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A Appendix: Model details

The model exposition we adopt is that outlined in Shumway & Stoffer (2010). Their work

provides a general version of the specific approach we utilize. The estimation of the time-

varying covariates is recursive, starting at time one and progressing to time t. This entire

recursive estimation is repeated with each of the maximum likelihood estimates of the ad-

ditional parameters of the model, beginning with their initially chosen starting values and

ending with the stable final estimates. Recall that our model is:

yt = Xtβt + vt

vt ∼ i.i.d.(0, σ2
v)

βt = βt−1 +wt

wt ∼ i.i.d.(0, Q)

The scalar yt is the outcome in time t. Design vector Xt is a 1× k vector of explanatory

variables measured at time t. Coefficient vector βt is a k × 1 vector of estimates at time t.

The scalar vt and vectorwt (k×1) are mean-zero normally distributed noise. The parameters

σ2
v and Q (k × k) are their respective variances. Based on these assumptions, estimation

proceeds as follows:

1. Select initial values for the parameters: β0, Q, σ2
v , and the covariance matrix of inno-

vations (or prediction errors) Σ0.

2. Run the Kalman filter to obtain values for the innovations (prediction errors) from the

model, v, and their covariance.

3. Use the estimates obtained from the Kalman filter to estimate β0, Q, σ2
v , and Σ0 using

maximum likelihood.

A2



4. Repeat step 2 using the estimates from step 3 in place of the starting values selected

in step 1.

5. Repeat step 4 until the estimates of β0, Q, σ2
v , and Σ0 or the likelihood stabilizes.

The recursion for the Kalman filter proceeds as follows. At time 0, the following two

steps are unique and take the place of steps one and two in the next list:

1. Calculate an expectation of β1, conditional on β0. We assume that β follows a random

walk, therefore our expectation of its next period value is always its current estimate:

βt|t−1 = βt−1|t−1. Likewise: β1|0 = β0

2. Calculate an expectation of the covariance of innovations to β1, conditional on Σ0 and

Q. We refer to this as P : P1|0 = Σ0 +Q.

From time 1 through time t, the following steps are taken:

1. βt|t−1 = βt−1|t−1

2. Pt|t−1 = Pt−1|t−1 +Q

3. Calculate the predicted value of y conditional on expectations from time t− 1:

yt|t−1 = Xtβt|t−1

4. Calculate the prediction error in time t: ηt|t−1 = yt − yt|t−1

5. Calculate the Kalman gain for period t, i.e. the proportion of uncertainty in each

parameter in βt attributable to uncertainty regarding the parameter relative to the

full uncertainty in the model:

Kt =
Pt|t−1X

′
t

XtPt|t−1X
′
t + σ2

v
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6. Update estimate of effect coefficients, βt|t, based on prediction error and Kalman gain:

βt|t = βt|t−1 +Ktηt|t−1

The value of βt|t is our estimate of βt.

7. Update expectation of the covariance of parameters, Pt|t, based on Xt and σ2
v :

Pt|t = Pt|t−1 −
Pt|t−1X

′
t

XtPt|t−1X
′
t + σ2

v

XtPt|t−1

This can also be expressed as:

Pt|t = [I −KtXt]Pt|t−1
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B Appendix: Explanatory variables from previous de-

fense spending studies

Table A.1: Explanatory variables from previous work

Concept Measure/data source Citations

Inertia or fatigue/burden of defense
spending

lagged real congressional defense ap-
propriation; (lagged) defense spending
as % of GDP; current military bud-
get request; current presidential bud-
get request; budget authority for de-
fense; defense spending as % of total;
lagged % change in defense spending;
% change in ratio of defense price de-
flator to GDP deflator

Ostrom 1977, Cusack & Ward 1981,
Griffin, Wallace & Devine 1982,
Majeski 1983, Kamlet & Mowery 1987,
Correa & Kim 1992, Cusack 1992,
Hartley & Russett 1992, Majeski 1992,
Higgs & Kilduff 1993, Su, Kamlet &
Mowery 1993, Wlezien 1996, Whitten
& Williams 2011

