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Table S1. Variables used in the text. 
 

Variable Name Value Units 

𝜌𝑠  Ice Density 917 kg m-3 

𝑐𝑠 Ice Heat Capacity 2097 J kg-1 °C -1 

𝑘𝑠 Ice Conductivity 2.1 W m-1 °C -1 

𝛼𝑠 Ice Thermal Diffusivity 
𝑘𝑠

𝜌𝑠𝑐𝑠
 m2 s-1 

𝜌𝑤 Water Density 1000 kg m-3 

𝑐𝑤 Water Heat Capacity 4212 J kg-1 °C -1 

𝑘𝑤 Water Conductivity .555 W m-1 °C -1 

𝛼𝑤 Water Thermal Diffusivity 
𝑘𝑤

𝜌𝑤𝑐𝑤
 m2 s-1 

𝜌𝑚 Methanol Density 810 kg m-3 

𝑐𝑚 Methanol Heat Capacity 2400 J kg-1 °C -1 

𝑘𝑚 Methanol Conductivity .203 W m-1 °C -1 

𝛼𝑚 Methanol Thermal Diffusivity 
𝑘𝑚

𝜌𝑚𝑐𝑚
 m2 s-1 

𝐿 Latent Heat of Fusion 333500 J kg-1 

𝑟 Radial Distance - m 

𝑅 Phase-Boundary Location - m 

𝑅0 Melt Radius .04 m 

𝑟∗ Nondimensionalized Radial Distance 𝑟/𝑅0 - 

𝑅∗ Nondimensionalized Phase Boundary 𝑅/𝑅0 - 

𝑡 Time - s 

𝑡∗ Nondimensionalized Time 𝑡/𝑡0 - 

𝑡0 Reference Time (~Time to Freeze Shut) 
𝑅0

2𝐿

𝑘𝑠|𝑇∞|
 - 

𝑇𝑠  Solid Temperature - °C 

𝑇𝑙  Liquid Temperature - °C 

𝑇∞ Bulk-Ice Temperature -20 °C 

𝑇∗ Nondimensionalized Temperature 𝑇/𝑇∞ - 

𝑄 Heat Flux from Drill 2500 W 

𝑄∗ Nondimensionalized Heat Flux 
𝑄𝑐𝑠

4𝜋𝐿𝑘𝑠
 - 

𝑆𝑡 Stefan Number 
cs(𝑇𝑓 − 𝑇∞)

𝐿
 - 

𝑇𝑓  Freezing Temperature 𝑇0 + 𝑓(𝐶) °C 

𝑇0 Pure Freezing Temperature 0 °C 

𝐶 Solution Concentration - kg m-3 

𝐷 Methanol Molecular Diffusivity 8.4x10-10 m2 s-1 

𝐿𝑒 Lewis Number 𝛼/𝐷 - 

𝑆 Injection Source through Time - kg s-1 

𝑀 Total Injection Mass - kg 

𝑡𝜇 Injection Timing - s 

𝜎 Injection Duration - s 

 
  



 
 

Figure S1. Four selected simulations from the ensemble shown in 

Figure 2. Here, we show the borehole radius (a), the fraction 

dissolved (b), and the fraction refrozen (c) through time as the hole 

evolves. The thick solid line shows the case where no antifreeze is 

injected and the hole freezes shut. All other cases have some mass 

of antifreeze injected at 𝑡∗ = 0.4. The thin solid line shows a case 

where enough antifreeze is injected to dissolve the hole to 

equilibrium and avoid refreezing entirely (𝑅𝑒𝑞 = 1.1𝑅∗). The 

dashed line shows a case where the borehole goes through all four 

stages described in Figure 1 (𝑅𝑒𝑞 = 0.6𝑅∗). The dotted line shows 

a case where the injected antifreeze is insufficient to cause any 

dissolution, but the borehole continues freezing as slush after the 

injection (𝑅𝑒𝑞 = 0.25𝑅∗). The dissolved/refrozen fractions shown 

here approach equilibrium as the borehole stabilizes (i.e. 𝑡∗ → ∞), 

and those values at equilibrium are equal to the values plotted in 

Figure 2. 
 

  



S.1 Alcohol Properties 

We assume an aqueous methanol solution for all simulations presented in the manuscript. 
The physics explored could, however, be translated to any antifreeze solution. As a 
reference, we note here some of the properties of aqueous methanol and aqueous ethanol 
solutions, two commonly used antifreeze solutions in ice. 

