
Annals of Glaciology 1

SUPPLEMENTARY MATERIAL

Surface and Subsurface Radar Equations for Radar
Sounders

Mark S. HAYNES

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Correspondence: Mark Haynes <mark.s.haynes@jpl.nasa.gov>

S1. SURFACE RADAR EQUATIONS

This section contains derivations of radar equations for

normal incidence surface targets. Subsurface geometries are

covered in Section S2.

S1.1. Basic Radar Equation

The radar equation is (Ulaby and others, 1982, 2014)

Pr =
PtGtGrλ

2σ

(4π)3R4
(S.1)

where Pr is the received power, Pt is the transmit power,

Gt and Gr are the transmit and receive antenna gains

respectively, R is the distance to the target, λ is the

wavelength, and σ is the radar cross section.

If the surface is characterized by the normalized radar cross

section, σ = σoA, where σo is independent of area, A, then

the radar equation is, as usual,

Pr =
PtGtGrλ

2σoA

(4π)3R4
(S.2)

Derivation

The power density of the signal from the transmitter is

St =
PtGt
4πR2

(S.3)

The power intercepted by the target is Pi = Stσ. This is

power reradiated from the target with power density

Sr =
Pi

4πR2
(S.4)

The power intercepted by the receive antenna is

Pr = SrAr (S.5)

where Ar is the effective aperture of the receive antenna.

Ar =
Grλ

2

4π
(S.6)

Putting these together gives (S.1).

S1.2. Image Method

This is the classic derivation for the radar equation over an

infinite mirror, (Ulaby and others, 2014; Nguyen and Park,

2016). Assume the surface is flat and infinite with perfect

reflection at normal incidence. The surface is replaced with a

transmitter at distance R = 2h from the receiver, Figure S1.

The power density at the receiver due to the image source is

Sr =
PtGt

4π(2h)2
(S.7)

The power received is then

Pr = SrAr = Sr
Grλ

2

4π
(S.8)

where Ar is the effective aperture of the receiver. After

including a factor of reflectivity, Γ, the radar equation derived

for a flat surface under the image method is

Pr =
PtGtGrΓλ

2

(4π)2(2h)2
(S.9)
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Fig. S1: Geometry of classic image approach for infinite
mirror.

A similar form of this also appears in (Moore and Williams,

1957; Edison and others, 1960; Fung and Eom, 1983). This

radar equation should be used to compute raw received power

when the surface is considered smooth, flat, and infinite.

This equation is useful when considering flat surfaces for
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radiometric calibration, such as flat surface ice (e.g., non-

crevassed terrestrial ice or Mars) or open water (e.g., airborne

sounders). Note, the power predicted by (S.9) will match the

peak power obtained in range-compressed echo simulations of

perfectly flat surfaces that have been modeled with discrete

sub-wavelength facets.

Equation (S.9) will predict a received power approximately

4 times less (-6 dB) than that for spherical wave inci-

dence over a flat Frensel zone, Section S1.4, (S.28), and

approximately 10 times less (-10 dB) than that derived

under the ‘antenna’ approach, Section S1.6, (S.60). This

implies that scattering beyond the Fresnel zone contributes

incoherently as captured in this model. In other words, this

equation will give a conservative estimate of received power in

radar link budgets compared to other target areas. Equation

(S.9) can also be obtained by the plane wave or ‘antenna’

approach, Section S1.6, if the target area is a square with

side length equal to the Fresnel zone radius. In addition,

(S.9) is equivalent to the radar equation derived using the

subsurface image method evaluated at the surface, see (Peters

and others, 2005) and Section S2.1.

S1.3. Target Backscatter

The following derivations consider the radar equation for

specific target geometries. For these, the backscatter of a

smooth surface under the Kirchhoff approximation, (Haynes

and others, 2018; Kong, 1986; Tsang and others, 2000), is

σdisk = Γ
4π|I|2

λ2
(S.10)

where Γ is the reflectivity, |I|2 is the magnitude squared of

the surface phase integral for spherical incident waves. In

addition, the electric field polarization is assumed constant

over the surface.

For plane waves and normal incidence, the magnitude

squared of the surface phase integral reduces to the target

area squared (Levine, 1984):

σdisk = Γ
4πA2

λ2
(S.11)

S1.4. Fresnel Zone - Spherical Waves - Flat
Surface

Here we derive the radar equation for a Fresnel zone target

with spherical incidence waves over a flat surface. To do this,

we compute the integral of the two-way phase over a disk out

to radius a, Figure S2:

I =

∫
ei2krdS (S.12)

=

∫ 2π

0

∫ a

0

ei2k
√
h2+ρ2ρdρdθ (S.13)

where h is the height or altitude of the sensor and k = 2π/λ

is the wave number. The integral is equal to

I = 2π
e2ik
√
h2+x2 (

1− 2ik
√
h2 + x2

)
4k2

∣∣∣∣∣
a

0

(S.14)

=
2π

4k2

(
e2ik
√
h2+a2

(
1− 2ik

√
h2 + a2

)
− e2ikh (1− 2ikh)

)
(S.15)

hh + l/4

r
qrf

Fig. S2: Geometry for the Fresnel zone with spherical waves
and flat interface.

When h� a this can be approximated

I ≈ 2π

4k2
e2ikh (1− 2ikh)

(
e2ik
√
h2+a2−2ikh − 1

)
(S.16)

The magnitude of the integral, |I|, is maximized when

e2ik
√
h2+a2−2ikh = −1 (S.17)

or

2k
√
h2 + a2 − 2kh = πm m odd (S.18)

Solving for a gives the radius of each Fresnel zone

am =

√(
h+

λm

4

)2

− h2 (S.19)

The first Fresnel zone occurs when m = 1, or

rf =

√(
h+

λ

4

)2

− h2 (S.20)

This radius corresponds to slant range from the radar that

is λ/4 longer than the slant range to the nadir point and

corresponds to a 2-way relative phase difference of 180 degrees

between nadir and the edge of Fresnel zone. When h � λ,

this is expanded and approximated as

rf ≈
√
λh

2
(S.21)

which appears in many places in the form of radius or

diameter (Seu and others, 2007; Bruzzone and others, 2011;

Schroeder and others, 2016; Haynes and others, 2018).

The magnitude squared of the phase integral is

|I|2 =
(2π)2

(4k2)2
|1− 2ikh|2

∣∣∣(e2ik√h2+a2−2ikh − 1
)∣∣∣2 (S.22)

=
(2π)2

(4k2)2
(1 + (2kh)2)

(
2− 2 cos

(
2k
√
h2 + a2 − 2kh

))
(S.23)

≈ (2π)2

(4k2)2
(2kh)2

(
2− 2 cos

(
2k
a2

2h

))
(S.24)

=
2π2

k2
h2
(

1− cos

(
k
a2

h

))
(S.25)

When the size of the disk is larger than the Fresnel zone,

the value of (S.25) will oscillate between its peak and zero.

This is plotted in Figure S3.
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Fig. S3: Surface phase integral over a flat surface normalized
magnitude squared plotted as a function of Fresnel zone
radius.

Evaluated at the fresnel zone radius a = rf gives

|I|2 =
4π2

k2
h2 (S.26)

Using (S.26) in (S.10), the backscatter of the disk is

σdisk(a = rf ) = Γ4πh2 (S.27)

Finally, substituting this into (S.1), the radar equation for

the Fresnel zone area and spherical incident waves over a flat

interface is

Pr =
PtGtGrλ

2Γ

(4π)2h2
(S.28)

This appears in (Haynes and others, 2018). The received

power can be less than (S.28) if the target is bigger or smaller

than exactly the Fresnel zone. To demonstrate this, we retain

the oscillating component of (S.25) in (S.10), then the radar

equation is instead

Pr =
PtGtGrλ

2Γ

25π2h2

(
1− cos

(
k
a2

h

))
(S.29)

=
PtGtGrΓ

25π2
F (S.30)

F =
1

h2λ

(
1− cos

(
2π
a2λ
hλ

))
(S.31)

where F is the geometric factor written in terms of disk

radius and altitude in units of wavelength. Equation (S.31)

is plotted in Figure S4. For a given altitude, the power is

maximum at the discrete Fresnel zones. While the value can

theoretically be zero, this is never encountered in practical

systems. This is because a) surface targets are not perfectly

isolated disks, whether physically or after SAR focusing,

b) the range sampling of the time-domain response would

need to be such that the surface phase integral evaluated to

exactly zero, and c) the radar system would need to be truly

monochromatic, rather than a pulsed or chirped radar.

In general, (S.28) is useful when considering the reflected

power from a target that is exactly equal to the Fresnel

zone, for example, after unfocused SAR processing. However,

the interplay of along-track SAR resolution and flat surface

scattering is more complicated, as discussed in (Peters and

others, 2005), and so (S.28) should be considered carefully in

context.

Geometric Factor for Flat Surface Radar Equation
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Fig. S4: Geometric factor of the radar equation for flat
surface and spherical waves with normal incidence, (S.31).

S1.5. Fresnel Zone - Spherical Waves -
Spherical Surface

Here we derive the Fresnel zone and radar equation for

spherical waves incident on a spherical surface. The geometry

is given in Figure S5. Assume the sensor is aligned on the z-

axis. The surface phase integral over a spherical surface is

I =

∫ 2π

0

∫ β

0

ei2kd(θ,φ)r2 sin θdθdφ (S.32)

d = |s− x| (S.33)

s = (r + h)ẑ (S.34)

x = rr̂ (S.35)

= r(sin θ cosφx̂+ sin θ sinφŷ + cos θẑ) (S.36)

where r is the radius of the sphere, s is the vector of the source

along the z-axis, x is the integration point on the sphere,

θ is the polar angle between the z-axis (source direction)

and the integration point, β is the integration limit of θ, φ

is the azimuth angle in spherical coordinates, and d is the

distance from the source to the integration point. Computing

d2 directly or equivalently from the law of cosines

d2 = r2 + (r + h)2 − 2r(r + h) cos θ (S.37)

Substituting (S.37) into (S.32) and evaluating the φ

integral

I = 2π

∫ β

0

ei2k
√
r2+(r+h)2−2r(r+h) cos θr2 sin θdθ (S.38)
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Approximating the square root for θ � 1√
r2 + (r + h)2 − 2r(r + h) cos θ ≈ h+

(hr + r2)

2h
θ2

(S.39)

and doing the same for sin θ ≈ θ, the surface integral

becomes

I ≈ 2π

∫ β

0

ei2k(h+
(hr+r2)

2h θ2)r2θdθ (S.40)

which is evaluated as

I = −2πr2ie2ikh(−1 + e2iβ
2Bk)

4Bk
(S.41)

B =
(hr + r2)

2h
(S.42)
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Fig. S5: Geometry for the Fresnel zone and surface phase
integral for a spherical incidence waves and spherical surface.

