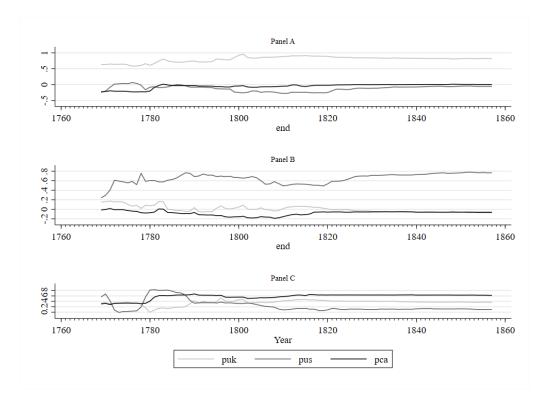

Appendix A Price Data for Canadian Markets

The main source of wheat prices for Canada is derived from the work of Geloso (2019) and Geloso and Lindert (2020) who used the accounts books of religious congregations around Quebec City from 1688 to 1858 to create a price series for wheat and flour. The prices were reported in *minots* (a French unit of volume which reflects the cultural background of the area) and in *livres* (a French monetary unit). Geloso argues that these prices are close to retail prices. Ouellet et al. (1982) provided the same information for retail wheat prices in Montreal from 1767 to 1858. There is also a series for flour but there are gaps in it. To complete the Montreal wheat prices pre-1767, we used the prices reported by Dechêne (1994). The prices in Montreal were reported in the same units as for Quebec City. We used the conventional conversion ratios from minots to bushels provided by Canadian historians (Rousseau 1983; Geloso 2019b) and the exchange rates provided by McCullough (1984) are used to convert from *livres* to shillings Sterling. This allowed us to create price series for Quebec and Montreal that cover the period from 1720 to 1858. The price data for Ontario was taken from the work of McCalla (1993). We used his retail prices for Central Ontario because they had the longest continuous coverage and the fewest gaps of all his series. His prices were reported in shillings of the Halifax denomination (which was below 1:1 with the Sterling) per bushels. We also used the exchanges rates McCullough (1984) provided to convert to Stirling.

Are these series representative of what was happening in the hinterland? We can answer in the positive thanks to recent work by Geloso (2022). Using the coefficient of variation (standard deviation divided by the mean) of prices between Quebec City and Montreal in 1828-1832, Geloso finds a value of 0.134. He then compared this with the census of 1831 which provided a cross-section of wheat prices for more than 200 parishes in Quebec spanning all over the entire colony. He found a coefficient of variation of 0.097 – a trivial differences with the Quebec City and Montreal one. This suggests that

we can use these two important port cities as evidence to speak about market integration from Canada's vantage point. In addition, Geloso also employed the wheat price data for 13 rural parishes between 1764 and 1839 near Montreal produced by Ouellet et al. (1982) using tithe records. These series were unbalanced as many years were missing and the gaps differed by parish. Nevertheless, he inspected whether the coefficient of variation in each of these parishes with Montreal followed the same trend as the coefficient of variation between Montreal and Quebec City. The effect of time post-1760 was towards a -0.008 per annum in the coefficient of variation for Quebec City and Montreal. On average, the average coefficient of variation between Montreal and each of the 13 rural parishes showed a time trend of -0.005. This further reinforces our belief that, although we would have preferred a broader sample of cities, Montreal and Quebec City speak to market integration.


Appendix B Pre-estimation Analysis

Figures B1-B2 shows the recursive analysis of an unrestricted VAR

Figure B1: Backward recursively estimated VAR coefficients

Note: Backward recursively estimated coefficients with end year fixed at 1857. Panel A shows the estimated coefficients for the relationship between p_{uk} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel B shows the estimated coefficients for the relationship between p_{us} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel C shows the estimated coefficients for the relationship between p_{ca} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel C shows the estimated coefficients for the relationship between p_{ca} and the lagged variables p_{uk} , p_{us} and p_{ca} .

Figure B2: Forward recursively estimated VAR coefficients

Note: Forward recursively estimated coefficients with start year fixed at 1760. Panel A shows the estimated coefficients for the relationship between p_{uk} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel B shows the estimated coefficients for the relationship between p_{us} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel C shows the estimated coefficients for the relationship between p_{ca} and the lagged variables p_{uk} , p_{us} and p_{ca} . Panel C shows the estimated coefficients for the relationship between p_{ca} and the lagged variables p_{uk} , p_{us} and p_{ca} .

Table B1: Wald test for structural breaks

Independent variable	Wald test	p -value
Testing	g 1783 and 1822 togeth	ber
puk	13.2594	0.5140
pus	20.3549	0.1193
рса	24.9768	0.0348
	Testing 1783	
puk	1.2845	0.9888
pus	5.3673	0.6152
рса	11.1328	0.1329
	Testing 1822	
puk	12.0257	0.0997
pus	12.7695	0.0779
pca	11.4731	0.1193

Note: This table shows the test statistics for the Wald test looking for known structural break dates. H_0 : no structural break. The first part shows the statistic when testing both break dates together.

The following is the analysis of the unrestricted VAR, to assure the model is well specified.