First, freezing-point depression is interpolated between empirical measurements (Flick, 
1998) (Fig. S2). The composition at which the solution has the lowest freezing temperature, 
the eutectic point, is nearly pure alcohol for both cases.  

 

 
Figure S2. Liquidus line from Industrial Solvent Handbook (Flick, 

1998). The eutectic point can be seen at ~0.85, -120°C for ethanol 

and ~0.72, -129°C for methanol. 

 

 

On mixing of these alcohol solutions, some of the hydrogen bonds in the water molecules are 
broken, causing the solution to release energy as the exothermic reaction takes place. An 
empirical relation defines the energy released, termed the ‘enthalpy of mixing’ (Peeters & 

Huyskens, 1993) (Fig. S3). Additionally, when the compounds mix there is some excess volume 

due to the attraction between water and alcohol molecules. The excess volume as a function of 

mole fraction is shown in Figure S4. 



 
 

Figure S3. Enthalpy of the exothermic mixing for 

ethanol/methanol being added to water (Peeters & Huyskens, 

1993). Negative enthalpy indicates an exothermic reaction (energy 

released). 

 

 

 
 

Figure S4. Excess volume of aqueous ethanol/methanol using 

density data from the Industrial Solvent Handbook (Flick, 1998). 

 

  



Solution viscosity is plotted for both ethanol and methanol (Fig. S5). Aqueous ethanol viscosity 

is determined from a Jouyban-Acree model (Khattab et al., 2012). The measurements for this 

empirical model were taken at considerably warmer temperatures (i.e. 20-50°C), but are 

extended colder using the Vogel Equation. Aqueous methanol viscosity is linearly interpolated 

directly from measurements (Yergovich et al., 1971). 

 

 
Figure S5. Solution viscosity for aqueous ethanol (a) (Khattab et al., 2012) and methanol (b) 

(Yergovich et al., 1971). The solid black line with white dots shows the liquidus line for each (as 

in Fig. S2). For methanol, measurements were taken at the cross locations and viscosity is 

linearly interpreted from those values. 

 

 

Molecular diffusivity is the most critical solution property for the slush formation process. As 

stated in the manuscript, when molecular diffusion is slower than thermal diffusion, molecules 

accumulate near the borehole wall as it moves inward and force freezing to happen within the 

solution itself rather than as accretion at the borehole wall. Unfortunately, the molecular 

diffusivity is also perhaps the most poorly constrained property. In our analysis, we assume a 

constant value of 8.4x10-10 m2 s-1 (Cussler, 1997). However, the true value likely spans about 
two orders of magnitude depending on the solution temperature and concentration. In 
Figure S6, we display the range of molecular diffusivities calculated using the Stokes-
Einstein equation (Einstein, 1905), 

 𝐷 =
𝑘𝐵𝑇

6𝜋𝜇𝑅𝑝
 (S1) 

where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the solution temperature, 𝜇 is the dynamic viscosity (Fig. 

S5), and 𝑅𝑝 is the particle radius. As an upper limit, the reported values are within an order of 

magnitude of the assumed value above (all significantly lower than the thermal diffusivity). 
However, the diffusivity could be significantly lower depending on the solution viscosity at 
low temperatures. 
 

 

 



 
Figure S6. Molecular Diffusivity for aqueous ethanol (a) and aqueous methanol (b) calculated 

with the Stokes-Einstein equation (eq. S1) using viscosity from Figure S5. 

 

 
  



S.2 Analytical Solutions 

Considering the cylindrical Stefan problem with a pure solution, some exact analytical 
solutions exist for the melting case and one approximate solution exists for the freezing 
case (Crepeau & Siahpush, 2008). Here, we explore these analytical solutions and compare 
to the numerical solution described in the manuscript.  