The magnitude of the phase integral is

|I| =
2πr2

∣∣∣−1 + e2iβ
2Bk

∣∣∣
4Bk

(S.43)

This is maximum when

2β2Bk = π (S.44)

or

β2 =
λh

2(hr + r2)
(S.45)

The Fresnel zone radius is taken as the arc length along

the surface from the z-axis to β, as rf = rβ, or

rf =

√
λhr

2(h+ r)
(S.46)

This is the result in (Haynes and others, 2018), which was

derived in two different ways from the geometry rather than

the surface integral. The magnitude squared of the surface

phase integral is

|I|2 =
(2π)2r4

(4Bk)2

∣∣∣−1 + e2iβ
2Bk

∣∣∣2 (S.47)

=
(2π)2r4

(4Bk)2
2
(

1− cos
(

2β2Bk
))

(S.48)

=
(2π)2r4

(4k)2
(2h)2

(hr + r2)2
2

(
1− cos

(
2β2

(hr + r2)

2h
k

))
(S.49)

=
2π2

k2
h2r2

(h+ r)2

(
1− cos

(
β2

(hr + r2)

h
k

))
(S.50)

Evaluated at the Fresnel zone angle, (S.45), this becomes

|I|2 =
2π2

k2
h2r2

(h+ r)2

(
1− cos

(
λh

2(hr + r2)

(hr + r2)

h
k

))
(S.51)

=
4π2

k2
h2r2

(h+ r)2
(S.52)

Using (S.52) in (S.10), the backscatter from the spherical

disk is

σdisk(a = rf ) = Γ
4π|I|2

λ2
(S.53)

= Γ
4π

λ2
4π2

k2
h2r2

(h+ r)2
(S.54)

= Γ4πh2
r2

(h+ r)2
(S.55)

Substituting this into (S.1), the radar equation for the

Fresnel zone and spherical incident waves over a spherical

surface is

Pr =
PtGtGrλ

2Γ

(4π)2h2
r2

(h+ r)2
(S.56)

This is the same as (S.28) but with a correction factor for

the spherical surface, which has the effect of reducing the

received power. As with the flat surface, this assumes that

the polarization, reflectivity and antenna gain are constant

over the surface in the region of the Fresnel zone. In effect,

only the area of the Fresnel zone is modified by the spherical

surface.

The spherical surface correction can be written

r2

(h+ r)2
=

1

(z + 1)2
(S.57)

where z = h/r is the ratio of the sensor height and sphere

radius. This is plotted in Figure S6.

Equation (S.56) and the spherical surface correction are

most useful for the link budgets of planetary radar sounders

when the altitude of operation is similar or might exceed

the body radius, for example Mars, Europa, and Ganymede,

(Haynes and others, 2018). In these situations, the total

reflected power can decrease by several dB relative to a flat

surface. In the case of potential future terrestrial orbiting

radar sounders, the radius of Earth is large compared

to typical remote sensing altitudes of several hundred

kilometers, so that this correction is negligible.
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Fig. S6: Power loss of a spherical surface Fresnel zone relative
to a flat surface as a function of the ratio of altitude to body
radius: z = h/r.

S1.6. Fresnel Zone - Plane Waves or
‘Antenna’ Approach - Flat Surface

The ’antenna’ approach is when the Fresnel disk is treated

as a flat circular antenna aperture that reradiates normal

incident plane waves. This is represented in Figure S7. The

backscatter of the disk in this case is given by (S.11), where

the area of the Fresnel zone is used as the target area.

FZ

h

G

Fig. S7: Representation of the plane waves or ’antenna’
approach, where the Fresnel zone is treated as an antenna
aperture.

Using (S.21), the area of the Fresnel zone disk over a flat

surface is

A = πr2f =
πλh

2
(S.58)

Using this in (S.11), the backscatter is

σdisk = Γπ3h2 (S.59)

Substituting this in (S.1), the radar equation for the Fresnel

zone using the ‘antenna’ approach is equal to

Pr =
PtGtGrλ

2Γ

43h2
(S.60)

This form appears in (Haynes and others, 2018). Note, if

in this method the target is instead a square with side length

equal to the Fresnel zone radius, then the radar equation

becomes the same as that derived by the image method, (S.9).

Likewise, if the target is a rectangle with along-track length

equal to half the Fresnel zone radius and across-track length

equal to the Fresnel zone diameter, then plane-wave incidence

will again yield the image equation (S.9). The salient detail

in this last case is that an along-track length equal to half

a Fresnel zone radius is equal to the SAR resolution when

the synthetic aperture length is equal to the Fresnel zone

diameter (over a flat surface).

S2. SUBSURFACE RADAR EQUATIONS

This section contains derivations of radar equations for

subsurface targets either Fresnel zone sized or arbitary.

Subsurface pulse-limited geometries are covered in Section

S3.

S2.1. Subsurface - Image Method - Spherical
Waves - Flat Surface - Flat Subsurface

Here we derive the radar equation for a flat surface and flat

subsurface interfaces using the image method, which is similar

to the derivation in (Gudmandsen, 1971). The geometry is

shown in Figure S8.

h

d
n

G

T2

Fig. S8: Geometry for subsurface image method.

The power density of the transmitting antenna at the

surface interface is

S =
PtGt
4πh2

(S.61)

where h is the sensor height above the surface. Assuming

the wave impinging on the surface is planar, the total power

incident on an area A is

P+ = SA (S.62)

The total power across the surface interface and just below

the surface is

P− = TP+ (S.63)

where T is the transmittivity. In order to replace the dielectric

subsurface with free-space, we need to replace the source with

an equivalent source in the medium that produces the same

power just below the surface interface, and in a way that

the refracted rays appear to emanate from this source. This

source is located a height h′, which will be higher than the
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original source at height h. The power due to the equivalent

source is given generally by

P ′ = S′A =
P ′tG

′
tA

4πh′2
(S.64)

where S′ is the power density of the equivalent source at

the interface, and P ′tG
′
t is the power-gain product of the

equivalent source. Equating (S.63) and (S.64), the power-gain

product of the equivalent source is

P ′tG
′
t = PtGtT

h′2

h2
(S.65)

The dielectric can now be replaced with free-space and the

original source replaced with the equivalent source which is

located h′+d above the subsurface interface, shown in Figure

S9. Applying the image method, the power density of the

image of the equivalent source, at the equivalent source, is

S2 =
P ′tG

′
tΓT

4π(2(h′ + d))2
(S.66)

where a factor of reflectivity has been included for reflection

from the subsurface and a factor of transmissivity for

transmission through the surface interface. The power

received is then

Pr = S2Ar =
S2Grλ

2

4π
(S.67)

where Gr is the gain of the receive antenna. Putting these

together, the received power is

Pr =
PtGtGrλ

2T 2Γ

(4π)2(2(h′ + d))2
h′2

h2
(S.68)

d

d

h’

h’

T2

G

n = 1

Equivalent Source/Receiver

Image of Equivalent Source

Subsurface Interface

Surface

Image Surface

n = 1

Fig. S9: In the subsurface image method, the subsurface is
replaced by the image of the equivalent source/receiver in free
space.

To derive the location of the equivalent source, we start

with the geometry in Figure S10 and Snell’s law

sin θi = n sin θt (S.69)

where n is the index of refraction of the subsurface, θi is the

incidence angle and θt is the transmission angle. If x is the

distance along the surface from nadir to the refraction point,

then tan θi = x/h and tan θt = x/h′, where the rays of the

transmitted signal intersect the equivalent source. For small

angles, sin θ ≈ tan θ, and we can approximate

h′

h
= n (S.70)

In other words, the height of the equivalent source is n

times the height of the actual source. Substituting (S.70) into

(S.68), the received power is

Pr =
PtGtGrλ

2T 2Γ

(4π)2(2(nh+ d))2
n2 (S.71)

=
PtGtGrλ

2T 2Γ

(4π)2(2(h+ d/n))2
(S.72)

This is the expression (Peters and others, 2005, Eq. 1).

Multiplying top and bottom by the physical distance between

the source and subsurface squared, (h+ d)2, we get

Pr =
PtGtGrλ

2T 2Γ

(4π)2(2(h+ d))2
g2r (S.73)

where gr is the one-way refractive gain

gr =
h+ d

h+ d/n
(S.74)

The expression for gr is the same as the area scaling ratio

derived in (Gudmandsen, 1971). In (Gudmandsen, 1971), the

total (two-way) refractive gain is given as the parameter

q = 20 log10(gr). We arrived at g2r in (S.73), so by using

10 log10 for power these factors are equivalent. Equation

(S.73) is also the same equation given in (Chyba and others,

1998), which is equivalent to that in (Peters and others, 2005),

and is the same as the form in (Kofman and others, 2010)

without refraction gain. The constant in the denominator,

43π2, is the same constant that appears in the surface radar

equation for an infinite mirror. In other words, (S.73) is the

infinite mirror, or image method, analog for the subsurface.
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Fig. S10: Geometry for Snell’s law small-angle approxima-
tion. The rays incident on the subsurface point appear to
emanate from the equivalent source after the dielectric is
replaced with free space.

S2.2. Refraction Gain - Flat Surface

The one-way refraction gain is again

gr =
h+ d

h+ d/n
(S.75)

Written in terms of the altitude to depth ratio z = h/d

gr =
z + 1

z + 1/n
(S.76)

This is plotted in Figure S11. Recall n =
√
εr. For ice-

like dielectrics and sensor altitudes equal to or greater than

the target depth, the two-way refraction gain is generally

less than 2 dB. Refraction gain decreases quickly with

increasing sensor altitude. For space-borne low-frequency

radar sounders, it is usually negligible. When the target is

much deeper than the altitude of the sensor (e.g., when

the sensor is at the surface), the two-way refraction gain

approaches εr:

lim
z→0

g2r = εr (S.77)

S2.3. Subsurface Nadir - General Radar
Equation - Spherical Waves - Flat
Surface

We derive the radar equation for an arbitrary subsurface

target at nadir, represented in Figure S12. The approach is

to apply power conservation by following the power through

the interface to and from the target. This enables deriving a

subsurface radar equation in which a Fresnel zone or other

sized target can be substituted later.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

z = h/d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

g
r2
 (

d
B

)

Two-way Refraction Gain

1.1

1.3

1.5

  2

  3

ǫ
r

10
0

10
1

10
2

10
3

z = h/d

0

0.5

1

1.5

2

2.5

g
r2
 (

d
B

)

Two-way Refraction Gain

1.1

1.3

1.5

  2

  3

ǫ
r

Fig. S11: Top: Two-way refractive gain as a function of
altitude to depth ratio z = h/d. Bottom (zoom of Top):
Two-way refractive gain as a function of altitude to depth
ratio z = h/d, over a range where h > d.

h

dn
T2

Fig. S12: Geometry for arbitrary subsurface target at nadir.

Similar to the image method, we must derive the power-

gain product of an equivalent source evaluated at the

interface. The steps of the derivation are identical to (S.61)-

(S.65), after which the surface interface can be replaced with

the equivalent source, Figure S13. In the previous image

method, the subsurface was replaced with free-space. Here

we replace free-space with dielectric, because the waves are
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propagating with rays as though the equivalent source is

in the subsurface medium. Note, geometric fall-off does not

depend on the properties of the medium.

Taking the equivalent source to be in the medium, the

power density of the equivalent source at range R′ is

S′ =
P ′tG

′
t

4πR′2
=
PtGtT

4πR′2
h′2

h2
(S.78)

The power density radiated by the equivalent source is

evaluated at the subsurface target h′ + d

Sd =
PtGtT

4π(h′ + d)2
h′2

h2
(S.79)

h’

d
n

T

Equivalent Source

Source/Receiver

h

Fig. S13: Geometry for equivalent source/receiver in the
medium of the subsurface.

The power scattered by the subsurface target is

Pσ = Sdσεr (S.80)

where σεr is the radar backscatter of the target in a medium

with relative permittivity εr.

The power density of the field scattered by the target

evaluated at the interface is

Sσ =
Pσ

4πd2
(S.81)

The scattered power just below the surface interface

incident on an area A is

P−− = SσA (S.82)

The power above the surface interface is

P++ = TP−− (S.83)

Next, we need to replace the target with an equivalent

target in order to replace the dielectric with free-space, Figure

S14. The equivalent target must be positioned so that the rays

radiated from the target appear to bend away from normal

on upper side of the interface. The equivalent target will be

closer to the surface than the actual target, at a depth d′′.

h

d’’n 

T

Target

Equivalent Target

Source/Receiver

d

Fig. S14: Geometry for the equivalent subsurface target in
free space.

