this test, called Larsonhall.Forgtten.sav, is available on the Routledge website that accompanies my 2010 book (see the section on correlation in this appendix for information on how to import this data into R). I have imported it into R and given it the name ‘forget’.
A command called oneway.test() is the command for a classical one-way ANOVA used to test for differences between groups in R. I like this test because I can specify that the variances are not equal and this will be adjusted for (my data shows that the NS have a very small standard deviation while the other groups have much larger variances).

oneway.test(ACCURACY~status, data=forget, var.equal=F)

[image:]
Now to test the pairwise comparisons I used the R Commander command sequence STATISTICS > MEANS > ONE-WAY ANOVA. The pertinent part of the output is shown here:
[image:]

Performing a robust one-way ANOVA in R
Now to do a robust one-way ANOVA, basically we are going to leave out the omnibus one-way test and use Wilcox’s command mcppb20() from the WRS package, which will compare all of the groups with each other. First, I’ll have to rearrange the data to put it into separate columns, then put all those together into a list as an input to the robust command. Here is an example of how I make a list where each group’s scores are separate:

non<-subset(forget,subset=status=='Non',select=c(ACCURACY))
early<-subset(forget,subset=status=='Early',select=c(ACCURACY))
late<-subset(forget,subset=status=='Late',select=c(ACCURACY))
NS<-subset(forget,subset=status=='NS',select=c(ACCURACY))
JAccuracy<-list(x=non,y=early,z=late,a=NS)

The mcppb20() command will perform a means trimmed percentile bootstrap analysis. The default settings are 20% trimming, an alpha level of .05 and 2000 bootstrap samples, but these can all be changed. Be sure to open the WRS library if it has not been opened before.

library(WRS)
mcppb20(JAccuracy,tr=0.2,alpha=.05,nboot=2000)

[image:]
The results look rather complicated but the pertinent part to look at is the lower and upper confidence intervals (CIs) for the comparisons. The output shows that comparison #3 is the only one where the CI does not pass through zero (it is true that some of the other p-values are below .05, but the section of the output titled ‘$crit.p.value’ shows that the critical value for statistical significance is .009.). We have to remember which groups are which, but since we inputted the ‘Non’ group as ‘x’, a ‘1’ in the [1,] row under the heading $con means the ‘Non’ group is involved in the comparison. Comparison #3 (shown as the column with the heading [,3]) contains a comparison between the first group (‘Non’) and the 4th group (‘NS’), because there is a ‘1’ in the row for group 1 ([1,]) and a -1 in the row for group 4 ([4,]).

image4.png
Welch Two Sample t-test

data: score by group
©t = -1.9858, af = 13.35, p-value = 0.06799
alternative hypothesis: true difference in means is not equal to D
95 percent confidence interval:
-8.7570805 0.3570805
sample estimates:
wean in group 1 mean in group 2
5.5 9.7

image5.png
§p.value
111 0.039

sei
[1] -6.00 -0.25

gest.ait
[-3

image6.png
Pearson's product-moment correlation

data: larsonhallZ008§totalhrs and larsonhallz008§aptscore
©t = 1.0545, af = 198, p-value = 0.2929

alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval

-0.06468182 D0.21128026

sample estimates:

0.07472982

image7.png
feor.cla
[1] 0.07472982

§eor.rob
[1] 0.2165342

image8.png
One-vay analysis of means (not assuming equal variances:

ACCURACY and status
F = 6.3486, num df = 3.000, denom df = 23.278, p-value = 0.002651

image9.png
95% family-wise confidence

Linear Hypotheses:

Estimate
Late - Farly -3.2884
Non - Early -13.6810
NS - Early 3.9857
Non - Late == 0 -10.3926
NS - Late == 0 7.2741
NS - Non 17.6667

level

Lur

15,
e
.
-2z,
s,
L3515

8215
2141
5475
7078
0411

upr

-1,
16.

1s.
29.

L2438
1478
s189
.s226
5893
9818

image10.png
$psihat

con. num psinat
1.1 1 -12.5444444
2.1 2 -13.2098765
3.1 3 -15.1111111
4.1 4 -0.6654321
5.1 5 -2.5666667
6.1 6 -1.9012326
seric.p.value
111 0.008
soon

01 2] 3] LA
w1 111
23 -1 o o 1
., 0 -1 0 -1

41 o o -1 0o

.2899329
.2202387
.1633067
.6580238
.3893015
JEEEE

1. laver

30,
-30
33,
6.
.
-1z,

233333
333333
oooono
85185
577778
580247

o
EN

2.

10.
o
0

ci.upper
8444443
1111111
6666667
4246913
1222222
1111111

p-value

.0z0s
.04m0
.0oo0
L5300
L0130
L0180

image1.png
Fle Edt Data Statistcs Graphs Models Distributions Tools Help

R, cotast ot | i coto o | viw ot | ot o e ot |

image2.png
[tewbataset =k
Enter name for data set: [vocab|
= oo

image3.png
> Vocab
score group

1 1 1
2 2 1
3 3 1
1 1 1
s s 1
6 6 1
7 7 1
s s 1
s s 1
10 1w 1
11 4 2
12 s 2
13 6 2
14 7 2
15 s 2
16 s 2
7 1m 2
8 o1 2
FERT) 2
20 25 2