Sample	e: 1764 thr	u 1783					Number (of obs = 20
Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	18.7176				.000042	-1.57176	-1.5426	-1.4224
1	43.4985	49.562	9	0.000	8.7e-06*	-3.14985	-3.03323*	-2.55241*
2	49.831	12.665	9	0.178	.000012	-2.8831	-2.679	-1.83758
3	58.1969	16.732	9	0.053	.000016	-2.81969	-2.52812	-1.32609
4	70.5133	24.633*	9	0.003	.000018	-3.15133*	-2.7723	-1.20966

Lag-order selection criteria

* optimal lag

Endogenous: puk pus pca Exogenous: _cons

Figure B3: Selection-order criteria for the period 1760-1783

Lag-order selection criteria

Sample: 1783 thru 1822 Number of obs = 40Lag LL LR df FPE AIC HQIC SBIC р 0 -9.98735 .000384 .649368 .695166 .776033 39.3547 98.684* 9 0.000 .000051* -1.36773* -1.18454* -.86107* 1 2 45.3102 11.911 9 0.218 .00006 -1.21551 -.894921 -.328849 3 50.8072 10.994 9 0.276 .000073 -1.04036 -.582375 .226301 4 58.7845 15.955 .657433 9 0.068 .00008 -.989225 -.393845

* optimal lag Endogenous: puk pus pca Exogenous: _cons

Figure B4: Selection-order criteria for the period 1783-1822

Lag-order selection criteria

```
Sample: 1822 thru 1857
```

Number of obs = 36

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	52.2073				.000013	-2.73374	-2.68768	-2.60178
1	88.3856	72.357	9	0.000	2.9e-06	-4.24364	-4.05941	-3.7158*
2	101.44	26.11*	9	0.002	2.3e-06*	-4.46891*	-4.14651*	-3.54519
3	108.582	14.283	9	0.113	2.7e-06	-4.36566	-3.90509	-3.04606
4	116.197	15.23	9	0.085	3.1e-06	-4.28872	-3.68997	-2.57324

* optimal lag

Endogenous: puk pus pca

Exogenous: _cons

Figure B5: Selection-order criteria for the period 1822-1857

22 . ***** 1761-1783 *****
23 . vec puk pus pca if Year <= 1783, trend(rtrend) lags(1)</pre>

Vector error-correction model

Sample: 1761 thru Log likelihood = Det(Sigma_ml) =	43.51342			Number o AIC HQIC SBIC	f obs	=	23 -3.001167 -2.889421 -2.556843
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_puk D_pus	2	.110396	0.0724 0.0091	1.561243	0.4581 0.9125		
D_pca	2	.159657	0.6118	31.52204	0.0000		

		Coefficient	Std. err.	z	P> z	[95% conf	. interval]
D_puk							
	_ce1 L1.	.0082953	.0151896	0.55	0.585	0214757	.0380663
	_cons	.0256216	.0236433	1.08	0.279	0207185	.0719617
D_pus							
	ce1						
	_L1.	0046806	.0199468	-0.23	0.814	0437756	.0344144
	_cons	.0115899	.0310482	0.37	0.709	0492634	.0724433
D_pca							
	ce1						
	_L1.	1230985	.0219676	-5.60	0.000	1661541	0800429
	_cons	.0012859	.0341936	0.04	0.970	0657324	.0683041

Cointegrating equations

Equation	Parms	chi2	P>chi2
_ce1	2	27.88887	0.0000

Identification: beta is exactly identified

Johansen normalization restriction imposed

	beta	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
_ce1							
	puk	1			•		
	pus	-1.935941	2.329577	-0.83	0.406	-6.501829	2.629946
	pca	4.285217	.8293486	5.17	0.000	2.659724	5.91071
	trend	1800915	.059614	-3.02	0.003	2969328	0632503
	_cons	-9.717575	•	•	•		•

24 . ** autocorrelation **

25 . veclmar, mlag(3)

Lagrange-multiplier test

lag	chi2	df	Prob > chi2
1	5.9541	9	0.74450
2	6.5272	9	0.68621
3	7.3720	9	0.59845

H0: no autocorrelation at lag order

26 . ** normality **

27 . vecnorm, jbera skewness kurtosis dfk

Jarque-Bera test

Equation	chi2	df	Prob > chi2
D_puk	4.108	2	0.12820
D_pus	3.397	2	0.18293
D_pca	3.836	2	0.14687
ALL	11.342	6	0.07836

Skewness test

Equation	Skewness	chi2	df	Prob > chi2
D_puk D_pus D_pca ALL	14992 .11708 .01842	0.079 0.048 0.001 0.128	1 1 1 3	0.77912 0.82662 0.97251 0.98830

Kurtosis test

Equation	Kurtosis	chi2	df	Prob > chi2
D_puk D_pus D_pca ALL	.85399 1.0435 .9064	4.030 3.349 3.835 11.214	1 1 1 3	0.04471 0.06723 0.05019 0.01062

dfk estimator used in computations

9 . 10 . ***** 1783-1822 *****

Vector error-correction model

Sample: 1783 - : Log likelihood = Det(Sigma_ml) =	38.04613			Number o AIC HQIC SBIC	f obs	=	40 -1.252306 -1.053846 7034204
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_puk	3	.209108	0.0438	1.649734	0.6482		
D_pus	3	.239269	0.2330	10.93803	0.0121		
D_pca	3	.227315	0.2216	10.2502	0.0166		

^{11 .} vec puk pus pca if Year >= 1783 & Year <= 1822, trend(rtrend) rank(2) lags(1)

		Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
D_puk							
	_ce1 L1.	1359562	.1898415	-0.72	0.474	5080388	.2361263
	_ce2 L1.	114799	.1766584	-0.65	0.516	4610431	.2314451
	_cons	0010898	.0338895	-0.03	0.974	067512	.0653324
D_pus							
	_ce1 L1.	.2068049	.2172239	0.95	0.341	2189461	.6325559
	_ce2 L1.	6559478	.2021393	-3.25	0.001	-1.052133	2597621
	_cons	.0002616	.0387776	0.01	0.995	0757412	.0762643
D_pca							
	_ce1 L1.	.6438478	.2063706	3.12	0.002	.2393688	1.048327
	_ce2 L1.	1479011	.1920397	-0.77	0.441	524292	.2284898
	_cons	0003141	.0368402	-0.01	0.993	0725196	.0718913

Cointegrating equations

Equation	Parms	chi2	P>chi2
_ce1	1	14.47316	
_ce2	1	6.31303	

Identification: beta is exactly identified

Johansen normalization restrictions imposed

	beta	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
_ce1							
	puk	1					
	pus	-5.55e-17					
	pca	4396558	.1155663	-3.80	0.000	6661616	21315
	_trend	0061066	.0041884	-1.46	0.145	0143158	.0021026
	_cons	-2.432075		•			
ce2							
-	puk	0	(omitted)				
	pus	1					
	pca	3330114	.1325379	-2.51	0.012	592781	0732418
	_trend	.0045001	.0048035	0.94	0.349	0049147	.0139148
	_cons	-1.99716					

12 . ** autocorrelation **

13 . veclmar, mlag(3)

Lagrange-multiplier test

lag	chi2	df	Prob > chi2
1	9.4868	9	0.39361
2	8.6209	9	0.47297
3	7.8266	9	0.55171

H0: no autocorrelation at lag order

- 14 . ** normality **
- 15 . vecnorm, jbera skewness kurtosis dfk

Jarque-Bera test

Equation	chi2	df	Prob > chi2
D_puk	3.256	2	0.19635
D_pus	2.554	2	0.27881
D_pca	2.096	2	0.35061
ALL	7.906	6	0.24505

Skewness test

Equation	Skewness	chi2	df	Prob > chi2
D_puk D_pus D_pca ALL		0.159 0.077	1 1 1 3	0.000000

Kurtosis test

Equation	Kurtosis	chi2	df	Prob > chi2
D_puk D_pus D_pca ALL	2.3537 1.8012 1.8995	0.696 2.395 2.019 5.110		0.40408 0.12170 0.15538 0.16391

dfk estimator used in computations

```
16 .
17 . ***** 1822-1857 *****
```

18 . vec puk pus pca if Year >= 1822, trend(rtrend) rank(2) lags(2)

Vector error-correction model

Sample: 1822 - 1 Log likelihood = Det(Sigma_ml) =	100.316			Number of AIC HQIC SBIC	f obs	Ì	36 -4.350889 -4.013134 -3.383183
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_puk D_pus D_pca	6 6	.100598 .16084 .109122	0.5663 0.2225 0.6604	37.86006 8.299976 56.40084	0.0000 0.2169 0.0000		

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
D puk							
	_ce1						
	L1.	7936675	.1805622	-4.40	0.000	-1.147563	439772
	_ce2						
	L1.	2615836	.1721171	-1.52	0.129	5989269	.0757597
	puk						
	LD.	.7026467	.1652012	4.25	0.000	.3788583	1.026435
	pus	310935		1200			
	LD.	.1878505	.2167556	0.87	0.386	2369827	.6126837
	pca						
	LD.	1315484	.1923331	-0.68	0.494	5085143	.2454176
	_cons	0049329	.0171484	-0.29	0.774	0385431	.0286773
D_pus							
	_ce1	122222332	100000000	02201	121 22781	V2122221	
	L1.	3387399	.2886912	-1.17	0.241	9045642	.2270845
	_ce2			0.27/22			
	ц.	.0076303	.2751887	0.03	0.978	5317297	.5469903
	puk						
	LD.	.1934986	.2641313	0.73	0.464	3241892	.7111864
	pus						
	LD.	.272077	.3465589	0.79	0.432	-,4071659	.9513199
	pca						
	LD.	3779935	.307511	-1.23	0.219	980704	.224717
	_cons	.010386	.0274176	0.38	0.705	0433515	.0641236
D_pca							
	_ce1	1021150	105053	0.00	0.334	1007366	F770204
	L1.	.1931459	.195862	0.99	0.324	1907366	.5770284
	_ce2						
	L1.	.6664721	.1867013	3.57	0.000	.3005443	1.0324
	puk						
	LD.	.333213	.1791994	1.86	0.063	0180113	.6844373
	pus						
	LD.	0097969	.2351222	-0.04	0.967	470628	.4510342
	pca	****		- 25/76.74	7.57703002-0		Starting of Sec. 10.
	LD.	.1301095	.2086303	0.62	0.533	2787983	.5390174
	_cons	002055	.0186014	-0.11	0.912	0385132	.0344031

Cointegrating equations

Equation	Parms	chi2	P>chi2
_ce1	1	.2319183	0.6301
_ce2	1	53.17834	0.0000

Identification: beta is exactly identified

Johansen	normalization	restrictions	imposed
----------	---------------	--------------	---------

	beta	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
_ce1							
	puk	1					
	pus	0	(omitted)				
	pca	103049	.2139816	-0.48	0.630	5224453	.3163472
	_trend	.005008	.0029602	1.69	0.091	0007938	.0108099
	_cons	-3.793904		•			
ce2							
-	puk	-2.78e-17					
	pus	1					
	pca	-1.751046	.2401211	-7.29	0.000	-2.221675	-1.280418
	_trend	0052756	.0033218	-1.59	0.112	0117862	.001235
	_cons	3.514806					