Making a similar argument as before, the equivalent target

must have the same power at the interface as radiated by the

actual target. Treating the equivalent target as an equivalent

source with transmit power, P ′′t , the scattered power density

from the equivalent target at the interface is

S′′ =
P ′′t

4πd′′2
(S.84)

and the scattered power is

P ′′ = S′′A (S.85)

Equating P ′′ and P++, the equivalent target needs to

radiate with power

P ′′t = PσT
d′′2

d2
(S.86)

The dielectric medium can now be replaced with free space

and the equivalent target. The power density radiated from

the equivalent target at the receiver is

Sr =
P ′′t

4π(h+ d′′)2
(S.87)

The power received is

Pr = SrAr (S.88)

Putting these all together

Pr =
P ′′t

4π(h+ d′′)2
Grλ

2

4π
(S.89)

= PσT
d′′2

d2
1

4π(h+ d′′)2
Grλ

2

4π
(S.90)

= SdσεrT
d′′2

d2
1

4π(h+ d′′)2
Grλ

2

4π
(S.91)

=
PtGtT

4π(h′ + d)2
h′2

h2
σεrT

d′′2

d2
1

4π(h+ d′′)2
Grλ

2

4π
(S.92)

which becomes

Pr =
PtGtGrλ

2T 2σεr
(4π)3(h′ + d)2(h+ d′′)2

h′2

h2
d′′2

d2
(S.93)
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The same Snell’s law approximations are used as Section

S2.1 for the equivalent source height and equivalent target

depth:

h′/h = n (S.94)

d′′/d = 1/n (S.95)

The equivalent source is higher than the original source by

a factor of n, and the equivalent target is shallower than the

actual target by a factor of 1/n. Using these,

Pr =
PtGtGrλ

2T 2σεr
(4π)3(hn+ d)2(h+ d/n)2

n2
1

n2
(S.96)

=
PtGtGrλ

2T 2σεr
(4π)3(h+ d/n)4

1

n2
(h+ d)4

(h+ d)4
(S.97)

After rearranging, the subsurface radar equation for

spherical waves and arbitrary target under a flat interface

is

Pr =
PtGtGrλ

2T 2σεr
(4π)3(h+ d)4

g4r
n2

(S.98)

This has reduced to the standard radar equation modified

by transmissivity, refraction gain, the index of refraction of

the subsurface, and target radar cross section evaluated in

the medium. Equation (S.98) has the same form as (Peters

and others, 2005, Eq. 2). This radar equation is useful

as a starting point to compute the power for arbitrary

subsurface scattering objects at nadir. For example, rough

basal interfaces at nadir for which the image equation

does not apply and for which backscatter or normalized

backscatter is a more appropriate characterization of the

interface.

S2.4. Subsurface Off-Nadir - General Radar
Equation - Spherical Waves - Flat
Surface

This is the derivation for the radar equation for off-nadir

subsurface targets for a flat surface interface, represented

in Figure S15. The derivation follows the same steps as

the power conservation and image methods in the previous

section. This assumes that the location of the subsurface

target is known and that a flat-surface refraction solution has

been computed between the source and the target, such that

the refraction point, incidence angle, θi, and transmission

angle, θt, are known.

T2

r1

r2
n

Fig. S15: Geometry for the equivalent subsurface target in
free space.

The power density of the transmitting antenna at the

refraction point on the surface is

S =
PtGt

4πr21
(S.99)

where r1 is the distance between the source and refraction

point. The total power incident over the projected area A on

the surface is

P+ = SA cos θi (S.100)

The total power below the interface is

P− = TP+ (S.101)

where T is the transmissivity evaluated at the incidence angle

from the refraction solution. An equivalent source is placed

at a height h′, which is higher than the real source at height

h above the surface. The geometry is shown in Figure S16.

The distance from the equivalent source and the refraction

point is r′1. We want this source to radiate such that it has

the same power as P− at the refraction point. The power

radiated by the equivalent source over the projected area in

the subsurface is

P ′ = S′A cos θt =
P ′tG

′A cos θt

4πr′21
(S.102)

where A is the illuminated area on the surface, S′ is the power

density of the equivalent source at the interface and P ′tG
′ is

the power-gain product of the equivalent source. Equating

P− and P ′ and solving for the power-gain product, P ′tG
′, of

the equivalent source

P ′tG
′ = PtGtT

r′21
r21

cos θi
cos θt

(S.103)

We can now replace the original source and free-space

above the surface interface with the equivalent source in the

medium. The waves are propagating with rays radiated from

the equivalent source in the medium. The power density of

equivalent source has the form

S′ =
P ′tG

′

4πR′2
(S.104)

The power density of the equivalent source at the target at

a range of r′1 + r2 is then

S′ =
PtGtT

4π(r′1 + r2)2
r′21
r21

cos θi
cos θt

(S.105)

where r2 is the distance from the refraction point to

the target. Note, the antenna gain and transmissivity are

evaluated at the incident angle of the original source.
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T

r1

r2

n

r1'

h

h’ Equivalent Source

Source/Receiver

Target

q i

qt

Fig. S16: Geometry for equivalent source/receiver in the
medium of the subsurface.

The power scattered by the subsurface target is

Pσ = S′σεr (S.106)

where σεr is the radar backscatter of the target in a medium

of εr. The scattered power density at the refraction point is

then

Sσ =
Pσ

4πr22
(S.107)

The intercepted power at the surface over an area A is

P−− = SσA cos θt (S.108)

and the power above the interface is

P++ = TP−− (S.109)

As before, we replace the target with an equivalent target

(or source) in order replace the dielectric subsurface with free-

space, see Figure S17. It must be positioned so that the rays

are in a straight line to the original source. The equivalent

target is placed closer to the surface, along a vertical line

between the target and the interface. The equivalent target

must radiate the same power above the interface as radiated

by the original target. The power radiated by the equivalent

target over an area A at the interface is written as

P ′′ = S′′A cos θi =
P ′′t A cos θi

4πr′′22
(S.110)

where r′′2 is the distance between the equivalent target and the

refraction point. Equating P++ and P ′′, the transmit power

of the equivalent target is

P ′′t = PσT
r′′22
r22

cos θt
cos θi

(S.111)

T

r1

r2

n

h

Source/Receiver

Target

q i

qt

Equivalent 
Target

r2’’

Fig. S17: Geometry for the equivalent subsurface target in
free space.

The dielectric can now be replaced with vacuum and

the equivalent target (source). The power density from the

equivalent target at an arbitrary distance is

Sr =
P ′′t

4πR′′2
(S.112)

Using R′′ = r1 + r′′2 , the power density at the receiver is

Sr =
P ′′t

4π(r1 + r′′2 )2
(S.113)

The power received is

Pr = SrAr (S.114)

Putting all these together, the received power is

Pr =
P ′′t

4π(r1 + r′′2 )2
Grλ

2

4π
(S.115)

= PσT
r′′22
r22

cos θt
cos θi

1

4π(r1 + r′′2 )2
Grλ

2

4π
(S.116)

= S′σεrT
r′′22
r22

cos θt
cos θi

1

4π(r1 + r′′2 )2
Grλ

2

4π
(S.117)

=
PtGtT

4π(r′1 + r2)2
r′21
r21

cos θi
cos θt

σεrT
r′′22
r22

cos θt
cos θi

1

4π(r1 + r′′2 )2
Grλ

2

4π

(S.118)

which becomes

Pr =
PtGtGrλ

2T 2σεr
(4π)3(r′1 + r2)2(r1 + r′′2 )2

r′21
r21

r′′22
r22

(S.119)

This is the same as (S.93) with the analogous terms

interchanged: [h, d, r′, d′′] = [r1, r2, r
′
1, r
′′
2 ]. The cosine area

projection terms cancel, as we expect from conservation of

power.

The ranges of the equivalent source and target to the

refraction point, r′1 and r′′2 , are found by equating the

common triangle edges along the surface formed by the
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original source or target. The geometry is shown in Figure

S18.

r′1 = r1
sin θi
sin θt

(S.120)

r′′2 = r2
sin θt
sin θi

(S.121)

Using these in (S.119)

Pr =
PtGtGrλ

2T 2σεr

(4π)3
(
r1

sin θi
sin θt

+ r2

)2(
r1 + r2

sin θt
sin θi

)2
(S.122)

Multiplying top and bottom by (r1 + r2)4 and rearranging

Pr =
PtGtGrλ

2T 2σεr

(4π)3 (r1 + r2)4
(r1 + r2)4(

r1 + r2
sin θt
sin θi

)4

sin2 θt

sin2 θi

(S.123)

r1

r2

n

q i

qt

r2’’

r1’

r1’ sinqt

r1 sinq i

r2 sinqt

r2’’sinq i

Fig. S18: Geometry for the ranges to the equivalent source
and equivalent target.

After applying Snell’s law, sin θi = n sin θt, this reduces to

Pr =
PtGtGrλ

2T 2σεr

(4π)3 (r1 + r2)4
g′4r
n2

(S.124)

where g′r is the refraction gain for off-nadir targets

g′r =
r1 + r2
r1 + r2/n

(S.125)

Equation (S.124) is the same radar equation as for the nadir

subsurface targets, (S.98), with height and depth replaced by

distances between source and target to the refraction point.

Likewise, (S.125) is (S.75) with the same substitutions.

Like its normal-incident counterpart, this radar equation

is useful to compute the received power from arbitrary

subsurface scattering objects. In particular, this can be used

for off-nadir, cross-track subsurface targets after along-track

subsurface SAR focusing. These targets could be subsurface

ridges, once they have been identified, or arbitrary targets

used for radar system analysis when evaluating the effects of

subsurface cross-track clutter.

S2.5. Subsurface - Fresnel Zone - Spherical
Waves - Flat Surface - Flat Subsurface

Here we derive the radar equation for a subsurface Fresnel

zone target with flat surface and subsurface interfaces for

spherical wave incidence. The geometry is represented in

Figure S19. The equation is derived by integrating the surface

phase integral over the subsurface Fresnel zone.

The radar cross section for a subsurface disk at normal

incidence with spherical wave fronts under the Kirchhoff

approximation is

σdisk = Γ
4π|I|2

λ2εr
(S.126)

where λεr is the wavelength in the medium and the

reflectivity, Γ, is understood to apply to the subsurface

interface.

h
T2

dn

G

FZ

Fig. S19: Geometry for the subsurface Fresnel zone with
spherical waves and flat surface and flat subsurface.

The geometry is shown in Figure S20. The phase integral

over the subsurface target is

I =

∫ 2π

0

∫ a

0

ei2k(l1+nl2)ρdρdθ (S.127)

where ρ and θ are the integration variables over the subsurface

disk, l1 is the ray distance from the source to a refraction

point on the surface interface, l2 is the ray distance from the

refraction point to a subsurface interface, and k is the free-

space wavenumber. This expression integrates the two-way

electrical length l1 +nl2 over the subsurface target. The first

maximum of this phase integral is the first subsurface Fresnel

zone.
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h

r

qrf

d

l1

l2n

x

h’

Refraction 
Point

Subsurface

Surface

Fig. S20: Geometry for the subsurface Fresnel zone phase
integral for spherical waves and flat surface and flat
subsurface.