Labor interests (lagged) national (union/non-union)
unemployment rate; lagged predicted
unemployment; avg. duration of un-
employment in weeks; % of civilian la-
bor force employed 15 weeks or longer;
change in unemployment by quarter;
an index of corporatism; % of work
days lost to strikes; military conscrip-
tion; % change in unionization rate

Griffin, Wallace & Devine 1982, Os-
trom & Marra 1986, Kamlet & Mowery
1987, Kiewiet & McCubbins 1991,
Kiewiet & McCubbins 1991, Correa &
Kim 1992, Cusack 1992, Majeski 1992,
Su, Kamlet & Mowery 1993, True 2002

Election cycles indicator for year preceding or coin-
ciding with on-year elections; indicator
for year n following presidential elec-
tion; indicator for presidential election
year with incumbent competing, years
to next presidential election

Nincic & Cusack 1979, Cusack & Ward
1981, Griffin, Wallace & Devine 1982,
Zuk & Woodbury 1986, Kamlet &
Mowery 1987, Cusack 1992, True 2002,
Whitten & Williams 2011

Arms race/Soviet threat lagged or current real Soviet defense
spending; lagged change in Soviet de-
fense spending; lagged (change in)
Soviet minus U.S. military spend-
ing; lagged average U.S.-Soviet conflict
score from Conflict and Peace Data
Bank; ratio of Soviet to U.S. strategic
warheads; Correlates of War composite
indicator of national capability

Ostrom 1977, Cusack & Ward 1981,
Griffin, Wallace & Devine 1982,
Majeski 1983, Ostrom & Marra 1986,
Kamlet & Mowery 1987, Correa & Kim
1992, Cusack 1992, Hartley & Russett
1992, Su, Kamlet & Mowery 1993, True
2002, Whitten & Williams 2011

War/tension/hostility count of years since start of ongo-
ing war; Correlates of War tension
score; “war commitment” index de-
creasing with years of involvement;
lagged (change in) U.S. service mem-
bers killed in action; estimated (change
in) U.S. war costs; estimated Soviet war
costs; other NATO defense spending;
other Warsaw Pact defense spending;
sum of annual Correlates of War milita-
rized interstate dispute hostility scores

Nincic & Cusack 1979, Cusack &
Ward 1981, Griffin, Wallace & Devine
1982, Ostrom & Marra 1986, Zuk &
Woodbury 1986, Kamlet & Mowery
1987, Correa & Kim 1992, Cusack 1992,
Su, Kamlet & Mowery 1993, Whitten &
Williams 2011
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Public opinion indicator of negative opinion on de-
fense spending; % support for presi-
dent; % saying economy is most im-
portant problem; inflation minus un-
employment raised to the power of pub-
lic opinion on the economy; % saying
foreign affairs is most important prob-
lem; % saying Vietnam is most impor-
tant problem; ratio of Soviet to U.S.
defense spending raised to the power
of the diff. in public opinion on for-
eign affairs and Vietnam; change in
% saying U.S. spends too little on de-
fense; (lagged) net support for defense
spending; avg. preference for the same
spending level or with no opinion; %
supporting higher defense spending; %
supporting higher low-income entitle-
ments; (change in) lagged net dislike of
Soviet Union

Ostrom & Marra 1986, Correa & Kim
1992, Cusack 1992, Hartley & Russett
1992, Higgs & Kilduff 1993, Su, Kamlet
& Mowery 1993, Wlezien 1996

International aid foreign aid expenditures
True 2002

Government ideology party of the president; %/number of
(Northern) Democrats in House (Sen-
ate); lagged % change in Democratic
House seats

Griffin, Wallace & Devine 1982, Kamlet
& Mowery 1987, Cusack 1992, Wlezien
1996

Economy change in nat. consumption and in-
vestment spending; (lagged) inflation
(by category of veteran benefits and
by category of entitlements); indica-
tor for recession year; predicted full
employment GDP minus actual GDP
(GDP gap); GDP gap, manufacturing
only; U.S. (Soviet) real (nominal) GDP
(per capita); % change GDP; % change
in monopoly capital sector profits; in-
flation by quarter; GDP as % of to-
tal OECD GDP; money supply in con-
stant (current) dollars; GDP deflator;
% change in share of manufacturing as-
sets held by largest 200 corporations; %
change in poverty rate

