Supplement to: Effects of geometry on the seismic wavefield of Alpine glaciers

Lukas E. Preiswerk, Clotaire Michel, Fabian Walter & Donat Fäh

Correspondence: Lukas E. Preiswerk <preiswerk@vaw.baug.ethz.ch>

1 Supplemental Table S1

Table 1: Coordinates of the stations used. All stations have the network code 4D ([https://doi.org/10.12686/sed/networks/4d](https://doi.org/10.12686/sed/networks/4d)) and are archived at the Swiss Seismological Service. Coordinates are given in the CH1903 coordinate system and are in meters. As all glaciers are moving and therefore also the stations, the coordinates should only be used relative to each other.

The data we used was recorded on 30 May 2016 (Aletschgletscher), 18 April 2016 and 16 August 2016 (Eiger-Westflanke), and 29 July 2016 (Glacier de la Plaine Morte).

<table>
<thead>
<tr>
<th>Station</th>
<th>Easting</th>
<th>Northing</th>
<th>Elevation</th>
<th>borehole</th>
<th>start date</th>
<th>end date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG01</td>
<td>649267</td>
<td>154207</td>
<td>2343</td>
<td>yes</td>
<td>11.02.15</td>
<td>15.08.16</td>
</tr>
<tr>
<td>AG02</td>
<td>649165</td>
<td>145279</td>
<td>2356</td>
<td>yes</td>
<td>11.02.15</td>
<td>01.07.16</td>
</tr>
<tr>
<td>AG03</td>
<td>648967</td>
<td>145542</td>
<td>2371</td>
<td>yes</td>
<td>11.02.15</td>
<td>15.08.16</td>
</tr>
<tr>
<td>AG04</td>
<td>649161</td>
<td>144156</td>
<td>2295</td>
<td>no</td>
<td>20.05.16</td>
<td>05.06.16</td>
</tr>
<tr>
<td>AG05</td>
<td>649264</td>
<td>14701</td>
<td>2322</td>
<td>no</td>
<td>20.05.16</td>
<td>06.06.16</td>
</tr>
<tr>
<td>AG06</td>
<td>649001</td>
<td>14427</td>
<td>2319</td>
<td>no</td>
<td>20.05.16</td>
<td>03.06.16</td>
</tr>
<tr>
<td>AG07</td>
<td>648636</td>
<td>14755</td>
<td>2329</td>
<td>no</td>
<td>20.05.16</td>
<td>06.06.16</td>
</tr>
<tr>
<td>AG08</td>
<td>648663</td>
<td>14484</td>
<td>2294</td>
<td>yes</td>
<td>20.05.16</td>
<td>05.06.16</td>
</tr>
<tr>
<td>AG09</td>
<td>648933</td>
<td>14404</td>
<td>2290</td>
<td>yes</td>
<td>20.05.16</td>
<td>06.06.16</td>
</tr>
<tr>
<td>EIG1</td>
<td>642715</td>
<td>158139</td>
<td>3310</td>
<td>no</td>
<td>14.04.16</td>
<td>05.06.16</td>
</tr>
<tr>
<td>EIG2</td>
<td>642699</td>
<td>158146</td>
<td>3305</td>
<td>no</td>
<td>14.04.16</td>
<td>31.08.16</td>
</tr>
<tr>
<td>EIG3</td>
<td>642684</td>
<td>158150</td>
<td>3299</td>
<td>no</td>
<td>14.04.16</td>
<td>31.08.16</td>
</tr>
<tr>
<td>EIG4</td>
<td>642678</td>
<td>158139</td>
<td>3298</td>
<td>no</td>
<td>11.08.16</td>
<td>31.08.16</td>
</tr>
<tr>
<td>PM01</td>
<td>606875</td>
<td>137097</td>
<td>2755</td>
<td>yes</td>
<td>29.04.16</td>
<td>08.09.16</td>
</tr>
<tr>
<td>PM02</td>
<td>606873</td>
<td>136843</td>
<td>2756</td>
<td>yes</td>
<td>29.04.16</td>
<td>08.09.16</td>
</tr>
<tr>
<td>PM03</td>
<td>607127</td>
<td>136841</td>
<td>2765</td>
<td>yes</td>
<td>29.04.16</td>
<td>08.09.16</td>
</tr>
<tr>
<td>PM04</td>
<td>607128</td>
<td>137097</td>
<td>2766</td>
<td>yes</td>
<td>29.04.16</td>
<td>08.09.16</td>
</tr>
<tr>
<td>PM05</td>
<td>606999</td>
<td>136971</td>
<td>2760</td>
<td>yes</td>
<td>29.04.16</td>
<td>08.09.16</td>
</tr>
</tbody>
</table>
2 Supplemental Figure S1

Figure 1: A) The singular values of the cross power spectral density (CPSD) matrix of the seismic signal from Glacier de la Plaine Morte. The two main observable modes are marked with crosses. B) Corresponding modal shape (first singular vector at the picked frequency) exhibiting a rigid body translation to the northeast (black is the original array geometry, blue the deflected array). The amplitude of motion is relative. C) Same as B), but for the second singular vector, and a translation to the northwest, orthogonal to B).
3 Supplemental Figure S2

Figure 2: Time-frequency-dependent polarization analysis (TFPA) of the stations on Aletschgletscher not shown in Fig. 10.