The distances l1 and l2 are functions of the integration

variable ρ and satisfy Snell’s law at the interface. For a sensor

at height, h, and interface at depth, d, then from the geometry

l21 = h2 + x2 (S.128)

l22 = d2 + (ρ− x)2 (S.129)

where x is the refraction point in the horizontal plane, yet

to be determined. The solution of x using Snell’s law is

nonlinear. To proceed, we use the same approximation as

before, where the source is replaced with an equivalent source

at height h′ = hn, such that the subsurface rays appear to

radiate from this source. From similar triangles, Figure S20,

x

ρ
=

h′

h′ + d
(S.130)

Solving for the refraction point

x = ρ
h

h+ d/n
(S.131)

then the ray distances are

l21 = h2 + ρ2b2 (S.132)

l22 = d2 + ρ2(1− b)2 (S.133)

b =
h

h+ d/n
(S.134)

or

l1 =
√
h2 + ρ2b2 (S.135)

l2 =
√
d2 + ρ2(1− b)2 (S.136)

The square roots must be approximated to complete the

integral. Assuming that h� ρb, and d� ρ(1−b), the square

roots are expanded with c
√

1 + x2/c2 ≈ c+ x2/2c

l1 ≈ h+
ρ2b2

2h
(S.137)

l2 ≈ d+
ρ2(1− b)2

2d
(S.138)

Substituting these into (S.127) and evaluating the θ

integral

I ≈ 2π

∫ a

0

ei2k(h+ρ
2b2/2h+n(d+ρ2(1−b)2/2d))ρdρ

(S.139)

= 2π

∫ a

0

ei2k(A+Bρ2)ρdρ (S.140)

where the constants reduce to

A = h+ nd (S.141)

B =
b2

2h
+
n(1− b)2

2d
(S.142)

=
1

2(h+ d/n)
(S.143)

The integral (S.140) is evaluated as

I = − 2πi

4kB
ei2kA

(
−1 + ei2ka

2B
)

(S.144)

The magnitude is

|I| = 2π

4kB

∣∣∣−1 + ei2ka
2B
∣∣∣ (S.145)

and the magnitude squared is

|I|2 =
4π2

(4kB)2

∣∣∣−1 + ei2ka
2B
∣∣∣2 (S.146)

=
4π2

(4kB)2

(
2− 2 cos

(
2ka2B

))
(S.147)

=
2π2(h+ d/n)2

k2

(
1− cos

(
ka2

h+ d/n

))
(S.148)

Equation (S.146) is maximized when

2ka2B = πm, m odd (S.149)

Evaluated at m = 1,

a2 = π/(2kB) (S.150)

=
π

2k
2(h+ d/n) (S.151)

=
λ

2
(h+ d/n) (S.152)

Therefore, the radius of the subsurface Fresnel zone

for flat surface interface and flat subsurface interface is,

approximately, (Peters and others, 2005),

rf ≈

√
λ

2

(
h+

d

n

)
(S.153)

This is analogous to the surface Fresnel zone with h →
h + d/n. Evaluating (S.148) at the subsurface Fresnel zone

radius, the magnitude squared of the phase integral is

|I|2 =
4π2(h+ d/n)2

k2
(S.154)

Using this in (S.126), the radar backscatter for the Fresnel

zone for a flat subsurface interface at depth d is

σεr (a = rf ) = Γ
4π|I|2

λ2εr
(S.155)

= Γ
4πn2

λ2
4π2(h+ d/n)2

k2
(S.156)

= Γ4πn2(h+ d/n)2 (S.157)
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Using (S.157) in the radar equation for arbitrary subsurface

targets at nadir, (S.98), the received power from the

subsurface Fresnel zone is

Pr =
PtGtGrλ

2T 2Γ4πn2(h+ d/n)2

(4π)3(h+ d)4
g4r
n2

(S.158)

Simplifying, the radar equation for the subsurface Fresnel

zone and spherical waves is

Pr =
PtGtGrλ

2T 2Γ

(4π)2(h+ d)2
g2r (S.159)

The constant in the denominator is the same as the

analogous expression for the surface Fresnel zone, with the

addition of the refraction gain and transmissivity.

For flat interfaces, this radar equation is recommended for

subsurface link budgets of Fresnel zone sized targets because

it includes spherical waves and refraction gain. Note, the

received power will be less than (S.159) if the target size

is larger or smaller than the Fresnel zone. Like its surface

counterpart, (S.28), this equation can be used if one wants

to compute the received power of a Fresnel zone sized target

after, for instance, along-track SAR focusing.

S2.6. Subsurface Fresnel Zone - Plane
Waves or ‘Antenna’ Approach - Flat
Surface - Flat Subsurface

This derivation is for a subsurface Fresnel zone using the

plane wave or ‘antenna’ approach. This is represented in

Figure S21. The backscatter for a disk in a medium of εr
with normal plane wave incidence is

σdisk = Γ
4πA2

λ2εr
(S.160)

where the surface phase integral reduces to the disk area.

h

T2

dn

G

FZ

Fig. S21: Geometry for the subsurface Fresnel zone and
plane wave incidence.

Using (S.153) for the Fresnel zone radius in the subsurface

through a flat surface interface, the backscatter from the

Fresnel zone in the medium is

σεr = Γ
4ππ2r4f

λ2εr
(S.161)

= Γ
4π

λ2εr
π2
λ2

4

(
h+

d

n

)2

(S.162)

= Γπ3n2(h+ d/n)2 (S.163)

Substituting this into (S.98)

Pr =
PtGtGrλ

2T 2Γπ3n2(h+ d/n)2

(4π)3(h+ d)4
(h+ d)4

(h+ d/n)4n2

(S.164)

=
PtGtGrλ

2T 2Γ

43(h+ d)2
(h+ d)2

(h+ d/n)2
(S.165)

Simplifying, the received power from a subsurface Fresnel

zone using the plane wave incidence is

Pr =
PtGtGrλ

2T 2Γ

43(h+ d)2
g2r (S.166)

This has the same denominator constant as the analogous

plane-wave case for Fresnel zone surface targets, Section S1.6.

It also has the same refractive gain as the image method,

because the same small angle approximation is used for the

height of the image sources as the one used to derive the

Fresnel zone radius.

S2.7. Subsurface Fresnel Zone - Spherical
Waves - Spherical Surface - Spherical
Subsurface

This is a derivation of the Fresnel zone and radar equation for

a spherical subsurface interface. This exercise is to understand

what approximations need to be made to arrive at analytic

expressions for this geometry.

The geometry is shown in Figure S22. The surface phase

integral of a spherical subsurface target at depth, d, through

a spherical surface with radius, r, is written in spherical

coordinates as

I =

∫ 2π

0

∫ β

0

ei2k(l1+nl2)(r − d)2 sin θdθdφ (S.167)

where l1 is the ray path lengths from the source to the

refraction point on the surface, and l2 is the ray path from the

refraction point to the integration point on the subsurface.

This has the same form as (S.127) but evaluated over the

sphere of the subsurface. The radius of the subsurface sphere

is r−d and β is the limit of the θ integration on the subsurface

sphere. Let α be the angle between the z-axis and the vector

from the center of the sphere to the refraction point at the

surface interface. From the law of cosines

l21 = r2 + (r + h)2 − 2r(r + h) cosα (S.168)

l22 = r2 + (r − d)2 − 2r(r − d) cos(θ − α) (S.169)
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h

q

l1

r

r-d

b

rf

x

y

z

a

d

s1

s2

l2n

Fig. S22: Geometry for the subsurface Fresnel zone with
spherical surface and spherical subsurface.

Let the arc lengths from the surface nadir point to the

transmission point, and from the subsurface nadir point to

the integration point be s1 and s2, respectively. Analogous to

the approximation made for refraction through a flat surface

with flat subsurface, we let the ratio of these two arc lengths

be equal to the same ratio as when the interfaces are parallel.

This applies when the radius of the sphere is large compared

to the sensor height and subsurface interface depth. The ratio

of the arc lengths is

s1
s2

=
rα

(r − d)θ
(S.170)

The arc lengths are approximated using the geometry in

Section S2.5 for an equivalent source over a flat interface,

(S.130), as

s1
s2
≈ h′

h′ + d
=

hn

hn+ d
=

h

h+ d/n
(S.171)

where h′ = hn is the height of the equivalent source over a

flat interface. Equating (S.170) and (S.171) we solve for α in

terms of the integration angle

α ≈ θ r − d
r

h

h+ d/n
(S.172)

Substituting this into l1 and l2

l1 =

√
r2 + (r + h)2 − 2r(r + h) cos

(
θ
r − d
r

h

h+ d/n

)
(S.173)

l2 =

√
r2 + (r − d)2 − 2r(r − d) cos

(
θ
d(hn+ r)

r(hn+ d)

)
(S.174)

Assuming θ is small, expanding first the cosine and then

the square root gives

l1 ≈ h+ θ2
hn2(d− r)2(r + h)

2r(d+ hn)2
(S.175)

l2 ≈ d+ θ2
d(r − d)(hn+ r)2

2r(d+ hn)2
(S.176)

Using these in the electrical path l1 + nl2 and collecting

terms

l1 + nl2 = A+Bθ2 (S.177)

where

A = h+ nd (S.178)

B =
hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2

2r(d+ hn)2

(S.179)

Substituting (S.177) into (S.167), approximating sin θ ≈ θ,
and evaluating the φ integral, the phase integral becomes

I ≈ 2π

∫ β

0

ei2k(A+Bθ2)(r − d)2θdθ (S.180)

which is evaluated as

I = −2π(r − d)2
1

4kB
ie2iAk(−1 + e2iβ

2Bk) (S.181)

The magnitude of the phase integral is

|I| = 2π(r − d)2
1

4kB

∣∣∣−1 + e2iβ
2Bk

∣∣∣ (S.182)

This is maximized when

2β2Bk = mπ (S.183)

Therefore, the integration limit that corresponds to the first

Fresnel zone on the subsurface interface is

β2 =
π

2kB
(S.184)

=
π

2k

2r(d+ hn)2

hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2
(S.185)

=
λ

2
(h+ d/n)

rn2(h+ d/n)

hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2

(S.186)

The Fresnel radius on the subsurface interface is the arc

length s = (r − d)β, or

rf =

√
λ

2
(h+ d/n)

nr(r − d)(h+ d/n)

hn(r − d)(r + h) + d(hn+ r)2

(S.187)

This is the same as the Fresnel zone radius for the flat

subsurface interface, (S.153), except with a correction factor
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for refraction through the spherical surface interface and

Fresnel zone of the spherical subsurface. Note, several versions

of this derivation were attempted and (S.187) best matched

the numerical solution for this Fresnel zone.

Checking the limits of (S.187). When r →∞,

rf =

√
λ

2
(h+ d/n)

r(r − d)2n2(h+ d/n)

hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2

(S.188)

=

√
λ

2
(h+ d/n)

r3n2(h+ d/n)

hn2r3 + ndr3
(S.189)

=

√
λ

2
(h+ d/n)

n2(h+ d/n)

hn2 + nd
(S.190)

=

√
λ

2
(h+ d/n) (S.191)

which is (S.153) for a flat interface. When d→ 0,

rf =

√
λ

2
(h+ d/n)

r(r − d)2n2(h+ d/n)

hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2

(S.192)

=

√
λ

2
h

r3n2h

hn2r2(r + h)
(S.193)

=

√
λ

2

rh

(r + h)
(S.194)

which is (S.46) for a spherical surface. When n→ 1

rf =

√
λ

2
(h+ d/n)

r(r − d)2n2(h+ d/n)

hn2(d− r)2(r + h) + nd(r − d)(hn+ r)2

(S.195)

=

√
λ

2
(h+ d)

r(r − d)2(h+ d)

h(d− r)2(r + h) + d(r − d)(h+ r)2
(S.196)

=

√
λ

2
(h+ d)

r(r − d)2(h+ d)

(h+ r)r(d+ h)(−d+ r)
(S.197)

=

√
λ

2

(r − d)(h+ d)

(h+ r)
(S.198)

=

√
λ

2

(r − d)(d+ h)

(h+ d+ r − d)
(S.199)

=

√
λ

2

r′h′

r′ + h′
(S.200)

which is (S.46) for a spherical interface and no medium,

where the sensor altitude is h′ = h + d and the body radius

is r′ = r − d.

