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Online Appendix A: Theoretical model 

 

This appendix presents in detail the theoretical model outlined in section 3 of the main paper. 
Section A1 gives details of the modelling methods and assumptions. Section A2 demonstrates 
that the model converges to give an optimal eating policy. Section A3 examines the 
consequences of varying each of the principal parameters of the model. Section A4 gives 
details of implementation, code availability and instructions for running the model.  

 

A1. Modelling framework 

As described in the main paper (section 3), we consider individuals who carry some level of stored fat 
reserves r (0 ≤ r ≤ 50) with an energy requirement e(r) in each time period as follows: 

𝑒(𝑟) = 𝑎 +  𝑏𝑟 

Here, a is a fixed lean-mass metabolic requirement, and b is a parameter controlling how strongly the 
energy requirement increases with increasing body weight. All results unless otherwise stated use the 
simplest possible scenario of a = 1 and b = 0. That is, the energy requirement is assumed to be a fixed 
1 unit of energy in each time period. Sections 3.1 and 3.2 of this document explore the consequences 
of varying a and b.  

The individual is deemed to have starved to death if energy reserves fall to zero. Where reserves are 
greater than zero, survival each period is given by:  

𝑠(𝑟) =  
1

1 + 𝑒−𝑥(𝑟−𝑤)
− yr 

 

As we can see, this function has two additive components. First, there is a logistic function increasing 
in reserves. This models the probability of avoiding death by starvation, and the logistic function is 
used to capture the intuition that death by starvation in a time period, which is certain at r = 0, rapidly 
becomes very unlikely as long as the individual has a threshold level of reserves r = w. We use w = 1 
throughout unless specifically stated otherwise. The logistic function is controlled by a steepness 
parameter x. Where x is large (e.g. x = 10), the probability of avoiding starvation in a time period 
approximately follows a step function: 0 at reserves of 0, 0.5 at reserves of 1, 1 at reserves of 2. All 
results use x =10 unless otherwise stated. The second component of the survival function is a linear 
decrease in survival with increasing resources. This models the increase in morbidity and decrease in 
mobility as the individual becomes heavier. It is controlled by another steepness parameter y, which 
represents the survival cost of each additional unit of weight. We use y = 0.01 throughout except 
where otherwise stated. We explore the consequences of varying w, x and y for optimal eating and 
weight regulation in sections 3.3 and 3.4 of this document.  

Each time period, the individual finds food with probability p. If food is available, the individual 
consumes n units (0 ≤ n ≤ N; N = 10 unless otherwise stated); its reserves will thus change by n – e(r) 
units. If it does not find food, its reserves will change by –e(r). We consider the consequences of 
varying N, the maximum amount of energy that can be consumed in a time period, in in section 3.5 of 
this document.   
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To compute the optimal policy, we consider a run of T time periods (the value of T = 100 is used for all 
results presented; see section 2). We need to determine the survival function F(r, t), which gives the 
maximum probability of survival to time T for an individual with fat reserves r at time t. First, we note 
that if the individual is still alive at the final time period, then they have survived. Hence: 

𝐹(𝑟, 𝑇) =  {
1                    𝑟 > 0
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

For each earlier time step, we can write down the dynamic programming equation:  

𝐹(𝑟, 𝑡)

=  {
max

𝑛
(𝑠(𝑟)[𝑝(𝐹(𝑟 + 𝑛 − 𝑒(𝑟), 𝑡 + 1) + (1 − 𝑝)(𝐹(𝑟 − 𝑒(𝑟), 𝑡 + 1)])           𝑟 > 0

 0                                                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Note that the metabolic requirement in each time period is rounded to the nearest full unit, and the 
amount eaten also has to be an integer number of units. Given that we now have a survival function 
for the final time period, and for each time period given the next step, we can work backwards to time 
1 by repeated application of the dynamic programming equation. This allows us to determine n*, 
which is the amount to eat that produces the maximum survival probability for each possible value of 
r when t = 1. This is what is referred to throughout as the optimal policy; the amount to eat that 
maximizes survival into the distant future for every possible level of current fat reserves.  

A2. Model convergence 

Figure A1 shows the optimal amount to eat, as determined by application of the dynamic 
programming equation, for each possible level of current reserves at each time period, with T = 100. 
In the final few time periods, individuals maximise survival by stopping eating in order to reach the 
terminal time point with no excess. However, as long as the terminal time point is moderately distant, 
an optimal eating policy emerges that depends on current reserves only and not on time. This 
convergence occurs for all values of p within fewer than 20 time periods. Thus, using n* at t = 1 with 
T = 100 as the eating policy that maximizes survival into the distant future appears justified.  

 

Figure A1. Amount to eat that maximises survival to time period 100 (colours), in relation to 
current time period (horizontal axis) and current reserves (vertical axis), for p = 0.5. All other 
parameters have their default values.  
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A3. Varying model parameters 

This section investigates the effects of changing the values of each of the principal parameters of the 
model on the relationship between food security and fat reserves.  