Nincic & Cusack 1979, Griffin, Wal-
lace & Devine 1982, Kamlet & Mowery
1987, Correa & Kim 1992, Cusack 1992,
Majeski 1992, Su, Kamlet & Mowery
1993, Whitten & Williams 2011

General federal spending civilian federal outlays as % of GDP;
federal revenue as % of GDP; pro-
jected (actual) revenue; projected (ac-
tual) (change in) federal deficit; outlays
(un)controllable by Congress (presi-
dent); revenue in pres. budget pro-
posal; revenue in Congress budget; %
change in ratio of non-defense price de-
flator to GDP deflator; fiscal year indi-
cators

Griffin, Wallace & Devine 1982,
Majeski 1983, Ostrom & Marra 1986,
Kamlet & Mowery 1987, Hartley &
Russett 1992, Majeski 1992, Su, Kam-
let & Mowery 1993

Note: Though we build on their analysis, Whitten & Williams (2011) do not consider U.S. defense spending. Therefore, we
have included only their variables we consider meaningful in the U.S. context.
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C Appendix: Summary statistics

Min Max Mean Std Dev Obs
Year 1966.00 2007.00 1986.50 12.27 42.00

% Change in defense spending -8.90 24.74 2.27 7.57 42.00
Lag Defense Spending 52075.00 556290.00 228542.57 131887.93 42.00

International Aid 2479.00 30513.00 7085.52 4853.28 42.00
War/Tension 0.00 1.00 0.48 0.51 42.00

Lag Unemployment 3.49 9.71 5.89 1.50 42.00
Presidential Election Year 0.00 1.00 0.17 0.38 42.00

Lag Soviet Spending 24300.00 317900.00 129718.76 99864.17 42.00

Table A.2: Summary Statistics for Model 1

Min Max Mean Std Dev Obs
Year 1957.00 2010.00 1983.50 15.73 54.00

% Change in defense spending -8.90 24.74 2.44 7.22 54.00
Lag Defense Spending 34983.00 697763.00 222615.26 174427.24 54.00

Change in GDP -0.02 0.13 0.07 0.03 54.00
Lag Public Opinion 0.00 0.47 0.16 0.14 54.00
Lag Unemployment 3.49 9.71 5.86 1.46 54.00

Lag Congressional Ideology -0.13 0.15 -0.02 0.08 54.00
Hostilities 5.00 39.00 17.74 6.54 54.00

Presidential Election Year 0.00 1.00 0.15 0.36 54.00

Table A.3: Summary Statistics for Model 2
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Figure A.1: Standardized variables from model 1
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Figure A.2: Standardized variables from model 2
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D Appendix: Diagnostic tests on main model

In this section, we assess the primary assumptions underlying the DLM in our empirical

application. These are: independence, homoskedasticity, and normality of the (standardized)

residuals. Significance tests in the context of DLMs are typically much more reliable than

in standard linear regression models, precisely because the residuals are generally closer

to satisfying the assumption that they are independent random values (Commandeur &

Koopman 2007, p. 158). Nevertheless, this feature of the DLM should be substantiated

with appropriate diagnostic tests to ensure that the residuals are appropriately behaved.

We report here appropriate diagnostic tests for our second model of U.S. defense spending,

depicted in figure 2. The standardized residuals from this, our main model, can be seen in

figure A.3 below.
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Figure A.3: Standardized residuals from model 2

Following Commandeur & Koopman, we present results in order of importance of assump-

tions: first independence (2007, pp. 90–96). Table A.4 shows results from the Box-Ljung

test (see also, Petris, Petrone & Campagnoli 2009, pp. 93–95). The p-values reported in-

dicate the significance of tests for autocorrelation of various lags of the standardized model

residuals.
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Statistic p-value

Q(1) 0.1382
Q(2) 0.2907
Q(3) 0.3387
Q(4) 0.4055
Q(5) 0.5487
Q(6) 0.585
Q(7) 0.6378
Q(8) 0.6051
Q(9) 0.61
Q(10) 0.6994
Q(11) 0.7761
Q(12) 0.7141
Q(13) 0.7773
Q(14) 0.8284
Q(15) 0.8617

Table A.4: Box-Ljung tests for independence of standardized model residuals

The p-values are all greater than .05, which confirms with a high degree of confidence

that the standardized residuals are uncorrelated.