The magnitude of the surface phase integral evaluated at

the Fresnel zone radius is

|I| = π(r − d)2
1

kB
(S.201)

=
π

k

2r(r − d)n(h+ d/n)2

hn(r − d)(r + h) + d(hn+ r)2
(S.202)

The magnitude squared of the surface phase integral is

|I|2 =
π2

k2

(
2r(r − d)n(h+ d/n)2

hn(r − d)(r + h) + d(hn+ r)2

)2

(S.203)

Substituting (S.203) into the backscatter of the subsurface

target, (S.126),

σεr = Γ
4π|I|2

λ2εr
(S.204)

= Γ
4πn2

λ2
π2

k2

(
2r(r − d)n(h+ d/n)2

hn(r − d)(r + h) + d(hn+ r)2

)2

(S.205)

= Γ4πn2(h+ d/n)2
(

r(r − d)n(h+ d/n)

hn(r − d)(r + h) + d(hn+ r)2

)2

(S.206)

Then using (S.206) in (S.98) for the arbitrary subsurface

target, the received power is

Pr =
PtGtGrλ

2T 2

(4π)3(h+ d)4
g4r
n2

Γ4πn2(h+ d/n)2

·
(

r(r − d)n(h+ d/n)

hn(r − d)(r + h) + d(hn+ r)2

)2

(S.207)

=
PtGtGrλ

2T 2Γ

(4π)2(h+ d)2
g2r

(r − d)2

((r − d) + (h+ d))2

·
(

r(r + h)n(h+ d/n)

hn(r − d)(r + h) + d(hn+ r)2

)2

(S.208)

The last step extracts the correction term for the spherical

subsurface.

Summary The radar equation for spherical incident

waves, spherical surface, spherical subsurface Fresnel zone,

including refraction through the spherical surface, is:

Pr =
PtGtGrλ

2T 2Γ

(4π)2(h+ d)2︸ ︷︷ ︸
1

g2r︸︷︷︸
2

(r − d)2

((r − d) + (h+ d))2︸ ︷︷ ︸
3

·
(

r(r + h)n(h+ d/n)

hn(r − d)(r + h) + d(hn+ r)2

)2

︸ ︷︷ ︸
4

(S.209)

This is composed of four parts and represented in Figure

S23:

1. Radar equation for a flat Fresnel zone target at h + d,

(S.28), with the addition of transmissivity.

2. Refraction gain through a flat surface, (S.75). This term

matters more when the altitude is low and the target is

deep.

3. Spherical surface correction (i.e., r2/(r + h)2, (S.57))

applied to a spherical subsurface with radius (r − d) and

sensor altitude (h + d). Of the terms 2, 3, and 4, this

term contributes the most loss, especially at high sensor

altitudes or large depths relative to the body radius.

4. Correction factor for the subsurface Fresnel zone that

includes the effects of spherical waves, refraction through

spherical surface, and Fresnel zone radius of the sub-

surface spherical target. This term contributes between

[0, -0.1] dB across a wide range of parameters and in

most cases can be ignored. More specifically, this term

contributes little if d� r (regardless of the value of h and

r) and is only significant when neither d � r nor h � d

are valid, for which the only related practical applications
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would be radar sounders orbiting comparatively small

objects, such as icy comets or asteroids, albeit spherical

in shape with spherical subsurface interfaces.

h

T2

dn
G

h

d
n

+

r-d

FZ
r

Fig. S23: Representation of the factors in Equation (S.209):
refraction-correction for the subsurface Fresnel zone and flat
surface refraction gain.

Ignoring the spherical subsurface correction factor, term

#4 in (S.209), the simplest radar equation which is

recommended for a Fresnel zone subsurface target with

spherical incident waves and spherical interfaces is

Pr =
PtGtGrλ

2T 2Γ

(4π)2(h+ d)2
g2r

(r − d)2

((r − d) + (h+ d))2
(S.210)

This emphasizes the fact that the spherical surface

correction is applied to a sphere with radius r− d and sensor

altitude h + d. Refraction is only captured by gr, which is

for a flat surface, and is not applied to the subsurface Fresnel

zone radius. This is represented in Figure S24.

A practical application in which to use (S.210) is in the case

of spherically idealized ice-ocean interfaces that are sounded

from orbit on Europa or Ganymede, where the interfaces are

assumed specular and equal in size to the Fresnel zone.

h
T2

d
n

G

FZ

h

d
n

+

r-d

Fig. S24: Representation of the factors in Equation
(S.210): uncorrected subsurface Fresnel zone and flat-surface
refraction gain.

S3. PULSE LIMITED

Here we derive the radar equations for pulse limited targets

and nadir incidence. The Fresnel zone is usually taken as

the limiting size for specular (flat and smooth) surfaces at

nadir, while the pulse limited area is used for rough surfaces

or off-nadir targets. The geometric fall-off of incoherent, pulse

limited targets goes as 1/R3, rather than the 1/R2 fall-

off for purely specular, Fresnel zone sized targets, (Haynes

and others, 2018), examples of which are real-aperture radar

(Ulaby and others, 2014) and ocean altimetry (Brown, 1977;

Hayne, 1980). The reason for this is that the backscatter of

specular targets is proportional to area squared, while the

backscatter of incoherent targets is only proportional to area.

These equations should be used for any surface or

subsurface interface where 1) the roughness is comparable

to the wavelength of the radar, 2) the backscatter can be

reasonably estimated or assumed, or 3) the topographic

variation within the antenna footprint at nadir is larger

than the range resolution, but the backscatter can still be

estimated within the range resolution cell. Depending on

the radar parameters, examples of these cases can include

crevassed ice, rough basal interfaces, and planetary surfaces

(e.g., Mars polar ice caps, Europa).

S3.1. Pulse Limited - Spherical Waves - Flat
Surface

For pulse-limited surface targets at normal incidence, one can

replace λ/2→ 2∆ρ in the Fresnel zone radius to arrive at the

pulse-limited radius, where ∆ρ is the range resolution of the

radar. See Figure S25. This is demonstrated by comparing

the pulse limited radius to the Fresnel zone radius as:

rp =
√

(h+ ∆ρ)2 − h2 (S.211)

≈
√

2∆ρh (S.212)

hh + Dr

rp

so

Fig. S25: Geometry for the pulse limited target.

Note, the pulse limited radius is always larger than the

Fresnel zone (assuming that the maximum bandwidth of the

radar is no greater than twice the center frequency). Using

this to compute the area of a disk in the radar equation for

incoherent targets, (S.2), gives

Pr =
PtGtGrλ

2σo∆ρ

25π2h3
(S.213)

Equation (S.213) shows the well known 1/R3 geometric

fall-off for incoherent targets. A similar form can be found in
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(Haynes and others, 2018; Moore and Williams, 1957) as well

as (Ulaby and others, 2014, Eq. 14.6) for side-looking real

aperture radar. This equation assumes that the normalized

backscatter, σo, which is in general a function of incident

angle, is constant over the disk or, equivalently, that the

average backscatter is used. More complete expressions that

integrate the backscatter and antenna gain as a function

of incident angle are found throughout the literature, some

examples are (Ulaby and others, 2014; Fung and Eom, 1983;

Moore and Williams, 1957; Hayne, 1980).

S3.2. Pulse Limited - Spherical Waves -
Spherical Surface

The pulse limited radius over a spherical surface for normal

incidence is found substituting λ/2→ 2∆ρ into (S.46),

rp ≈
√

2∆ρhr

(h+ r)
(S.214)

See Figure S26. Using this to compute the area of a target

with circular area in (S.2) we get

Pr =
PtGtGrλ

2σo∆ρ

25π2h3
r

h+ r
(S.215)

which is similar to (S.213) with a correction for the spherical

surface and incoherent targets. Just as the geometric fall-off

goes a 1/R3 for incoherent targets, there is only one factor of

the spherical correction, r/(h + r), in contrast to (S.56) for

fully coherent Fresnel zone which is multiplied by the square

of the correction term. This radar equation is applicable

to surface scattering in planetary radar sounding where the

altitude of operation is comparable to the body radius.

h

r r

rp

x
y

z

h + Dr

Fig. S26: Geometry for the pulse limited target.

S3.3. Pulse Limited - Spherical Waves - Flat
Surface - Flat Subsurface

The pulse limited area for a flat subsurface is found by

substituting λ/2 → 2∆ρ into the Fresnel zone for a flat

subsurface, (S.153),

rp =

√
2∆ρ

(
h+

d

n

)
(S.216)

See Figure S27. Using σεr = σo,εrA, where σo,εr is the

normalized radar backscatter in the subsurface medium, and

A is the area of disk, the backscatter of the pulse limited area

in the medium is

σεr = σo,εrπ2∆ρ

(
h+

d

n

)
(S.217)

Substituting this into the general subsurface radar equa-

tion, (S.98),

Pr =
PtGtGrλ

2T 2σo,εrA

(4π)3(h+ d)4
g4r
n2

(S.218)

=
PtGtGrλ

2T 2σo,εr
25π2(h+ d)4

∆ρ

(
h+

d

n

)
g4r
n2

(S.219)

Therefore, the radar equation for a pulse limited subsurface

incoherent target is

Pr =
PtGtGrλ

2T 2

25π2(h+ d)3
g3r
σo,εr∆ρ

n2
(S.220)

This falls off as (h+d)3 and is proportional to the refraction

gain cubed. This radar equation is applicable to rough

subsurface interfaces, especially in airborne radar sounder if

the ice and basal interfaces are assumed to be flat and parallel.

h

d
n

rp

T2

so,er

Fig. S27: Geometry for a subsurface pulse limited target.

S3.4. Pulse Limited - Spherical Waves - Flat
Surface - Spherical Subsurface

Similar to (S.210), we can approximate the effects of the

spherical subsurface by simply evaluating the spherical

surface correction at the subsurface. Multiplying (S.220) by

the spherical surface correction in (S.215) evaluated at r →
r − d and h → h + d, the radar equation for pulse-limited

spherical subsurface is

Pr =
PtGtGrλ

2T 2

25π2(h+ d)3
g3r
σo,εr∆ρ

n2
(r − d)

(h+ d) + (r − d)

(S.221)

which uses the refraction gain through a flat interface. This

is represented in Figure S28. Note, refraction is not used to

correct the pulse limited area.

This radar equation is applicable when the sensor altitude

is comparable to the body radius and a spherical subsurface is

assumed and the correction factor needed. Examples include

spherically idealized ice-ocean interfaces that are sounded

from orbit on Europa or Ganymede assuming the interfaces

are rough.
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h

d
n

h

dn

+

rp

T2

so,er

r

Fig. S28: Representation of the factors in Equation (S.221):
spherical subsurface correction and flat surface refraction
gain.

S4. PASSIVE SOUNDING

In passive radar sounding, natural or astronomical sources

of low frequency radio noise (e.g., HF or VHF) are used

in place of a transmitted incident field (Cecconi and others,

2012; Romero-Wolf and others, 2015; Schroeder and others,

2016; Peters and others, 2018). The radar simultaneously

records the direct signal as it passes the radar and the

same signal reflected from the target shifted in time. Range

compression is accomplished by autocorrelating the digitized

waveform which reveals a peak for both the direct and

the reflected signals. Radar equations for this geometry are

changed significantly by the fact that the wavefront of the

radio noise is planar and constant when it incidents both the

radar and the target. The following derivations give radar

equations and Fresnel zones for passive sounding geometries.

S4.1. Passive Radar Equations

In passive sounding, the same plane wave that passes the

instrument is incident on the target. The radar equations for

the direct and reflected signals are

Pd =
SGdλ

2

4π
(S.222)

Pr =
SGrλ

2σ

(4π)2R2
(S.223)

where S is the power density of the plane wave, Gd and Gr
are the gain of the antenna towards the source and the target,

respectively. This is represented in Figure S29.

R

Fig. S29: Geometry for the general passive sounding radar
equations.