A3.1 Varying the fixed metabolic requirement 

In section 3 of the main paper, the fixed component a of the metabolic requirement per time period 
is set to 1. Here we investigate the consequences of varying it. Repeating figure 1B of the main paper 
but with a set successively to 1, 2 and 3 produces the results shown in figure A2. Increasing a leads, 
unsurprisingly, to optimal policies that eat more per time period, but decreasing food security p still 
produces the same qualitative effect: it leads to eating more at a given level of reserves. In fact, the 
impact of p on amount eaten and hence reserves maintained becomes more marked when a is larger.  

 

Figure A2. Figure 1B of the main paper repeated with different values of a, the fixed 
component of the metabolic requirement per time period. All other parameters have their 
default values. 

A3.2 Varying the mass-dependent metabolic requirement 

In section 3 of the main paper, b (the mass-dependent component of metabolic requirement) is set to 
zero in order to illustrate the simplest possible scenario. Here we investigate the consequences of 
giving this parameter a non-zero value, though we only consider cases where b < a, since lean mass 
has a larger influence on metabolic rate than fat mass (Garby et al., 1988; Johnstone, Murison, Duncan, 
Rance, & Speakman, 2005). Holding a at 1, we consider three values of b, 0, 0.2, and 0.5. For each level 
of b, we plot the optimal policy for four values of p (0.4, 0.6, 0.8 and 1), as in figure 1B of the main 
paper. Figure A3 shows the results.  

The central result—that the optimal point to start eating and the optimal amount to eat increase as p 
decreases—is not altered by increasing the value of b up to 0.5. In fact, the increase in food 
consumption as p decreases becomes more marked with increasing b. This is because the eating 
policies for lower p have to eat to fund the additional metabolic requirements of the buffer they will 
need to build up, whereas the policies for higher p will build up little buffer and hence experience little 
increased metabolic cost.  
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Figure A3. Figure 1B of the main paper repeated with different values of b, the parameter 
controlling how strongly metabolic requirements per time period increase with increasing 
weight. All other parameters have their default values. 

A3.3 Varying the parameters of the logistic component of the survival function 

In results presented thus far, the survival function in each time period steps up abruptly around r = 1, 
so that starvation, which is certain at r = 0, is essentially impossible at r = 2. We can vary this 
assumption in two ways. First, we can increase the value of the location parameter w in the logistic 
component of the survival function. This has the effect of moving the fitness cliff-edge to the right 
without changing its steepness (figure A4, panel A). Figure A4 panel B shows the consequences of 
increasing w for the relationship between food security and steady-state target reserves (i.e. the level 
at which the individual will stabilise under the optimal policy if it finds enough food to do so). As the 
figure shows, and unsurprisingly, increasing w increases the steady-state target level of fat reserves 
at any value of p. It does not however, change the gradient of the relationship between p and steady-
state fat reserves. Thus, increasing w should be expected to produce individuals who are fatter at all 
levels of p, but no more or less responsive to their level of food insecurity.  

 

 

Figure A4. A. The probability of survival against current fat reserves for three values of the 
logistic location parameter w. B. The steady-state level of fat reserves that optimally-
behaving individuals reach if they find food in every period against p, the level of food 
security, for three values of w. All parameters other than x have their default values. This 
figure is reproduced as part of figure 3 of the main paper. 
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Second, we can change the steepness parameter x, and hence make the increase in survival more 
gradual with increasing reserves (figure A5, panel A). Figure A5, panel B, shows the effect of food 
security on steady-state target reserves (i.e. the level at which the individual will stabilise under the 
optimal policy if it finds enough food to do so), for different values of the steepness parameter x. As 
the figure shows, decreasing x leads to individuals optimally carrying more fat. This is unsurprising 
since the effect of decreasing x is to move the point of maximal survival to the right (see figure A5, 
panel A). However, a secondary effect of reducing x is that individuals become somewhat less 
responsive to food insecurity; the difference in optimal reserves between p = 0.4 and p = 1 is 5 units 
when x = 10, but only 2 units when x = 0.5. Thus, a survival function that is less step-like at the lower 
end leads to individuals carrying more fat, but also being somewhat less responsive to their food 
security.  

 

Figure A5. A. The probability of survival against current fat reserves for three values of the 
logistic parameter x. B. The steady-state level of fat reserves that optimally-behaving 
individuals reach if they find food in every period against p, the level of food security, for 
three values of x. All parameters other than x have their default values. This figure is 
reproduced as part of figure 3 of the main paper. 

A3.4 Varying the steepness of the linear component of the survival function 

The slope of the right-hand arm of the survival function is controlled by the parameter y in the model. 
In this section we investigate the consequences of making y larger, and hence the survival cost of every 
extra unit of weight greater. We do this by considering the consequences of using y values of 0.05 and 
0.2 as well as the 0.01 used until this point (whilst keeping all other parameters, including x, at their 
usual values). This produces the three survival functions shown in figure A6, panel A. 