19 . ** autocorrelation **
20 . veclmar, mlag(3)

Lagrange-multiplier test

lag	chi2	df	Prob > chi2
1	12.4225	9	0.19053
2	9.3853	9	0.40249
3	16.2816	9	0.06123

H0: no autocorrelation at lag order

Jarque-Bera test

Equation	chi2	df	Prob > chi2
D_puk	1.782	2	0.41034
D_pus	2.161	2	
D_pca	0.406	2	0.81616
ALL	4.349	6	0.62962

Skewness test

Equation	Skewness	chi2	df	Prob > chi2
	10064 13207 04552		1 1	0.74632 0.91122

Kurtosis test

Equation	Kurtosis	chi2	df	Prob > chi2
D_puk D_pus D_pca ALL	1.9289 1.8292 2.4876	1.721 2.056 0.394 4.171	1 1 1 3	0.18960 0.15160 0.53028 0.24361

dfk estimator used in computations

Johansen	tests fo					
Trend: R	estricted	1			Number of	obs = 23
Sample:	1761 thru	1783			Number of	lags = 1
					Critical	
Maximum				Trace	value	
rank	Params	LL	Eigenvalue	statistic	5%	
0	3	32.100146	· ·	40.1645*	42.44	
1	9	43.513422	0.62934	17.3380	25.32	
2	13	50.510774	0.45581	3.3433	12.25	
3	15	52.182407	0.13529			
					Critical	
Maximum			Eiger	nvalue	value	
rank	Params	LL	0	Maximum	5%	
0	3	32.100146		22.8266	25.54	
1	9	43.513422	0.62934	13.9947	18.96	
2	13	50.510774	0.45581	3.3433	12.52	
3	15	52.182407	0.13529			
Maximum						
rank	Params	LL	Eigenvalue	SBIC	HQIC	AIC
0	3	32.100146	-	-2.38234		-2.530447
1	9	43.513422	0.62934	-2.556843	-2.889421	-3.001167
2	13	50.510774	0.45581	-2.620005*	-3.100395*	-3.261806
3	15	52.182407	0.13529	-2.492713	-3.047009	-3.233253

* selected rank

Figure B6: Johansen tests for cointegration 1760-1783

Johansen tests for cointegration							
Trend: rtrend						of obs =	40
Sample:	1783 - 1	822				Lags =	:
					5%		
maximum				trace	critical		
rank	parms	LL	eigenvalue	statistic	value		
0	3	20.090057		40.9774*	42.44		
1	9	31.428991	0.43275	18.2995	25.32		
2	13	38.046125	0.28169	5.0653	12.25		
3	15	40.578753	0.11894				
					5%		
maximum				max	critical		
rank	parms	LL	eigenvalue	statistic	value		
0	3	20.090057		22.6779	25.54		
1	9	31.428991	0.43275	13.2343	18.96		
2	13	38.046125	0.28169	5.0653	12.52		
3	15	40.578753	0.11894				
maximum							
rank	parms	LL	eigenvalue	SBIC	HQIC	AIC	
0	3	20.090057		7278369	8087045	8545029	
1	9	31.428991	0.43275	7414517*	9840543	-1.12145	
2	13	38.046125	0.28169	7034204	-1.053846	* -1.252306	
3	15	40.578753	0.11894	6456079	-1.049946	-1.278938	

Figure B7: Johansen tests for cointegration 1783-1822

2 3	22 24	100.31601 104.12775	0.40889 0.19084	-3.383183* -3.395862	-4.013134* -4.083081	-4.350889 -4.451542	
1	18	90.852526	0.58208	-3.255603	-3.771017		
0	12	75.148239		-2.980396	-3.324005	-3.508236	
rank	parms	LL	eigenvalue	SBIC	HQIC	AIC	
maximum							
3	24	104.12775	0.19084				
2	22	100.31601	0.40889	7.6235	12.52		
1	18	90.852526	0.58208	18.9270	18.96		
0	12	75.148239		31.4086	25.54		
rank	parms	LL	eigenvalue	statistic	value		
maximum				max	critical		
					5%		
3	24	104.12775	0.19084				
2	22	100.31601	0.40889	7.6235*	12.25		
1	18	90.852526	0.58208	26.5504	25.32		
0	12	75.148239		57.9590	42.44		
rank	parms	LL	eigenvalue	statistic	value		
maximum				trace	5% critical		
Sample:	1822 - 1	857				Lags =	
	trend				Number o	f obs =	