Derivation

Let the power density of the incident field as it passes the

receiver be S. The received power of the direct signal is then

Pd = SAd (S.224)

where Ad is the effective aperture of antenna while receiving

the direct signal. The power density incident on the target is

also S. The power intercepted by the target is

Pi = Sσ (S.225)

This is reradiated with power density

Sr =
Pi

4πR2
(S.226)

The power intercepted by the receive antenna is as before

Pr = SrAr (S.227)

where Ar is the effective aperture of the antenna in the

direction of the target. Putting these together, the power

received from the target is then

Pr =
SGrλ

2σ

(4π)2R2
(S.228)

This shows that the power fall-off in passive sounding goes

as R2 rather than R4.

S4.2. Passive - Fresnel Zone - Normal Plane
Wave Incidence - Spherical Scattering
- Flat Surface

In passive sounding, the incident field is a plane wave, but

the waves scattered from the target are spherical. For Fresnel

zone scattering, the surface phase integral is computed using

the one-way phase over a disk. See Figure S30. The one-way

phase integral for a normal incidence plane wave over a flat

surface disk is

I =

∫ 2π

0

∫ a

0

eik
√
h2+ρ2ρdρdθ (S.229)

where h is the height of the receiver above the surface. The

integration will be identical to the Fresnel zone derivation for

the active case over a flat surface with k → k/2, or λ → 2λ.

Therefore, the Fresnel zone radius for normal incident passive

sounding when h� λ is

rf =
√
λh (S.230)

=

√
λ

2
(2h) (S.231)
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which is the same result as the Fresnel zone for the active

case with h → 2h. In other words, the passive sounder

receiver appears to be at twice the height compared to the

active sounding source when determining the Fresnel zone

radius. Alternatively, the Fresnel zone boundary is a distance

of h + λ/2 from the receiver. Equation (S.230) appears in

(Schroeder and others, 2016).

hh + l/2

r
qrf

Fig. S30: Geometry for the general passive sounding radar
equations.

The magnitude squared of the surface phase integral

evaluated at the passive sounding Fresnel zone radius is, using

(S.26),

|I|2 =
16π2

k2
h2 (S.232)

The backscatter for the disk is again, (S.10),

σdisk = Γ
4π|I|2

λ2
(S.233)

Using (S.232) gives

σdisk(a = rf ) = 16πΓh2 (S.234)

Then using (S.234) in (S.223), with R = h, the radar

equation for the reflected passive signal over the Fresnel zone

for normal incidence and flat surface is

Pr =
SGrλ

2Γ

π
(S.235)

This does not depend on altitude and has therefore reduced

to the equivalent of a 1D scattering problem, so long as the

target being considered is always Fresnel zone sized.

S4.3. Passive - Fresnel Zone - Normal Plane
Wave Incidence - Plane Wave
Scattering - Flat Surface

Using the normal incident passive sounding Fresnel zone,

(S.231), in the equation for the backscatter for plane wave

incidence, (S.11), the backscatter assuming plane wave

scattering at the target (i.e., without considering the surface

phase integral to the receiver) is

σdisk = Γ
4πA2

λ2
(S.236)

= Γ
4π(πλh)2

λ2
(S.237)

Using this in (S.223), the power received is

Pr =
SGrλ

2

(4π)2h2
Γ

4π(πλh)2

λ2
(S.238)

Simplifying, the radar equation for the passive sounding

reflected signal over the Fresnel zone for flat surface, normal

incidence and plane wave scattering at the target is

Pr =
SGrλ

2Γπ

4
(S.239)

which predicts a receive power larger than that for spherical

wave scattering (previous section) by a factor of π2/4 ≈ 4

dB. This is exactly analogous to the active case, where

the backscatter expression for plane-waves over-predicts the

received power compared to the derivation with spherical

waves. With no dependence on range, this has also reduced to

a 1D scattering problem. This is represented in Figure S31.

FZ

h

G

Fig. S31: Passive sounding over flat surface Fresnel zone
with normal incidence and plane wave scattering.

S4.4. Passive - Fresnel Zone - Normal Plane
Wave Incidence - Spherical Scattering
- Spherical Surface

Here we derive the Fresnel zone and radar equation for passive

sounding over a spherical surface and normal incidence plane

wave using the surface phase integral. The geometry is shown

in Figure S32. Let the sensor be aligned with the z-axis. The

two-way phase consists of the one-way phase between the

sensor and the spherical surface plus the one-way phase from

a reference plane of the incident plane wave to the spherical

surface. Because the incident wave is planar, a constant offset

of the reference plane will not affect the results. Therefore,

the plane wave reference plane is chosen to be tangent to

the spherical surface at the nadir point. The one-way phase

contribution of the incident plane wave is the distance from

this reference plane to the spherical surface. The two-way

phase integral is given by

I =

∫ 2π

0

∫ β

0

eik(D1(θ,φ)+D2(θ,φ))r2 sin θdθdφ (S.240)

where

D1 = |s− x| (S.241)

s = (r + h)ẑ (S.242)

x = rr̂ (S.243)

= r(sin θ cosφx̂+ sin θ sinφŷ + cos θẑ) (S.244)

D2 = r − r cos θ (S.245)

and s is the vector to the receiver position along the z axis,

r is the radius of the sphere, h is the height of the receiver
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above the sphere, x is the integration point on the sphere,

D1 is the distance from the receiver to the integration point,

D2 is the distance from the plane wave reference plane that

is tangent to the sphere at nadir to the spherical surface, and

β is the integration limit.

h

q

D1

r r

b

rf

x

y

z

x

s

D2

Fig. S32: Passive sounding over a spherical surface Fresnel
zone with normal incidence and plane wave scattering.

Similar to the active case, for small integration angles

D1 =
√
r2 + (r + h)2 − 2r(r + h) cos θ (S.246)

≈ h+
(hr + r2)

2h
θ2 (S.247)

Also,

D2 ≈ r − r(1− θ2/2) (S.248)

= r
θ2

2
(S.249)

Approximating the differential element as sin θ ≈ θ, the

integral is

I ≈ 2π

∫ β

0

eik(h+
(hr+r2)

2h θ2)+ikrθ2/2r2θdθ (S.250)

= 2πr2eikh
∫ β

0

eiBθ
2

θdθ (S.251)

B = k

(
hr + r2

2h
+
r

2

)
(S.252)

=
k(2hr + r2)

2h
(S.253)

The integral is evaluated as

I = 2πr2
i(eiβ

2B − 1)

2B
(S.254)

The magnitude squared is

|I|2 =

(
2πr2

2B

)2 ∣∣∣eiβ2B − 1
∣∣∣2 (S.255)

This is maximized when

β2B = mπ (S.256)

For m = 1, the integration limit for the first Fresnel zone is

β =

√
π2h

k(2hr + r2)
(S.257)

=

√
λ

2

2h

2hr + r2
(S.258)

The Fresnel zone radius is taken as the arc length along

the surface, rf = rβ, or

rf =

√
λ

2

(2h)r

(2h) + r
(S.259)

This is the same result as the Fresnel zone for the active

case with h → 2h. Again, the sensor appears at twice

the height compared to the active sounding case when

determining the Fresnel zone radius.

At the Fresnel zone, the magnitude squared of the phase

integral is

|I|2 =
4π2

k2
(2h)2r2

(2h+ r)2
(S.260)

This is same result as for active sounding over a spherical

surface except with h → 2h. Using the backscatter for the

disk, (S.10),

σdisk = Γ
4π|I|2

λ2
(S.261)

we get

σdisk = Γ
4π

λ2
4π2

k2
(2h)2r2

(2h+ r)2
(S.262)

= Γ4π
(2h)2r2

(2h+ r)2
(S.263)

Substituting (S.263) into the passive sounding radar

equation for the reflected signal, (S.223), the power received

is

Pr =
SGrλ

2

(4π)2h2
Γ4π

(2h)2r2

(2h+ r)2
(S.264)

After simplifying, the radar equation for the passive

sounding reflected signal of a Fresnel zone over a spherical

surface and normal incidence plane wave is

Pr =
SGrλ

2Γ

π

r2

(2h+ r)2
(S.265)

The geometric factor is the same as that in (Romero-Wolf

and others, 2015).

This radar equation should be used when passive sounding

is used to investigate a surface and the experiment is

conducted in a nadir geometry from an orbiter where the

sensor altitude is comparable to the body radius.
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S4.5. Passive - Fresnel Zone - Off-nadir
Plane Wave Incidence - Spherical
Scattering - Flat Surface

Here we derive the Fresnel zone radar equation for the passive

sounding receiver over a flat surface with off-nadir wave

incidence. The scattering is specular, so the incidence angle is

equal to the reflected angle. The incident field on the surface

is a plane wave, but we will use the surface phase integral to

compute the scattered wave to the receiver over the Fresnel

zone. This geometry, represented in Figure S33, is similar to

the bi-static geometry for flat surface and spherical waves,

Section S5.6.

FZ

G

R

Fig. S33: Representation of passive sounding Fresnel zone
with off-nadir incidence.

The Fresnel zone for this geometry is an ellipse with

parameters given by (S.296) and (S.297) in the limit when

the range of the source or receiver goes to infinity. Let R be

the distance from the receiver to the specular point, then the

Fresnel zone ellipse parameters are

a2 =
b2

cos2 θi
(S.266)

b2 = λR (S.267)

The one-way surface phase integral, computed over the

Fresnel zone to the receiver, will be the same as (S.330) in

Section S5.6 except it will only integrate the vector to the

receiver. The result will be (S.352) in the limit that one of

the ranges goes to infinity with the other equal to R:

|I|2 =
4λ2

cos2 θi
R2 (S.268)

Using this in (S.328), the target cross section in the

specular direction is

σ = Γ
4π

λ2
cos2 θi|I|2 (S.269)

= Γ42πR2 (S.270)

Substituting this into (S.223), the radar equation for

the passive receiver, Fresnel zone, off-nadir incidence, and

spherical wave scattering is

Pr =
SGrλ

2Γ

π
(S.271)

Which is exactly the same as for the normal incidence,

Fresnel zone, (S.235). There are two reasons for this. First,

because the incident wave is planar and the surface is flat,

the incident wave is the same everywhere and so appears

to originate from underneath the surface as a plane wave.

Second, the area of the Fresnel zone grows with increasing

distance to perfectly compensate the range dependence of the

scattered field. Therefore, whether the geometry is nadir or

off-nadir, the received power is the same and does not depend

on range to the target.

S5. BISTATIC

In this section we derive radar equations for general bistatic

geometries. These are included for reference and because they

provide generalizations for the radar equations and Fresnel

zone that reduce to those for the simpler geometries in the

previous sections. There are many practical applications of

bistatic radar, though most are not in the field of low-

frequency radar sounding. Examples include using GPS

signals of opportunity for terrestrial remote sensing (Hajj

and Zuffada, 2003), or investigating surface scattering of

the Moon using a combination of orbiting and ground-based

radar systems (Patterson and others, 2017).

S5.1. Bistatic Radar Equation

The bistatic radar equation is, (Ulaby and others, 2014; Hajj

and Zuffada, 2003),

Pr =
PtGtGrλ

2σ

(4π)3r21r
2
2

(S.272)

where Pr is the received power, Pt is the transmit power,

Gt and Gr are the transmit and receive antenna gains

respectively, r1 is the distance to the target from the

transmitter, and r2 is the distance to the target from the

receiver. See Figure S34. Gt, Gr, and σ are functions of

incident direction, scattering direction, and polarization.

Simply put, this is the same as the basic radar equation, (S.1),

with the R4 geometric spreading split so that one factor of R2

applies to the source and one factor applies to the receiver.

r2
r1

Fig. S34: Geometry for the general bistatic radar equation.

Derivation

The power density of the signal from the transmitter is

St =
PtGt

4πr21
(S.273)

The power intercepted by the target is Pi = Stσ. This is

reradiated from the target to the receiver with power density

Sr =
Pi

4πr22
(S.274)

The power intercepted by the receive antenna is

Pr = SrAr (S.275)

Putting these together gives (S.272).
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S5.2. Bistatic - Image Method - Spherical
Waves - Flat Surface

Here we derive the bistatic radar equation over a flat surface

using the image method. Similar to S1.2, the half-space is

replaced with an image source reflected over the interface.