Turning to the homoscedasticity assumption, we examine this following Commandeur &

Koopman (2007, p. 92) by calculating the following statistic:

H(h) =

∑n

t=n−h+1 e
2
t

∑d+h

t=d+1 e
2
t

Here, et indicates the standardized residual at time t, d is the number of diffuse initial

elements (i.e. starting values of variances, of which there are two in our model), n is the

length of the time series, and h is the integer nearest (n− d)/3. The test statistic of 1.736 is

checked against the critical value of a two-tailed F -test with both degrees of freedom set to

h. For test statistics greater than one (like ours), we compare it to the upper 0.025 critical

level of the respective F distribution. Test statistics below one compare the reciprocal of the

test statistic to the upper 0.025 critical level of the respective F distribution. In our case,

the critical value of 3.474 is higher than our test statistic and therefore we do not reject the
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null hypothesis of homoscedasticity.

Finally, we examine the normality of standardized residuals. The Shapiro-Wilk normality

test returns a p-value of 0.1908, indicating that we cannot reject the null hypothesis of

normally distributed residuals and supporting this assumption in our model.
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F Appendix: Replicating True’s original time frame

This section presents DLM results for a regression using the exact time frame (1966–1992)

and the same independent variables as in True’s time-varying analysis (see True 2002). We

have repeated the analysis twice. First, we use both True’s exact measure of the dependent

variable — dollar amount annual changes in U.S. defense spending — and his measure of

lagged spending, which is a simple lag of the dollar amount annual changes in U.S. defense

spending. Secondly, we run the analysis again with our preferred measures: percentage

annual changes in U.S. defense spending as dependent variable and the lagged level of real

defense spending. As in the main text, our findings differ somewhat from those reported by

True in both cases.

Time-varying coefficient estimates with confidence intervals for the dollar amount changes

reported by True are plotted in figure A.6. For one, we find a systematic positive relationship

between periods of war or international tension and changes in U.S. defense spending only

during the Reagan buildup and the wind-down in defense spending following the Vietnam

war. The relatively small drop-offs in defense spending following the end of the Gulf War

flip this association to an apparently negative one. This is a result of considering the time

series as a whole, rather than artificially subsetting it into epochs. As noted in the main

text, the DLM allows us to detect changes in the effects of war or tension over time, therefore

the most appropriate way for us to examine True’s ideas is to combine the three dummy

variables for Vietnam, the Gulf War, and the Reagan buildup into a single dummy variable.

International support (aid), on the other hand, exhibits a pattern that resembles True’s

findings rather well. The confidence intervals in figure A.6 are difficult to discern, but the

association between international aid and actual changes in U.S. defense spending is positive

and significant in the mid-1980s, as True also finds. Soviet spending is also estimated to have

an effect in line with True’s findings, though we identify a positive association with actual

changes in U.S. defense spending and total Soviet defense spending to exist throughout the

period, once we account for the entire time series.
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when Soviet spending was above average, U.S. defense spending was likely to experience an

increase and when Soviet spending was below its average U.S. spending was more likely to

be cut.
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H Appendix: Sample simulation code

Below is sample R code for running a simulation of the analyst’s own creation. We recom-

mend altering the parameters and model structure in this code as needed to build simulations

that demonstrate the feasibility of a DLM recovering the “true” parameters in real data of

the same length and with the same type of (expected) dynamics in the analyst’s own data.

library(ggplot2) #(version 2.2.1)

library(dlm) #(version 1.1-4)

library(MASS) #(version 7.3-47)

library(zoo) #(version 1.8-0)

library(data.table) #(version 1.10.4)

# Set random seed to ensure replicability

set.seed(9715)

# Set length of simulated time series

length.of.series <- 60

# Simulate true time-varying effects

## Beta 1 = randomly determined constant (near 7)

b1 <- rep(x = rnorm(n = 1, mean = 7, sd = 1),

times = length.of.series)