Figure B8: Johansen tests for cointegration 1822-1857

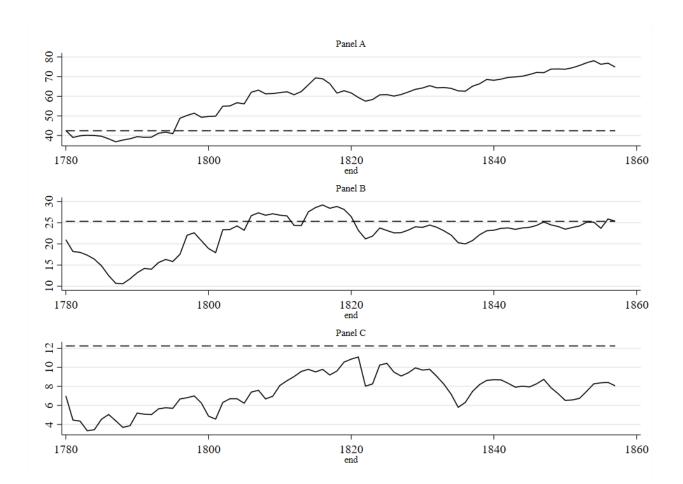


Figure B9: Recursively calculated trace statistics for cointegration rank, 1760-1783

Note: The start year is held fixed while the end year changes. Panel A represents the trace statistic for the null hypothesis H_0 : rank ≤ 0 . Panel B represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 2 . The dashed lines represent the critical values at the 5% level.

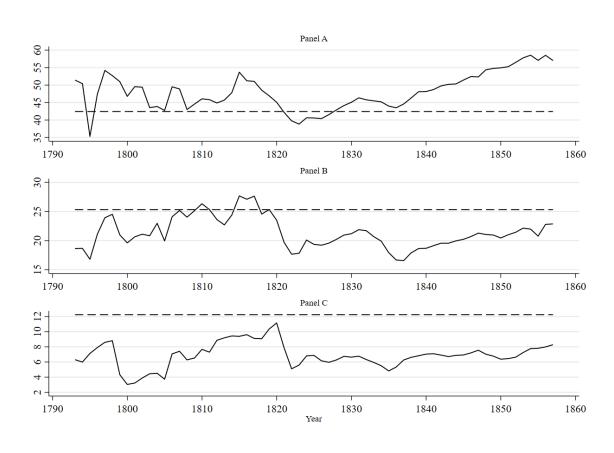
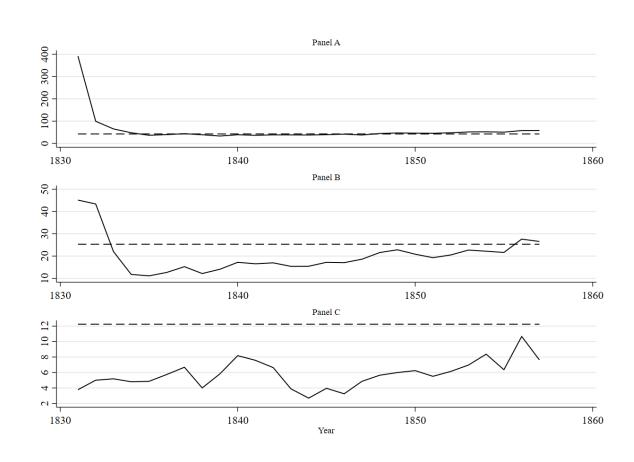



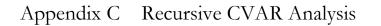
Figure B10: Recursively calculated trace statistics for cointegration rank, 1783-1822

Note: The start year is held fixed while the end year changes. Panel A represents the trace statistic for the null hypothesis H_0 : rank ≤ 0 . Panel B represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 1 . Panel C represents the trace statistic for the null hypothesis H_0 : rank ≤ 2 . The dashed lines represent the critical values at the 5% level.

Figure B11: Recursively calculated trace statistics for cointegration rank, 1822-1857

Note: The start year is held fixed while the end year changes. Panel A represents the trace statistic for the null hypothesis $H_0: rank \le 0$. Panel B represents the trace statistic for the null hypothesis $H_0: rank \le 1$. Panel C represents the trace statistic for the null hypothesis $H_0: rank \le 2$. The dashed lines represent the critical values at the 5% level.

```
SYS( 1) Cointegrated VAR (using Data no Ontario (oct 2022).xls)
       The estimation sample is: 1761 - 1783
Cointegrated VAR (1) in:
[0] = puk
[1] = pus
[2] = pca
Unrestricted variables:
[0] = Constant
Restricted variables:
[0] = Trend
Number of lags used in the analysis: 1
General cointegration restrictions:
&3=0; &5=1;
&0=0; &1=0;
beta
puk
           0.00000
          -0.59718
pus
           1.0000
pca
Trend
         -0.038883
Standard errors of beta
puk
         0.00000
           0.57443
pus
           0.00000
pca
Trend
          0.014032
alpha
          -0.00000
puk
          -0.00000
pus
          -0.49895
pca
Standard errors of alpha
puk
          0.00000
           0.00000
pus
          0.084810
pca
Restricted long-run matrix, rank 1
              puk
                           pus
                                        pca
                                                   Trend
          -0.00000
                        0.00000
                                   -0.00000
                                               0.00000
puk
                       0.00000
          -0.00000
                                   -0.00000
                                                0.00000
pus
pca
          -0.00000
                        0.29797
                                   -0.49895
                                                0.019401
Standard errors of long-run matrix
          0.00000
                       0.00000
                                    0.00000
                                                 0.00000
puk
           0.00000
                       0.00000
pus
                                    0.00000
                                                 0.00000
           0.00000
                       0.050647
                                    0.084810
                                               0.0032976
pca
Moving-average impact matrix
      1.0000 2.1684e-019 3.5345e-017
 -1.1194e-017
                  1.0000 -3.9567e-034
 -9.6318e-017
                  0.59718 -3.4044e-033
log-likelihood
               43.0876003 -T/2log|Omega|
                                                140.994359
                       23 no. of parameters
no. of observations
                                                         6
rank of long-run matrix
                         1 no. long-run restrictions 3
beta is identified
LR test of restrictions: Chi^2(3) = 0.85164 [0.8371]
Switching (scaled linear) using analytical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
```


