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 5 
Table S1: CMIP6 Models used in this study. X’s mark models for which at least one of required variable(s) for each 6 

property was unavailable at the necessary temporal resolution from historical simulations when data were 7 
acquired in summer 2022. (All listed models provide daily sea ice concentration output.) The three models used to 8 

estimate internal variability (23 replicates each) are in bold. 9 

Model Citation 
Sea Ice 

Thickness & 
Dynamics 

Surface Air 
& Ocean 

Temp. 

Surface 
Wind Albedo Snow 

Depth 

ACCESS-CM2 Bi et al. 
(2020) 

         

AWI-CM-1-1-MR Semmler et 
al. (2020) 

      X  

AWI-ESM-1-1-LR Semmler et 
al. (2020) 

         

BCC-CSM2-MR Wu et al. 
(2021) 

         

BCC-ESM1 Wu et al. 
(2020) 

         

CanESM5 Swart et al. 
(2019) 

X        

CESM2 Danabasoglu 
et al. (2020) 

    X    

CESM2-FV2 Danabasoglu 
et al. (2020) 

    X    

CESM2-WACCM Danabasoglu 
et al. (2020) 

    X    

CESM2-WACCM-
FV2 

Danabasoglu 
et al. (2020) 

    X    

CMCC-CM2-HR4 Cherchi et al. 
(2019) 

X       X 

CMCC-CM2-SR5 Cherchi et al. 
(2019) 

      X  

CMCC-ESM2 Lovato et al. 
(2022) 

         

CNRM-CM6-1 Saint-Martin 
et al. (2021) 

         

CNRM-CM6-1-HR Saint-Martin 
et al. (2021) 

         

CNRM-ESM2-1 Séférian et 
al. (2019) 

         

EC-Earth3 Döscher et 
al. (2021) 

         

EC-Earth3-AerChem Döscher et 
al. (2021) 
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EC-Earth3-CC Döscher et 
al. (2021) 

         

EC-Earth3-Veg Döscher et 
al. (2021) 

         

EC-Earth3-Veg-LR Döscher et 
al. (2021) 

         

GFDL-CM4 Held et al. 
(2019) 

X    X  

ICON-ESM-LR Jungclaus et 
al. (2022) 

         

IPSL-CM5A2-INCA Sepulchre et 
al. (2020) 

        X 

IPSL-CM6A-LR Boucher et 
al. (2020) 

         

IPSL-CM6A-LR-INCA Boucher et 
al. (2020) 

X       

KIOST-ESM Pak et al. 
(2021) 

X       X 

MIROC-ES2L Hajima et al. 
(2020) 

         

MIROC6 Tatebe et al. 
(2019) 

         

MPI-ESM1-2-HR Müller et al. 
(2018) 

         

MPI-ESM1-2-LR Mauritsen et 
al. (2019) 

         

MRI-ESM2-0 Yukimoto et 
al. (2019) 

         

NESM3 Cao et al. 
(2018) 

         

NorESM2-LM Seland et al. 
(2020) 

    X    

NorESM2-MM Seland et al. 
(2020) 

    X    

SAM0-UNICON Park et al. 
(2019) 

X   X    

UKESM1-0-LL Sellar et al. 
(2019) 

X        
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 12 
Fig. S1: Average continuous ice-free period on native model grids (1979-2014) in the HBC, using 13 
the first replicate of each CMIP6 model. Also shown are the averages from the PIOMAS and ERA5 14 
reanalyses and the NOAA/NSIDC CDR (based on passive microwave observations). 15 
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 16 
Fig. S2: Melt period and growth period of sea ice in HBC (1979-2014).!"#!$%!&$'()*!+,!-(.!/0)!.1*!2*3.!17 