## Beta 2 = randomly evolving (period effect modified by standard normal draw)

b2 <- rep(x = NA, times = length.of.series)

b2[1] <- 1

for (i in 2:length.of.series) {
b2[i] <- b2[i-1] + rnorm(n = 1, mean = 0, sd = 1)

}

## Beta 3 = Trend downward from 6 (on average) for the first half of the

## time series, then trend upward (on average) for the second half

b3 <- rep(NA, length.of.series)

b3[1] <- 6

for (i in 2:length.of.series){
if (i < length.of.series * .5) {

b3[i] <- b3[i-1] + rnorm(n = 1, mean = -.9, sd = 1)

} else {
b3[i] <- b3[i-1] + rnorm(n = 1, mean = .5, sd = 1)

}
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}

## Beta 4 = Gaussian noise variation over time around 5

b4 <- rnorm(n = length.of.series, mean = 5, sd = .5)

## Beta 5 = Constant effect (equal to -7)

b5 <- rep(-7, length.of.series)

## Beta 6 = Equal to -10 for 15 periods, then jumps to 9

## and stays constant

b6 <- rep(-10, 15)

b6 <- c(b6, rep(x = 9, times = (length.of.series - 15)))

# Group simulated betas into a matrix

B <- as.matrix(cbind(b1, b2, b3, b4, b5, b6))

# Generate X as a series of standard normally distributed random draws

x1 <- rnorm(length.of.series)

x2 <- rnorm(length.of.series)

x3 <- rnorm(length.of.series)

x4 <- rnorm(length.of.series)

x5 <- rnorm(length.of.series)

x6 <- rnorm(length.of.series)

# Group x’s into a matrix

X <- as.matrix(cbind(x1, x2, x3, x4, x5, x6))

# Set simulated variance of y

sig2 <- 1

#################################################

# Calculate y as a linear function of x * beta

# and a random error term

## Calculate mean value of Y

mu <- rowSums(B * X)

## Generate simulated error terms

errors <- rnorm(n = length.of.series, mean = 0, sd = sqrt(sig2))

## Calculate y

y <- mu + errors

# Generate time period (vector of times)

time.period <- 1:length.of.series

# Generate time series objects for analysis

data <- ts(X, start = min(time.period))
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y <- ts(y, start = min(time.period))

#################################################

# Run the model

## Function to build the DLM

buildTVP <- function(u) {
dlmModReg(X, addInt = F, dV = exp(u[1]),

dW = exp(u[2:num]),

m0 = rep(0, (num - 1)),

C0 = 1e+07 * diag((num - 1)))

}

## Pick right dimension of priors for size of the X matrix

num <- NCOL(X)+1

## Estimate DLM starting values

outMLE <- dlmMLE(scale(y), parm = rep(0, num), buildTVP, hessian = T,

method = "BFGS")

## Build smoothing model

mod <- buildTVP(outMLE$par)

## Run filter

filtered <- dlmFilter(scale(y), mod)

## Run smoother on filtered results

results <- dlmSmooth(filtered)

#################################################

# Set up labels and data matrix of results

## Add one to time period to accomodate a single coefficient forecast

## from filtering stage (this gets dropped when plotting)

time.period.est <- c(time.period, (max(time.period) + 1))

## Extract smoothed parameter estimates

param <- results$s

colnames(param) <- c(paste0("beta", 1:ncol(param)))

##Store parameter labels for matrix to send to plot

labels <- rep(colnames(param), nrow(param))

##Generate data matrix to send to graph

to.graf <- as.data.frame(cbind(labels[order(labels)],

as.vector(param),

rep(x = time.period.est, times = ncol(param))),

stringsAsFactors= F)

## Column names for data matrix to plot
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names(to.graf) <- c("param", "value", "year")

# Calculate and format smoothed confidence intervals

## Calculate variance-covariance matrix of parameters

## at each discrete time point

vc.mats <- dlmSvd2var(results$U.S, results$D.S)

## Initialize empty list for confidence interval data matrices

intervals <- list()

## Extract confidence 95% intervals for coefficient

## estimates at each discrete time point

for (i in 1:nrow(param)) {
intervals[[i]] <- as.data.frame(cbind(colnames(param),

param[i,] - 1.96 * sqrt(diag(vc.mats[[i]])),

param[i,] + 1.96 * sqrt(diag(vc.mats[[i]])),

rep(x = time.period.est[i], times = ncol(param))),

stringsAsFactors = F)