Figure B12: Regression results from the cointegrated VAR, 1760-1783

```
SYS( 2) Cointegrated VAR (using Data noOntario (nov 2020).xls)
        The estimation sample is: 1783 - 1822
Cointegrated VAR (1) in:
[0] = puk
[1] = pus
[2] = pca
Unrestricted variables:
[0] = Constant
Restricted variables:
[0] = Trend
Number of lags used in the analysis: 1
General cointegration restrictions:
&7=1; &8=0;
               &9=0;
&11=0; &12=1; &13=0;
&0=0; &1=0;
&3=0;
&4=0;
beta
puk
           -0.46627
                         -1.6555
                         0.00000
pus
            1.0000
            0.00000
                         1.0000
pca
           0.00000
                         0.00000
Trend
Standard errors of beta
puk
           0.20269
                         0.27556
            0.00000
                         0.00000
pus
            0.00000
                         0.00000
pca
                        0.00000
Trend
           0.00000
alpha
puk
           -0.00000
                        -0.00000
pus
           -0.47351
                        -0.00000
           -0.00000
                        -0.37110
pca
Standard errors of alpha
            0.00000
                         0.00000
puk
pus
            0.11104
                        0.00000
                        0.073830
pca
            0.00000
Restricted long-run matrix, rank 2
               puk
                                                     Trend
                            pus
                                          pca
            0.00000
                        -0.00000
                                     -0.00000
                                                  -0.00000
puk
pus
            0.22078
                        -0.47351
                                     -0.00000
                                                  -0.00000
                        -0.00000
           0.61437
                                     -0.37110
                                                  -0.00000
pca
Standard errors of long-run matrix
                                                   0.00000
                        0.00000
                                      0.00000
puk
           0.00000
pus
           0.051774
                        0.11104
                                      0.00000
                                                   0.00000
                        0.00000
                                     0.073830
                                                   0.00000
           0.12223
pca
Moving-average impact matrix
      1.0000 2.3202e-017 -2.2660e-017
      0.46627 1.0818e-017 -1.0566e-017
      1.6555 3.8412e-017 -3.7514e-017
log-likelihood
                  36.2694286 -T/2log|Omega|
                                                  206.542053
no. of observations
                        40 no. of parameters
                                                           7
rank of long-run matrix
                            2 no. long-run restrictions
                                                          6
beta is identified
LR test of restrictions: Chi^2(6) = 3.5534 [0.7369]
```

Figure B13: Regression results from the cointegrated VAR, 1783-1822

```
SYS( 3) Cointegrated VAR (using Data_noOntario (nov 2020).xls)
       The estimation sample is: 1822 - 1857
Cointegrated VAR (2) in:
[0] = puk
[1] = pus
[2] = pca
Unrestricted variables:
[0] = Constant
Restricted variables:
[0] = Trend
Number of lags used in the analysis: 2
General cointegration restrictions:
&7=0; &6=1;
&10=0; &12=1;
&1=0;
&2=0; &3=0;
&4=0;
beta
puk
            1.0000
                        0.00000
           0.00000
                       -0.76224
pus
          -0.57818
                         1.0000
pca
         0.0051740
                      0.0040646
Trend
Standard errors of beta
           0.00000
                        0.00000
puk
pus
           0.00000
                        0.10909
           0.13160
                        0.00000
pca
         0.0018935
Trend
                      0.0018548
alpha
puk
          -0.75752
                       -0.00000
                       -0.00000
pus
          -0.00000
          -0.00000
                       -0.88763
pca
Standard errors of alpha
puk
           0.12524
                        0.00000
           0.00000
                        0.00000
pus
           0.00000
                        0.17527
pca
Restricted long-run matrix, rank 2
              puk
                          pus
                                         pca
                                                    Trend
puk
          -0.75752
                        0.00000
                                     0.43798
                                              -0.0039195
pus
          -0.00000
                        0.00000
                                     0.00000
                                                -0.00000
          -0.00000
                        0.67659
                                    -0.88763
                                               -0.0036079
pca
Standard errors of long-run matrix
           0.12524
                       0.00000
                                              0.00064802
                                    0.072413
puk
pus
           0.00000
                        0.00000
                                     0.00000
                                                  0.00000
           0.00000
                        0.13360
                                    0.17527
                                              0.00071239
pca
Moving-average impact matrix
     0.00000
                 0.46554 3.6493e-017
     0.00000
                   1.0563 8.2804e-017
                  0.80519 6.3117e-017
     0.00000
                  96.1708049 -T/2log|Omega|
log-likelihood
                                                 249.416166
no. of observations
                    36 no. of parameters
                                                       18
rank of long-run matrix
                          2 no. long-run restrictions 4
beta is identified
LR test of restrictions: Chi^2(4) = 8.2904 [0.0815]
```