The geometry is shown in Figure S35. Let r1 and r2 be the

distances from the source and receiver to the specular point.

The power density at the receiver due to the image source is

Sr =
PtGt

4π(r1 + r2)2
(S.276)

The power received is then

Pr = SrAr (S.277)

where Ar is the effective aperture of the receiver. After

including a factor of reflectivity, Γ, the power received is

Pr =
PtGtGrλ

2Γ

(4π)2(r1 + r2)2
(S.278)

This appears in (Ulaby and others, 2014; Carreno-Luengo

and others, 2018). When r1 = r2 = h, (S.278) reduces to the

radar equation for the image method at normal incidence,

(S.9).

r2r1
G

Fig. S35: Geometry for the bistatic radar equation under
the image method.

S5.3. Bistatic Fresnel Zone Ellipse - Flat
Surface

The bistatic Fresnel zone is the region over which the phase

between a source and receiver in a specular geometry has

changed less than λ/2. Specular geometry implies 1) the

incident and scattered angles are equal (Snell’s law), 2) the

source and receiver lie in a plane, 3) the source and receiver

are allowed to be at different distances. The bistatic Fresnel

zone is derived by solving for the contour that describes the

boundary of the Fresnel zone over a flat surface.

The geometry is shown in Figure S36. The surface is the

XY plane, the specular point is the origin, and the source

and receiver lie in the XZ plane at locations

r1 = r1 (sin θix̂+ cos θiẑ) (S.279)

r2 = r2 (− sin θix̂+ cos θiẑ) (S.280)

where θi is the incidence angle measured from the z axis. A

point in the plane is given generally as

x = xx̂+ yŷ (S.281)

a

r1

r2

b

x

yqiqi

r1x

r2x

z

x

r1 + r2 + l/2

Fig. S36: Geometry for the bistatic Fresnel zone ellipse for
a flat surface.

The total distance measured between the source and

receiver relative to the origin is t1 = r1 + r2. While the

distance between the source and receiver through a point in

the plane is t2 = r1x + r2x. The Fresnel condition is

t2 − t1 = λ/2 (S.282)

where this is the difference in the total paths of the specular

point and any point in the plane. Substituting

r1x + r2x − (r1 + r2) = λ/2 (S.283)

The magnitude of the vector from the source to a point in

the plane is

r1x = |r1 − x| (S.284)

=
[
(r1 sin θi − x)2 + y2 + r21 cos2 θi

]1/2
(S.285)

=
[
r21 sin2 θi − 2r1x sin θi + x2 + y2 + r21 cos2 θi

]1/2
(S.286)

=
[
r21 − 2r1x sin θi + x2 + y2

]1/2
(S.287)

Likewise for the receiver

r2x = |r2 − x| (S.288)

=
[
(−r2 sin θi − x)2 + y2 + r22 cos2 θi

]1/2
(S.289)

=
[
r22 + 2r2x sin θi + x2 + y2

]1/2
(S.290)

Assuming r1 and r2 are large compared to the coordinates

x and y, the square root in (S.287) and (S.290) is

approximated with[
1 +A/w +B/w2

]1/2
≈ 1 +

A

2w
+

4B −A2

8w2
+ ... (S.291)

which is kept to second order to preserve x2 and y2. Then

r1x ≈ r1 − x sin θi +
x2(1− sin2 θi) + y2

2r1
(S.292)

r2x ≈ r2 + x sin θi +
x2(1− sin2 θi) + y2

2r2
(S.293)
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Substituting these into (S.283), the radial and linear terms

cancel giving the following equation

x2 cos2 θi + y2

2r1
+
x2 cos2 θi + y2

2r2
=
λ

2
(S.294)

This is an ellipse

x2

a2
+
y2

b2
= 1 (S.295)

with parameters

a2 =
b2

cos2 θi
(S.296)

b2 =
λr1r2
r1 + r2

(S.297)

This ellipse approximates the Fresnel zone boundary. Note

a ≥ b so the ellipse is oriented lengthwise between the source

and receiver. Equations (S.296) and (S.297) are equivalent to

the ellipse parameters given in (Hajj and Zuffada, 2003). The

eccentricity is

e =

√
1− b2

a2
(S.298)

=
√

1− cos2 θi (S.299)

= sin θi (S.300)

The area of an ellipse is A = πab, therefore the area of the

bistatic Fresnel zone is

A =
π

cos θi

λr1r2
r1 + r2

(S.301)

For normal incidence, θi = 0, the boundary is a circle and

the Fresnel zone radius for two sensors at different altitudes

at nadir over a flat surface is

rf =

√
λh1h2
h1 + h2

(S.302)

This appears in (Schroeder and others, 2016). When h1 =

h2 = h this becomes the usual rf =
√
λh/2.

S5.4. Bistatic Fresnel Zone Ellipse -
Spherical Surface

Here we derive a curve that approximates the boundary of

the Fresnel zone over a spherical surface having radius r. The

geometry is shown in Figure S37. As before, the source and

receiver lie in the XZ plane. The origin is the specular point

on the surface of the sphere, where the sphere is centered at

z = −r. The source and receiver are at locations

r1 = r1 sin θix̂+ r1 cos θiẑ (S.303)

r2 = −r2 sin θix̂+ r2 cos θiẑ (S.304)

where θi is the incidence angle measured from the z axis. A

point on the sphere satisfies

x2 + y2 + (z + r)2 = r2 (S.305)

so that the vector from the origin to a point on the upper

half of the sphere can be written

x = xx̂+ yŷ + zẑ (S.306)

= xx̂+ yŷ + (
√
r2 − x2 − y2 − r)ẑ (S.307)

As with the flat surface, the total distance measured

between the source and receiver relative to the specular point

is t1 = r1 + r2. While the distance between the source and

receiver through a point on the sphere is t2 = r1s + r2s. The

Fresnel condition is again

t2 − t1 = λ/2 (S.308)

where the two-way difference in distance is λ/2 between the

specular point and the Fresnel boundary. Substituting

r1s + r2s − (r1 + r2) = λ/2 (S.309)

a

r1

r2

b

qiqi

r1s

r2s

z

x

r1 + r2 + l/2
x

y

r

True Fresnel Zone

Approximate 
Fresnel Zone

Fig. S37: Geometry for the bistatic Fresnel zone ellipse over
a spherical surface. The ellipse is a planar approximation of
the actual Fresnel zone over the sphere.

The magnitude of the vector from the source to the sphere

is

r1s = |r1 − x| (S.310)

=
[
(r1 sin θi − x)2 + y2+

(r1 cos θi + r −
√
r2 − x2 − y2)2

]1/2
(S.311)

=
[
r21 − 2r1x sin θi + 2r1r cos θi

−2r1 cos θi
√
r2 − x2 − y2

+2r2 − 2r
√
r2 − x2 − y2

]1/2
(S.312)

Assuming r � x, y, the square roots are expanded as√
1− x = 1− x/2 + ..., which simplifies to

r1s ≈
[
r21 − 2r1x sin θi + (1 +

r1
r

cos θi)(x
2 + y2)

]1/2
(S.313)
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which is the same for r2s with + on the linear term.

Assuming that r1 and r2 are large compared to the

coordinates x and y, and using (S.291),

r1s = r1

[
1− 2x sin θi

r1
+

1

r21
(1 +

r1
r

cos θi)(x
2 + y2)

]1/2
(S.314)

≈ r1 − x sin θi +
(1 +

r1
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r1
(S.315)

Likewise for r2s except + on the linear term:

r2s ≈ r1 + x sin θi +
(1 +

r1
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r1
(S.316)

Substituting into the Fresnel condition, (S.309), the radial

and linear terms cancel giving the following equation

(1 +
r1
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r1

+
(1 +

r2
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r2
=
λ

2
(S.317)

Rearranged as the equation for an ellipse

x2

a2
+
y2

b2
= 1 (S.318)

with parameters

a2 =

[
r1 + r2
λr1r2

cos2 θi +
2

λr
cos θi

]−1
(S.319)

b2 =

[
r1 + r2
λr1r2

+
2

λr
cos θi

]−1
(S.320)

This ellipse approximates the Fresnel zone boundary. It is

not the actual shape of the Fresnel zone contour, because

a planar cut through the sphere must be a circle. Instead,

this is a slightly smaller ellipse compared to the flat surface

case which approximates the Fresnel contour on the sphere.

In addition, the approximation will be progressively worse

for wider incidence angles (e.g., grazing), when the x and y

extents of the Fresnel zone become large fractions of the body

radius and violate the conditions of the expansions above.

The ellipse is still oriented with its semi-major axis in the

plane of the source and receiver. The eccentricity is

e =

√
1− b2

a2
(S.321)

= sin θi

[
1 +

r1r2
r1 + r2

2

r
cos θi

]−1/2
(S.322)

which shows that the Fresnel zone is slightly smaller than

that for a flat surface, (S.300).

Note, the Fresnel zone for every surface geometry (e.g.,

monostatic/bistatic, active/passive, flat/curved surfaces) can

be derived from (S.319) and (S.320) with appropriate limits.

For example, for two sensors at normal incidence, θi = 0, and

different altitudes, r1 = h1, r2 = h2, over a spherical surface

the boundary is a circle with

a2 = b2 =

[
h1 + h2
λh1h2

+
2

λr

]−1
(S.323)

=
λrh1h2

r(h1 + h2) + 2h1h2
(S.324)

(S.325)

Then the Fresnel zone radius is

rf =

√
λrh1h2

r(h1 + h2) + 2h1h2
(S.326)

This reduces to the usual expression for the Fresnel zone

radius over a spherical surface when h1 = h2 = h,

rf =

√
λrh

2(r + h)
(S.327)

S5.5. Target Specular Scatter

The radar cross section for specular scattering under the

Kirchhoff approximation is

σ = Γ
4π

λ2
cos2 θi|I|2 (S.328)

where θi is the incident and reflected angle, Γ is the

reflectivity evaluated at θi, and |I|2 is the magnitude squared

of the surface phase integral for spherical incident waves. The

reflectivity is also polarization dependent.

For plane wave incidence and specular scattering, the

magnitude squared of the surface phase integral reduces to

the area squared:

σ = Γ
4π

λ2
cos2 θiA

2 (S.329)

S5.6. Bistatic - Fresnel Zone - Spherical
Waves - Flat Surface

Here we derive the radar equation for bistatic scattering from

the Fresnel zone for a spherical wave incidence on a flat

surface. This is represented in Figure S38. The geometry and

variables are the same as those given in S5.3. Even though

we derived the Fresnel zone previously, starting from the

surface phase integral allows us to 1) confirm the previous

result, 2) derive the correct multiplying constants in the radar

equation.

FZ

r2r1

G

Fig. S38: Bistatic Fresnel zone with spherical wave
incidence.
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The geometry is shown in Figure S39. The surface phase

integral is

I =

∫
eik(r1x+r2x)dS (S.330)

where r1x and r2x are the distances from the source

and receiver to a point on the flat surface. Using the

large argument approximations for the distance between the

source/surface and receiver/surface, (S.292) and (S.293), the

sum in the exponent is

r1x + r2x ≈ r1 + r2 +
x2 cos2 θi + y2

2r1
+
x2 cos2 θi + y2

2r2
(S.331)

= r1 + r2 + x2 cos2 θi
r1 + r2
2r1r2

+ y2
r1 + r2
2r1r2

(S.332)

where r1 and r2 are the distances from the source and receiver

to the center of the Fresnel zone.

r
f

a

r1
r2

b

r1x

r2x

qiqi

x

y

z

Fig. S39: Geometry for the bistatic Fresnel zone ellipse with
spherical wave incidence.