}

## Munge the confidence intervals into a plot-ready format

cis <- as.data.frame(rbindlist(intervals))

names(cis) <- c("param", "ci.lo", "ci.hi", "year")

## Merge together confidence intervals and point estimates

final.to.graf <- merge(to.graf, cis)

final.to.graf[, 2:5] <- apply(final.to.graf[, 2:5], 2, as.numeric)

#################################################

# Generate separate coefficient plots

## Generate plot labels for coefficient graphs

labs <- c("Beta 1","Beta 2","Beta 3","Beta 4","Beta 5","Beta 6")

## Remove final forecast of coefficients

params <- final.to.graf[final.to.graf$year != max(time.period.est), ]

## Split parameter estimates plus confidence intervals

## by explanatory variable

sep <- split(params, params$param)

## Extract column titles for later

column.titles <- colnames(sep[[1]])

## Place ‘true’ simulated betas on same scale as coefficient

## estimates from the model estimated on standardized y

B.for.plot <- (B - mean(y)) / sd(y)
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## Produce graphs

## Loop over explanatory variables, plotting each one

for (i in 1:length(sep)) {
#Reorder data for printing by time period variable: "year"

sep[[i]] <- sep[[i]][order(sep[[i]]$year), ]

# Produce matrix of estimates and true beta

out <- cbind(sep[[i]], B.for.plot[,i])

# Name columns in that matrix

names(out) <- c(column.titles, "actual")

# Set plot parameters

y.hi <- 1.2 #(upper limit of plot range)

y.lo <- -1 #(lower limit of plot range)

# Print plot to screen

ggplot(out, aes(x = year)) +

geom line(aes(y = value), linetype = "dashed") +

geom ribbon(aes(ymin = ci.lo, ymax = ci.hi, alpha = .001)) +

scale y continuous("Coefficient", limits = c(y.lo, y.hi)) +

scale x continuous("Time") +

theme(panel.background = element blank(), legend.position = "none",

axis.line = element line(colour = "black")) +

ggtitle(labs[i]) +

geom hline(yintercept = 0, linetype = "dashed", color = "red") +

geom line(aes(y = actual), col = "blue")

# Save graph for later

# (Uncomment line to run)

# ggsave(file = paste0("sim beta ", i, ".pdf"), width = 5, height = 3)

}
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I Appendix: Main results without smoothing

This section presents the results of our main analysis excluding the Kalman smoothing step.

As we have mentioned, the Kalman smoothing step follows filtering and uses a backward-

recursion to condition each period’s parameter estimates on the conditional estimates of the

parameters at time t + 1 (Petris, Petrone & Campagnoli 2009, Shumway & Stoffer 2010).

The variances of each time period’s coefficient estimates tend to be very large earlier in the

time series for filtered models, because filtered estimates are conditioned only on the first

t observations. If t is small, i.e. earlier in the time series, then uncertainty is relatively

large. The smoothed estimates have less uncertainty because they condition each period’s

coefficient estimates on the full time series. Conditioning on the full time series can also

have the effect of “smoothing” out coefficient estimates that are overly large, given all of the

information in the data, pushing dynamic coefficient estimates toward displaying less change

over time.

Choose to apply smoothing, versus simply filtering a DLM, is a choice that many rec-

ommend be made depending on the purpose of the model (See, for example Petris, Petrone

& Campagnoli 2009). Filtering only is the most effective approach for forecasting future

outcomes from time series. However, to examine dynamic evolution of the underlying states

- i.e. our coefficient estimates - in a context in which we are interested in the political process

underlying the data, smoothing is generally best because it reexamines each filtered estimate

using all of the information in the time series.

We argue, based on this reasoning, that applying a smoother to our models is the right

decision. However, we present the filtering-only results in this section to address the concern

that the filtered and smoothed results look very different from one another. If the smoothed

results were dramatically dampening the shape of the dynamic estimates from the filter,

then we would be concerned that our final model understates the evidence for dynamic

relationships in our data.

Figure A.16 shows the results from our main model (model 2 in the main text) using only
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