We now compute the steady-state target reserves (i.e. the level at which the individual will stabilise 
under the optimal policy if it finds enough food to do so), for different values of y (figure A6, panel B). 
As the figure shows, a higher y leads to individuals carrying less fat at all levels of p except p = 1. 
Moreover, increasing y also makes individuals less responsive to food insecurity. The difference in 
steady-state reserves between p = 1 and p = 0.4 is 5 units for y = 0.01. It is only 1 units for y = 0.2. This 
is a logical result: making the carrying of a buffer more costly reduces the size of buffer individuals 
should carry.  
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Figure A6. A. The probability of survival against current fat reserves for three values of the 
parameter y. B. The steady-state level of fat reserves that optimally-behaving individuals 
reach if they find food in every period against p, the level of food security, for three values of 
y. All parameters other than y have their default values. This figure is reproduced as part of 
figure 3 of the main paper.  

A3.5 Varying the energy density of food 

As a final variation of the parameters of the model, we investigate limiting N (the maximum energy 
available from food per time period assuming food can be found). The previously used value of N = 10 
effectively meant that individuals could build up a large reserve in a single time period in which food 
is available. We now explore setting N at the lower values of 3 and 2; this captures a situation where 
even when food is available, its energy-density is not sufficient to be able to consume many more 
calories than needed for metabolism in a given period. First we show the consequences of following 
the optimal eating policy and finding food in every period, for high food insecurity (p = 0.4), for the 
different values of N (figure A7). As the figure shows, the lower N is, the higher the individual’s steady-
state target weight (this is only true for high levels of food insecurity, p < 0.6). However, the lower N 
is, the more slowly the individual is able to put on weight to attain that target.  

 

Figure A7. Level of fat reserves over time for individuals experiencing p = 0.4 who start with 
reserves of 1, follow the optimal eating policy, and find food every period for three values of 
the maximum energy available from food per period (N). All other parameters have their 
default values. 



Nettle, Andrews & Bateson  Appendix A 
 

7 
 

Next, we consider the consequences of decreasing N for the relationship between food security and 
average reserves/weight. We do this by repeating the simulations underlying figure 1D of the main 
paper, but with N = 2 as well as N = 10. The results are shown in figure A8. As the figure shows, when 
N = 2, the variance in individual weight within a value of p becomes substantial, particularly when p is 
low. This is because although individuals have a high steady-state target weight, in practice they are 
often operating well below it, because stochastic runs of foodless periods reduce their reserves, and 
it takes them a long time to build their reserves back up again because of the limited energy available 
in the periods when they do find food. The effect of this increased variability within groups of 
individuals at the same level of p is to attenuate the statistical relationship between p and mean 
weight. In the data underlying the left (N = 10) panel of figure A8 (and excluding individuals for whom 
p = 1), the value of p explains 77% of the variance in mean body weight. In the data underlying the 
right (N = 2) panel, the value of p explains only 20% of the variance in mean body weight, even though 
the relationship between steady-state target weight and food insecurity is actually steeper for the N 
= 2 world than the N = 10 world.  We consider how variation in the energy-density of available food 
might explain differences between high- and low-income countries in terms of the relationship 
between food insecurity and obesity in section 6.3 of the main paper.  

 

Figure A8. Mean body weight over 40 periods for simulated individuals at different levels of 
p, for two different values of the maximum energy available from food per period, N. Points 
have been jittered in the horizontal dimension to make individual data points more visible.  All 
other parameters have their default values. This figure is reproduced as figure 4 in the main 
paper.  

 

A4. Implementation and code availability 

The model is programmed as a series of functions in R (R Core Development Team, 2015) and available 
via the Open Science Framework at https://osf.io/zarn6/. There are two R scripts. Sourcing the script 
‘obesity model functions.r’ makes all the functions underlying the model available and allows for the 
user’s own exploration of the model. The second script, ‘obesity model for replication.r’ produces all 
the figures and output from this document and the main paper, and relies on ‘obesity model 
functions.r’ having previously been run.  

The main functions are as follows. The policy function gives the optimal eating policy for a given value 
of p, in the form of a vector corresponding to increasing levels of current reserves. Thus policy(p=0.5) 
will produce the a vector of 50 optimal amounts to eat corresponding to reserves of 1-50, for the 
specified value of p. In this and other functions, the parameters w, x, y, a, b and N are given their 

https://osf.io/zarn6/
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default values unless otherwise specified (i.e. w=1, x=10, y=0.01, a=1, b=0, N=10; you can vary them 
by specifying the required value in the function call). The simulate.food function gives the weight 
trajectory of an individual who follows the optimal eating policy for a given value of p and finds food 
every time period. Its output is a vector indexed by time period. For example, 
simulate.food(current.p=0.8, reps=20) gives a vector of reserve/weight levels corresponding to 20 
successive time periods for an individual following the optimal policy for p=0.8.  

The simulate function is the same as simulate.food except that food is found with probability p in each 
time period. Thus, every run is unique. The call simulate(current.p=0.8, reps=20) gives a weight history 
for an individual facing p=0.8 and following the optimal policy. The first ten time periods are removed 
to avoid initialization artefacts. NA means the individual has died. Finally, run.of.simulations 
automates a run of many simulations for varying values of p and saves the output (see script for 
details).   
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