Figure B14: Regression results from the cointegrated VAR, 1822-1857

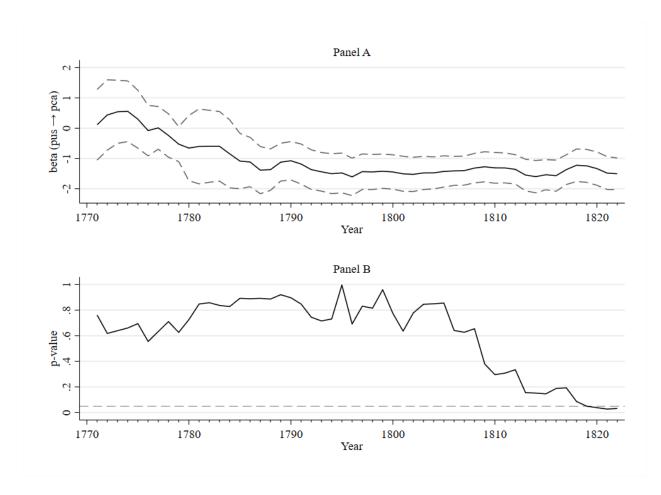


Figure C1: Forward recursively estimated coefficient and p-values for the period 1760-1783

Note: The start year is fixed at 1760 while the end year changes. Panel A illustrates the estimated beta coefficient from equation 2, while the dashed lines represent 2x standard errors. Panel B illustrates the p-value for acceptance of the imposed restrictions.

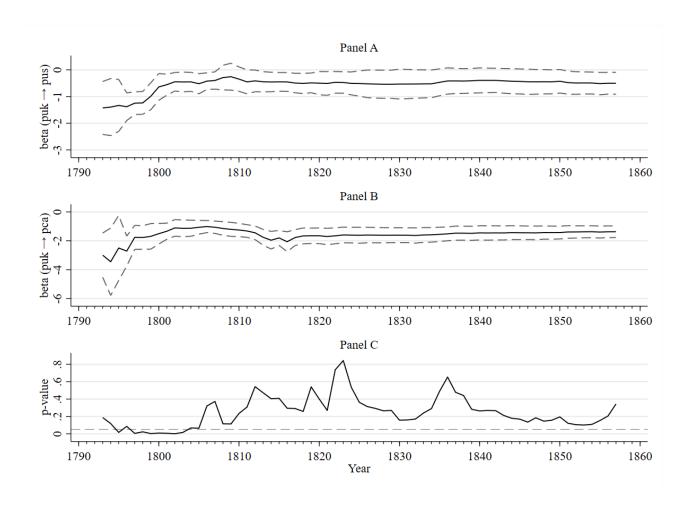


Figure C2: Forward recursively estimated coefficients and p-values for the period 1783-1822

Note: The start year is fixed at 1783 while the end year changes. Panel A illustrates the estimated beta coefficient between the UK and the US from equation 3, Panel B illustrates the estimated beta coefficient between the UK and Canada while in both, the dashed lines represent 2x standard errors. Panel C illustrates the *p*-value for acceptance of the imposed restrictions.

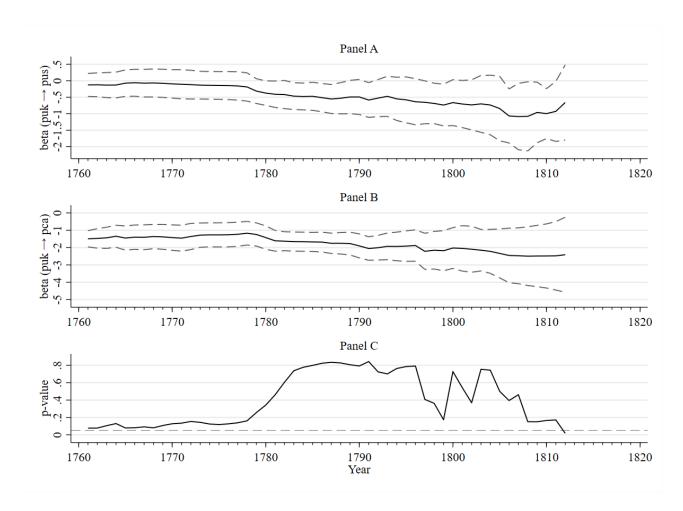


Figure C3: Backward recursively estimated coefficients and p-values for the period 1783-1822

Note: The end year is fixed at 1822 while the start year changes. Panel A illustrates the estimated beta coefficient between the UK and the US from equation 3, Panel B illustrates the estimated beta coefficient between the UK and Canada while in both, the dashed lines represent 2x standard errors. Panel C illustrates the *p*-value for acceptance of the imposed restrictions.

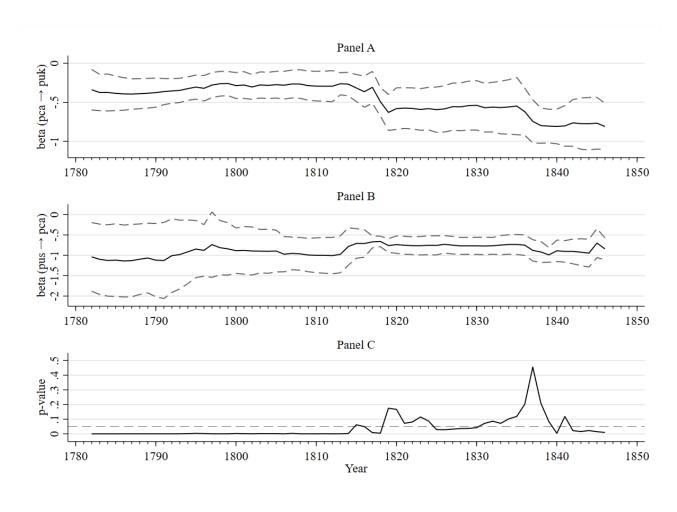


Figure C4: Backward recursively estimated coefficients and p-values for the period 1822-1857