Assuming the area to be an ellipse,

x2

a2
+
y2

b2
= 1 (S.333)

the integral is parameterized as

x = aρ cosφ (S.334)

y = bρ sinφ (S.335)

with surface element dS = abρdρdφ, so that

I =

∫ 2π

0

∫ 1

0

eik(r1x+r2x)abρdρdφ (S.336)

Substituting

r1x + r2x ≈ r1 + r2 + a2ρ2 cos2 φ cos2 θi
r1 + r2
2r1r2

+b2ρ2 sin2 φ
r1 + r2
2r1r2

(S.337)

The integral can then be written

I = abeik(r1+r2)
∫ 2π

0

∫ 1

0

ei(Aρ
2 cos2 φ+Bρ2 sin2 φ)ρdρdφ

(S.338)

where

A = ka2 cos2 θi
r1 + r2
2r1r2

(S.339)

B = kb2
r1 + r2
2r1r2

(S.340)

Using the identity:∫ 2π

0

eu cos2 φ+v sin2 φdφ = 2πe(u+v)/2I0

(
u− v

2

)
(S.341)

(S.338) becomes

I = 2πabeik(r1+r2)
∫ 1

0

eiρ
2(A+B)/2I0

(
iρ2(A−B)

2

)
ρdρ

(S.342)

which does not have a solution. To continue, if r1 � 1 and

r2 � 1, the argument of the Bessel function is small. Using

I0(x→ 0) ≈ 1, the integral is approximated as

I ≈ 2πabeik(r1+r2)
∫ 1

0

eiρ
2(A+B)/2ρdρ (S.343)

Using ∫ 1

0

eicx
2

xdx =
i(1− eic)

2c
(S.344)

(S.343) is evaluated as

I = 2πabeik(r1+r2)
i
(

1− ei(A+B)/2
)

A+B
(S.345)

The magnitude is

|I| = 2πab

A+B

∣∣∣1− ei(A+B)/2
∣∣∣ (S.346)

The magnitude is maximized when

A+B

2
= mπ (S.347)

For m = 1, we have

ka2 cos2 θi
r1 + r2
4r1r2

+ kb2
r1 + r2
4r1r2

= π (S.348)

Which is satisfied for ellipse parameters

a2 =
b2

cos2 θi
(S.349)

b2 =
λr1r2
r1 + r2

(S.350)

which are the same as (S.296) and (S.297). Using these in

(S.346), the magnitude squared of the surface phase integral

is

|I|2 =
42π2a2b2

(A+B)2
(S.351)

=
4

cos2 θi

λ2r21r
2
2

(r1 + r2)2
(S.352)
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Using this in (S.328), the target cross section in the

specular direction is

σ = Γ
4π

λ2
cos2 θi|I|2 (S.353)

= Γ42π
r21r

2
2

(r1 + r2)2
(S.354)

Substituting this into (S.272), the radar equation for

bistatic geometry, Fresnel zone, spherical waves, and flat

interface is

Pr =
PtGtGrλ

2Γ

4π2(r1 + r2)2
(S.355)

When the source and receiver are collocated at r1 = r2 = h,

this reduces to (S.28). This is the same as (S.278) except for

a difference of a factor of 4 in the denominator, which, like its

normal-incidence counterparts, this difference comes from the

integration of spherical waves over the Fresnel zone instead

of assuming plane waves incidence at the target.

S5.7. Bistatic - Fresnel Zone - Plane Waves
- Flat Surface

For a bistatic geometry over a flat surface, the Fresnel zone

is an ellipse with area A = πab having parameters (S.296)

and (S.297). Assuming plane wave incidence at the surface,

then using these in (S.329), the scattering cross section in the

specular direction is

σ = Γ
4π

λ2
cos2 θi(πab)

2 (S.356)

= Γ4π3
(

r1r2
r1 + r2

)2

(S.357)

Using this in (S.272), the radar equation for specular

bistatic geometry, Fresnel zone, flat surface, and plane wave

incidence is

Pr =
PtGtGrλ

2Γ

42(r1 + r2)2
(S.358)

This is represented in Figure S40. When the source and

receiver are co-located above the surface at a distance r1 =

r2 = h, then (S.358) reduces to the radar equation from the

‘antenna’ approach, Section S1.6, (S.60).

FZ

r2
r1

G

Fig. S40: Geometry for the bistatic Fresnel zone area with
plane wave incidence.

S5.8. Bistatic - Fresnel Zone - Spherical
Waves - Spherical Surface

The derivation for the radar equation for the bistatic Fresnel

zone over a spherical surface using the surface phase integral

for spherical wave incidence follows that for the flat surface in

Section S5.6. We already have an expression for the bistatic

Fresnel zone ellipse for spherical surface under large argument

approximations derived in Section S5.4. We will make use of

both sections. As before, the purpose of using the surface

phase integral is derive the correct multiplying constants in

the radar equation.

The geometry is shown in Figure S41. The surface phase

integral is

I =

∫
eik(r1s+r2s)dS (S.359)

where r1s and r2s are the distances from the source and

receiver to the spherical surface as described in Section S5.4.

When the radius of the sphere is large compared to the size

of the Fresnel zone, the sum in the exponent is approximated

as

r1s + r2s ≈ r1 + r2 +
(1 +

r1
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r1

+
(1 +

r2
r

cos θi)(x
2 + y2)− x2 sin2 θi

2r2
(S.360)

= r1 + r2 +

(
r1 + r2
2r1r2

cos2 θi +
cos θi
r

)
x2

+

(
r1 + r2
2r1r2

+
cos θi
r

)
y2 (S.361)

The contour of the bistatic Freznel zone on the sphere is

neither a circle, nor a true ellipse, but a saddle, with the

lowest points of the contour lying in the plane of the source

and receiver. Formally maximizing (S.359) should reveal this

contour exactly. Instead, we want to arrive at the planar

ellipse derived in Section S5.4 that approximates this contour.

This is to 1) simplify the derivation, and 2) ensure that we

get the same elliptical boundary as in Section S5.4 while

also giving us the corresponding multiplying constants for

the Fresnel zone target in the radar equation. To accomplish

this, we will evaluate the surface phase integral over the

domain of an ellipse. The ellipse lies in a plane perpendicular

to the normal direction at the specular point. We then

find the parameters of the ellipse that maximize the surface

phase integral, taking care to evaluate and approximate the

differential surface element under this mapping.

In general, a surface integral parameterized by two

variables is written∫∫
fdS =

∫∫
f(x(u, v))

∥∥∥∥∂x∂u × ∂x

∂v

∥∥∥∥ dudv (S.362)

where u and v range over the planar domain of integration.

Let a point on the sphere centered at z = −r be

x =

 x

y

z =
√
r2 − x2 − y2 − r

 (S.363)
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The domain of integration is an ellipse in the XY plane

and parameterized as

x = aρ cosφ (S.364)

y = bρ sinφ (S.365)

where ρ = [0, 1] and φ = [0, 2π], with a and b to be solved for.

The integration domain is shown in Figure S41 (shifted for

display). Substituting (S.364) and (S.365) into (S.363) and

assuming r is large

x ≈

 aρ cosφ

bρ sinφ

−a2ρ2 cos2 φ− b2ρ2 sin2 φ

2r

 (S.366)

Using this with (u, v) = (ρ, φ), the cross product norm is

evaluated as∥∥∥∥∂x∂ρ × ∂x

∂φ

∥∥∥∥ ≈ [a2b2ρ2(a2ρ2 cos2 φ+ b2ρ2 sin2 φ+ r2)

r2

]1/2
(S.367)

r1

r2

qiqi

r1s

r2s

z

x

y

r True Fresnel Zone

Planar elliptical 
integration domain 
(shifted for display)

a
b

dS

x(u,v)

r
f

Fig. S41: Geometry for the bistatic Fresnel zone ellipse with
spherical wave incidence.

Assuming r � a, b, ρ, this is approximated∥∥∥∥∂x∂ρ × ∂x

∂φ

∥∥∥∥ ≈ abρ (S.368)

which is simply the scale factor for the differential surface

element of an ellipse. The purpose of this was to show that

two approximations were needed to simplify the integral: 1)

the large argument approximation for the integration point

on the sphere, 2) the large argument approximation for the

differential surface element.

Substituting (S.364) and (S.365) into (S.361), using

(S.368), and using the ellipse parameterization and its limits,

the surface phase integral (S.359) can be written

I = abeik(r1+r2)
∫ 2π

0

∫ 1

0

ei(Aρ
2 cos2 φ+Bρ2 sin2 φ)ρdρdφ

(S.369)

where

A = ka2
(
r1 + r2
2r1r2

cos2 θi +
cos θi
r

)
(S.370)

B = kb2
(
r1 + r2
2r1r2

+
cos θi
r

)
(S.371)

This is exactly the same as (S.338) only with different

constants in the exponent. Therefore, following Section S5.6,

the ellipse parameters that maximize the magnitude of the

surface phase integral are

a2 =

[
r1 + r2
λr1r2

cos2 θi +
2

λr
cos θi

]−1
(S.372)

b2 =

[
r1 + r2
λr1r2

+
2

λr
cos θi

]−1
(S.373)

which are just (S.319) and (S.320), Section S5.4. The

magnitude squared is likewise given by (S.351):

|I|2 =
42π2a2b2

(A+B)2
(S.374)

= 4a2b2 (S.375)

Using (S.375) in (S.328), the target cross section in the

specular direction is

σ = Γ
42π

λ2
cos2 θia

2b2 (S.376)

Substituting (S.376) into the general bistatic radar

equation, (S.272), the radar equation for specular bistatic

geometry, Fresnel zone, spherical waves, and spherical surface

is

Pr =
PtGtGrΓ

4π2r21r
2
2

a2b2 cos2 θi (S.377)

where a2 and b2 are given by (S.319) and (S.320). Written

out, this is

Pr =
PtGtGrλ

2Γ

4π2r21r
2
2

[
r1 + r2
r1r2

cos2 θi +
2

r
cos θi

]−1
·
[
r1 + r2
r1r2

+
2

r
cos θi

]−1
cos2 θi (S.378)

The radar equation for every surface Fresnel zone geometry

can be derived from (S.378) with appropriate limits. For

example, when r →∞, this reduces to the radar equation for

specular bistatic geometry over a flat surface, (S.355), when

θi = 0 and r1 = r2 = h this reduces to the radar equation for

normal incidence over a spherical surface, (S.56), and so on.

S5.9. Bistatic Radar Equation - Subsurface
Receiver - Flat Surface

Here we derive the radar equation for a receiver in

the subsurface. This is the subsurface analogue of the

Friis transmission formula. This applies to experiments or

simulations with imbedded or submerged sensors. See Figure

S42.
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Following Section S2.4, we start with the power density of

the image source in the subsurface medium, (S.105), repeated

here

S′ =
PtGtT

4π(r′1 + r2)2
r′21
r21

cos θi
cos θt

(S.379)

The power received by the subsurface receiver is

Pr = S′Ar =
S′Grλ

2
εr

4π
(S.380)

where Ar is the effective aperture of the receiver in the

subsurface medium, and Gr and λεr are the receiver gain and

wavelength in the medium. Substituting (S.379) into (S.380),

then using (S.120) as well as Snell’s law, the power received

by the receiver in the subsurface is

Pr =
PtGtGrλ

2T

(4π)2(r1 + r2)2
g′2r
n2

cos θi
cos θt

(S.381)

where g′r is the off-nadir refraction gain (S.125). Equation

(S.381) contains both refraction gain and an area projection

term for power propagating through the surface interface.

The factor of 1/n2 can be thought of as belonging with λ2

which comes from the effective aperture of the receiver in the

medium.

T
r1

r2
n

Fig. S42: Geometry for the bistatic radar equation for a
subsurface receiver.
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