S.2.1 Melting: Flux at Hole Center 

Carslaw and Jaeger (1959; sec. 11.6) pose a problem with a linear heat source at the center 
of the hole (𝑟 = 0) and outward melting away from the source. Their problem is solved by 
thermal evolution around a melting hole as described in the manuscript (i.e. equations 1, 
and 2). Using their description, the boundary condition at the hole center is 

 lim
𝑟→0

2𝜋𝑟𝑘𝑙

𝜕𝑇𝑙

𝜕𝑟
= 𝑄 (S2) 

where 𝑄 is a constant heat flux at the hole center. The conditions at the phase boundary are 

 𝑇𝑠(𝑅, 𝑡) = 𝑇𝑙(𝑅, 𝑡) = 𝑇𝑓 (S3) 

 
𝜌𝑠𝐿

𝑑𝑅

𝑑𝑡
= 𝑘𝑠

𝜕𝑇𝑠

𝜕𝑟
|
𝑅

− 𝑘𝑙

𝜕𝑇𝑙

𝜕𝑟
|
𝑅

 
(S4) 

where 𝑇𝑓 is a constant freezing temperature. Finally, the bulk-ice temperature is 

 𝑇𝑠 → 𝑇∞, 𝑎𝑠 𝑟 → ∞ (S5) 

Following the solution laid out in Carslaw and Jaegar (1959; sec. 11.6), we assume 
solutions of the form  

 −𝐸𝑖(−γ2) (S6) 

where the nondimensional radius is 

 γ =
r

2√α𝑡
 (S7) 

and 𝐸𝑖( ) is an exponential integral. Then, at the phase boundary, 

 𝑅 = 2𝜆√𝛼𝑠𝑡 (S8) 

Now, we solve for the temperature profiles, first in the liquid. Taking the form (S6), the 
liquid temperature is 

 𝑇𝑙 = 𝐴1 − 𝐵1 (𝐸𝑖(−𝛾𝑙
2)) (S9) 

Plugging in the relevant boundary conditions (equations S2, S3, and S8) gives the solution 



 𝑇𝑙 = 𝑇𝑓 +
𝑄

4𝜋𝑘𝑙
(𝐸𝑖(−𝛾𝑙

2) − 𝐸𝑖 (−𝜆2
𝛼𝑠

𝛼𝑙
)) (S10) 

Now, similarly for the solid,  

 𝑇𝑠 = 𝐴2 − 𝐵2(𝐸𝑖(−𝛾𝑠
2)) (S11) 

and boundary conditions (equations S3, S5, and S8) gives 

 𝑇𝑠 = 𝑇∞ +
(𝑇𝑓 − 𝑇∞)

𝐸𝑖(−𝜆2)
𝐸𝑖(−𝛾𝑠

2) (S12) 

Finally, solve for the transcendental equation using the Stefan condition (equation S4) 

 

𝜌𝑠𝐿
𝜕

𝜕𝑡
(2𝜆√𝛼𝑠𝑡)

= 𝑘𝑠

𝜕

𝜕𝑟
|

𝑅
(𝑇∞ − 𝐴2𝐸𝑖(−𝛾𝑠

2))

− 𝑘𝑙

𝜕

𝜕𝑟
|

𝑅
(𝑇f + 𝐴1 (𝐸𝑖(−γl

2) − 𝐸𝑖 (−𝜆2
𝛼𝑠

𝛼𝑙
))) 

(S13) 

Plugging in the solutions above 

 
𝑄

4𝜋
𝑒

−𝜆2𝛼𝑠
𝛼𝑙 +

𝑘𝑠(𝑇𝑓 − 𝑇∞)

𝐸𝑖(−𝜆2)
𝑒−𝜆2

= 𝜆2𝛼𝑠𝐿𝜌𝑠 (S14) 

and nondimensionalized gives 

 𝑄∗𝑒
−𝜆2𝛼𝑠

𝛼𝑙 +
𝑆𝑡

𝐸𝑖(−𝜆2)
𝑒−𝜆2

= 𝜆2 (S15) 

with a non-dimensional heat flux 

 𝑄∗ =
𝑄𝑐𝑠

4𝜋𝐿𝑘𝑠
 (S16) 

 and the Stefan number, 

 St =
cs(𝑇𝑓 − 𝑇∞)

𝐿
 (S17) 

Using this solution (equation S15), we can assess the energy necessary to melt out a glacier 

borehole, or even to keep the hole open after drilling, using a linear source in the hole. While 

melting out the hole with this type of fixed source is likely impractical due to the energy 

constraints (Suto et al., 2008), keeping the hole open for a short period of time is more plausible. 

In fact, in locations where environmental regulations will restrict antifreeze usage (such as near 

the ice-sheet bed) using a line source may be a legitimate alternative. 