4*)$05!6578#!-*.9**%!04*%$%'!6:;<!=!>?@A!7%5!)*.)*7.!6:;<!=!BC@AA!7%5!.1*!')09.1!4*)$05!6578#!18 

-*.9**%!75D7%E*!6:;<!F!BC@A!7%5!E30#$%'!6:;<!F!>?@AAG 19 
 20 
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 21 
Fig. S3: Scatter plots of HBC sea ice phenology versus average temperature (1979-2014). 22 
Temperature is averaged annually for the open-water period (a,d), during the melt period (b) or the prior 23 
ice-covered period (e) for the opening day, and during the growth period (c) or prior ice-free period (f) for 24 
the closing day. All temperature aggregation is for the HBC region except (d), for which averaging is 25 
global. 26 
Black dashed boxes represent the range of internal variability (μobs ± 2σmax). The dotted gray line 27 
represents the ordinary least-squares regression of each phenology variable against temperature. The 28 
slope of that line is printed at the top of each graph, and an asterisk indicates a significant trend (p < 29 
0.05). 30 
 31 
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 32 
Fig. S4: Scatter plots of HBC sea ice advance day versus average temperature (1979-2014). 33 
Surface temperature of the atmosphere (a-c)  and ocean (d-f) is averaged for the ice melt and ice-free 34 
period (a,d), just the ice-free period (b,e) or October (c,f). All temperature aggregation is for HBC region. 35 
Solid black boxes represent the range of internal variability (μobs ± 2σmax). The black dashed line 36 
represents the ordinary least-squares regression of sea ice advance day against temperature. The slope 37 
of that line is printed at the top of each graph, and an asterisk indicates a significant trend (p < 0.05). 38 
 39 
 40 
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 41 
Fig. S5: Scatter plots of sea ice growth versus autumn temperature (1979-2014) for the entire HBC. 42 
Sea ice growth is defined by (a) the average April thickness, (b) the average rate of change in sea ice 43 
thickness from November to April, and (c) thermodynamic thickness change from November to April. 44 
Black dashed boxes and gray shading represent the range of internal variability (μobs ± 2σmax). The dotted 45 
black line represents the ordinary least-squares regression of the y variables against temperature. The 46 
slope of that line is printed at the top of each graph, and an asterisk indicates a significant trend (p < 47 
0.05). 48 
 49 
 50 
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 51 
Fig. S6: Model bias in 2-m air temperature and 10-m wind vectors during January-July (1979-2014), 52 
which roughly corresponds to the ice-covered season and melt season in HBC. 53 
 54 
 55 
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 56 
Fig. S7: Scatter plots of the average ice-free period (1979-2014) versus average regional spatial 57 
resolution of the ocean grid in (a) HBC, (b) Foxe Basin, and (c) the Narrows. Black dashed lines 58 
represent the range of internal variability (μobs ± 2σmax). Models listed in bold in the legend are those 59 
which include Fury and Hecla Strait. Despite the vast range of spatial resolution in these models, finer-60 
resolution models do not perform demonstrably better than their coarser counterparts. 61 
 62 
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 63 
Fig. S8: Relationship between sea ice phenology and snow depth on sea ice in HBC (1979-2014). 64 
(a) Models with later advance day typically have deeper snow packs come April despite a shorter ice-65 
covered period. (b) Several models have too much snow of sea ice in April (the last month of the ice-66 
covered season), but this has no clear bearing on retreat day. (c) Snow depth increase during March and 67 
April (which is more likely to impact surface albedo) also has no clear relationship with retreat day, 68 
although most models have too much snow gain. 69 
 70 
 71 
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 72 
Fig. S9: Scatter plots of sea ice phenology versus surface albedo in HBC (1979-2014). Average 73 
retreat day in each model is compared to sea ice albedo during May-June (a), and advance day is 74 
compared to sea ice albedo during Nov-Dec (b). Both retreat and advance are also compared to the 75 
albedo of open water (c,e). The melt period (c) and growth period (f) are compared to the difference in 76 
albedo between sea ice and open water in the appropriate season. Note that SIC of 90% is used instead 77 
of 100% because few instances of SIC at 100% exist in either models or observations. Black dashed 78 
boxes and gray shading represent the range of internal variability (μobs ± 2σmax). The dotted black line 79 
represents the ordinary least-squares regression of period length against sensitivity. (Neither coefficient is 80 
significant at p < 0.05.) 81 
There also is no significant relationship between a model’s growth period or melt period and the 82 
difference between albedo of the sea ice and ocean. 83 

 84 
 85 
 86 
  87 
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