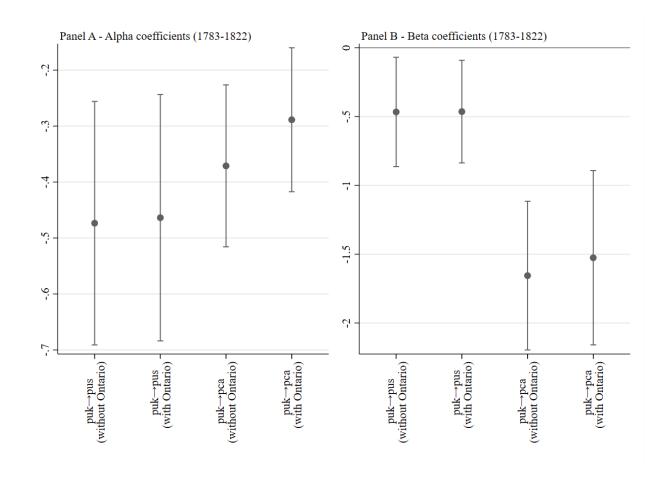
Note: The end year is fixed at 1857 while the start year changes. Panel A illustrates the estimated beta coefficient between the Canada and UK from equation 4, Panel B illustrates the estimated beta coefficient between the US and Canada while in both, the dashed lines represent 2x standard errors. Panel C illustrates the *p*-value for acceptance of the imposed restrictions.

Appendix D Results including Central Ontario

The following shows the results of the CVAR analysis when including price data for Central Ontario in the Canadian average price. Observations for Central Ontario start only in 1787, so the results for the first period (1760-1783) are not affected by the inclusion of the additional observations. Figures 1D and 2D illustrate a comparison between the estimated alpha and beta coefficients from equations 3-4 and D2-D3. It can be seen that there are no statistically significant differences.

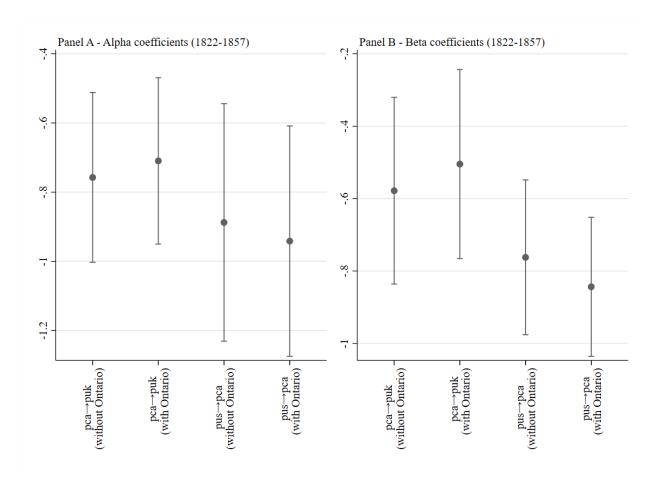
Estimated equation for the period 1760-1783

$$\begin{bmatrix} \Delta p_{uk_t} \\ \Delta p_{us_t} \\ \Delta p_{ca_t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -0.4990 \end{bmatrix} [\{p_{ca} - 0.5972p_{us} - 0.0389\}_{t-1}] + \cdots$$
 (D1)


 $Chi^{2}(3) = 0.8516 [0.8371]$

Estimated equation for the period 1783-1822

$$\begin{bmatrix} \Delta p_{uk_t} \\ \Delta p_{us_t} \\ \Delta p_{ca_t} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -0.5059 & 0 \\ 0 & -0.2887 \end{bmatrix} \begin{bmatrix} \{p_{us} - 0.4636p_{uk}\}_{t-1} \\ \{p_{ca} - 1.525p_{uk}\}_{t-1} \end{bmatrix} + \cdots$$
 (D2)
Chi²(6) = 6.7040 [0.3491]


Estimated equation for the period 1822-1857

$$\begin{bmatrix} \Delta p_{uk_t} \\ \Delta p_{us_t} \\ \Delta p_{ca_t} \end{bmatrix} = \begin{bmatrix} -0.7097 & 0 \\ 0 & 0 \\ 0 & -0.9417 \end{bmatrix} \begin{bmatrix} \{p_{uk} - 0.5045p_{ca} + 0.0060t\}_{t-1} \\ \{p_{ca} - 0.8436p_{us} + 0.0023t\}_{t-1} \end{bmatrix} + \cdots$$
(D3)
Chi²(4) = 6.9233 [0.1400]

Figure D1: Comparison of point estimates with and without Central Ontario included in price data (1783-1822)

Note: Panel A illustrates the estimated alpha coefficients from equations 3 (without Ontario) and D2 (with Ontario) and Panel B illustrates the estimated beta coefficients from equations 3 (without Ontario) and D2 (with Ontario). Reported confidence intervals are at the 5% level.

Figure D2: Comparison of point estimates with and without Central Ontario included in price data (1822-1857)

Note: Panel A illustrates the estimated alpha coefficients from equations 4 (without Ontario) and D3 (with Ontario) and Panel B illustrates the estimated beta coefficients from equations 4 (without Ontario) and D3 (with Ontario). Reported confidence intervals are at the 5% level.