S.2.2 Melting: Flux at Hole Wall 

Instead of the hole-centered heat flux described above, the most appropriate solution for 
the hot-point drilling case is that in which a heat flux follows the motion of the phase-
transition boundary. That is, as the hole melts out the drill moves downward, continuously 
in contact with the ice and progressively melting the hole. The analytical solution for this 
case is derived from a slightly simplified form of the above equations, considering heat 
transport within the ice only, and with a boundary condition at the moving phase 
boundary, 𝑟 = 𝑅, 

 𝑘𝑙

𝜕𝑇(𝑅, 𝑡)

𝜕𝑟
= −

𝑄

2𝜋𝑅
 (S18) 

Substituting, the Stefan condition is then 

 𝑘𝑠

𝜕𝑇(𝑅, 𝑡)

𝜕𝑟
+

𝑄

2𝜋𝑅
= 𝜌𝑠L

𝜕𝑅

𝜕𝑡
 (S19) 

The temperature solution is the same as above, but with the hole wall progressing at a 
slightly different rate determined by the transcendental equation, 

 
𝑆𝑡

𝐸𝑖(−𝜆2)
𝑒−𝜆2

+ 𝑄∗ = 𝜆2 (S20) 

This solution (equation S20) shows that the hole will melt faster here than in the hole-
centered heat flux case (equation S15) (Figure S7). We test the numerical model described in 

the manuscript against this analytical solution, showing that the resulting temperature profiles 

and rate of borehole melting are identical (Figure S8). 

 

 
Figure S7. The analytic solution of the borehole wall location for 

constant 𝑄∗ and variable 𝑆𝑡 (i.e. 0.25, 0.18, 0.13, 0.06, 0.03, 

0.006) for flux at the hole wall (solid) and flux at the center of the 

hole (dotted). 

 



 

 
Figure S8. A comparison of numerical (red dotted) and analytical 

(black solid) for the case of melt out to 0.04 m with constant flux at 

the hole wall, Q = 2.5kW/m, T0 = -20°C. 

 

 

S.2.3 Approximate Freezing Solution 

Following (Crepeau & Siahpush, 2008) there is an approximate analytical solution for a 
hole freezing shut if the domain is finite and the outer boundary condition is fixed to some 
constant temperature. Boundary conditions in this case are  

 𝑇 = 𝑇0, 𝑟 = 𝑟0 (S21) 

 𝜕𝑇

𝜕𝑟
= 0, 𝑟 = 0 

(S22) 

 𝑇 = 𝑇𝑓 , 𝑟 = 𝑅 (S23) 

where 𝑟0 is the extent of the domain. Their solution is 

 T𝑙 =
𝑞̇𝑅2

4𝑘𝑙
(1 −

𝑟2

𝑅2) + 𝑇𝑓  (S24) 



 T𝑠

=
−𝑞̇𝑟2

4𝑘𝑠

−
(𝑅2 ln(𝑟0) − 𝑟0

2 ln(𝑅) + (𝑅2 − 𝑟0
2) ln(𝑅))𝑞̇ + 4𝑘𝑠(𝑇𝑓 ln(𝑟0) − 𝑇0 ln(𝑅) + (𝑇𝑓 − 𝑇0) ln(𝑟))

4𝑘𝑠 ln (
𝑅
𝑟0

)
 

(S25) 

where 𝑞̇ is a heat source throughout the domain. The interface location is then defined by a 
differential equation 

 𝜌𝑖𝐿
𝑑𝑅

𝑑𝑡
=

(𝑅2 − 𝑟0
2)𝑞̇ + 4𝑘𝑖(𝑇𝑓 − 𝑇0)

4𝑅 (ln (
𝑅
𝑟0

))
 (S26) 

Note that this solution is approximate. Crepeau and Siahpush (2008) assume 
thermodynamic equilibrium within the solution, and they consider only cases with some 
positive heat source so that the solution converges onto a steady temperature profile with 
the hole remaining open. With the limitations of this approximate solution in mind, we plot 
temperature profiles and the associated phase boundary location for the case of no internal 
heat source, thus allowing the hole to completely freeze shut and again compare this to our 
numerical solution from the manuscript (Figure S9). 

 

 
Figure S9. The approximate solution for borehole freezing shut 

(Crepeau & Siahpush, 2008) with no internal heating, 𝑞̇ = 0. 

 
  



S.3 Two Dimensionality 

Up to now, we have treated the system as one-dimensional. In reality, the drill moves 
downward and warms the surrounding ice as it moves. Radial symmetry means that the 
problem can at least be reduced to two dimensions (𝑧 and 𝑟), but here we want to test 
whether our original assumption to neglect the vertical advection and diffusion is valid.  

In two dimensions, again in cylindrical coordinates and with the logarithmic 
transformation, the heat equation is 

 
𝜕𝑇

𝜕𝑡
= ∇ ⋅ (𝛼𝑠∇𝑇) − 𝑢𝑧

𝜕𝑇

𝜕𝑧
 (S27) 

with the vertical velocity, 𝑢𝑧, being prescribed by the drilling rate. This is a Lagrangian 
framework, where the mesh moves with the drill and the ice (which is not moving in the 
Eulerian sense) now moves up and out of the domain. To test the two-dimensionality of the 
problem we create a drill-like scenario with boundary conditions fixed to the bulk ice 
temperature below the drill and as 𝑟 → ∞, the ice temperature to the melting point at 𝑟 =
0, and zero flux at the top of the domain. 

At the limit where 𝑢𝑧 → 0 or where 𝑧 → ∞, the above problem reduces to one dimension as 
in our original simulations. Our question though, is how slow the drill rate needs to be or 
how far behind the drill we need to look for this to be the case. Results for the two-
dimensional case with drilling rate, 𝑢𝑧 = 2 𝑚/ℎ𝑟, and the bulk-ice temperature, 𝑇∞ =
−20∘𝐶, and  are shown in Figure S10. Here, we confirm that the zero velocity case is indeed 
one-dimensional. Interestingly, we also see that the nonzero case perfectly matches the one 
dimensional solution for some time (i.e. the first few hours in Fig. S10b) and then 
approaches a steady state. Additionally, the two-dimensional model converges to the one-
dimensional result with increasing vertical distance behind the drill (Fig. S10c). Based on 
these results we assert that at short timescales (hours) or far distances behind the drill 
(~500 times the borehole radius in this case) the problem is exactly one-dimensional.  



 
Figure S10. a) The temperature result for the 2-dimensional case 

of drilling at 2 m/hr with the model run for 10 hours. The 

hypothetical ‘drill tip’ is at (1,0). b) Temperature profiles at hourly 

time steps over the 10-hour simulation. The 1-D model is shown in 

black, and the 2-D model (red dotted) corresponds to a location 5 

m above the drill tip (red arrow in (a)). c) Temperature profiles at 

the end of the 10-hour simulation at depth increments of 100𝑟∗ 

from bottom to top of the 2-dimensional domain in (a) (red dotted). 

For comparison, the 1-dimensional result at the end of a 10-hour 

simulation is shown in black. 

 

 
  



S.4 Delayed Injection 

As discussed in the manuscript, refreezing can be minimized by slowing the rate of 
injection (Humphrey & Echelmeyer, 1990 Fig. 13). Here, we quantify this effect using an 
ensemble of simulations with varying injection timing and injection duration. For each 
simulation, the antifreeze source is described as a Gaussian function through time 

 𝑆(𝑡) =
𝑀

𝜎√2𝜋
𝑒

−
1
2(

𝑡−𝑡𝜇

𝜎 )
2

 (S28) 

where 𝑀 is the total mass of injected antifreeze, 𝜎 is the injection duration, and 𝑡𝜇 is the 

injection timing. For every simulation, the total mass of injected antifreeze (i.e. the 
integrated source) is exactly enough to stabilize the hole to the size at the time of injection 
(following the reference ‘radius at injection’ line in Figure 2). As expected, the results show 
less refreezing with a more prolonged injection (Fig. S11). 

 

 

Figure S11. Model results for an ensemble of simulations with 
variable injection timing and injection duration. For these 
simulations, the total mass of injected antifreeze is always the 
exact amount necessary to stabilize the borehole to the radius at 
the time of injection (black in Figure 2). Fraction refrozen is 
calculated as in Figure 2. The timing limit (black) shows the 
cutoff for plausible simulations (i.e. any simulation with earlier 
injection timing or a longer injection duration would require 
some injection before the hole starts freezing shut). 
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