Online Supplementary Information McInerney, Strömberg and White, Paleobiology, 2011

SUPPLEMENTARY TABLE 1. Purity of heavy liquid (phytolith) yields estimated by comparing relative abundances of different types of phytoliths, other biogenic silica, and non-biogenic silica.

TABLE 1A. Heavy liquid yield (dry weight) expressed as (mass extract)/(mass sample) (%), and numeric (unweighted) composition of heavy liquid yields expressed as proportion (%) in number of particles of different origin.

				_	Numeric (unweighted) composition $(\%)^1$												_									
						DIP		_		NDG		_		NDO				OB		_		NB		_	al	es
State	Sample number ²	UWBM ³ number	Age (Ma)	Heavy liquid yield, dry weight (%)	<10 µm	10-50 µm	=50 µm	DIP total	<10 µm	10-50 µm	>50 µm	NDG total	<10 µm	10-50 µm	>50 µm	NDO total	<10 µm	10-50 µт	>50 µm	OB total	<10 µm	10-50 µm	>50 µm	NB total	Phytoliths, tot numeric contribution	Total # particl counted
NE	LS25	4357	2-3	0.8	4.2	9.4	0.0	13.5	0.0	3.8	2.1	5.9	12.8	10.1	0.3	23.3	1.0	1.0	0.0	2.1	34.7	18.8	1.7	55.2	42.7	288
	LS24*	4358	2-3	3.5	0.0	0.4	0.0	0.4	0.0	0.4	0.0	0.4	1.1	3.6	0.4	5.0	1.8	0.7	0.0	2.5	57.3	32.4	2.1	91.8	5.7	281
	LS26	4359	5-5.5	2.2	5.1	14.3	0.7	20.2	0.0	8.8	1.8	10.7	10.3	20.2	0.7	31.3	0.7	2.6	0.4	3.7	19.5	12.9	1.8	34.2	62.1	272
	LS27	4360	5-5.5	1.7	9.2	8.8	0.4	18.4	0.0	10.7	1.5	12.1	19.1	10.3	1.1	30.5	2.9	2.6	0.0	5.5	21.3	10.3	1.8	33.5	61.0	272
	LS5*	4361	5-7	6.5	0.3	0.7	0.0	1.0	0.0	0.7	0.0	0.7	1.3	0.3	0.0	1.6	0.0	0.3	0.0	0.3	78.8	16.7	1.0	96.4	3.3	306
	LS4*	4362	5-7	8.9	0.0	0.0	0.3	0.3	0.0	0.3	0.0	0.3	3.0	1.3	0.0	4.3	0.3	0.0	0.0	0.3	76.6	16.8	1.3	94.7	4.9	304
	LS3	4363	5-7	1.0	0.9	1.7	0.0	2.6	0.0	0.6	0.0	0.6	2.0	1.4	0.0	3.4	0.0	0.0	0.0	0.0	83.7	9.1	0.6	93.4	6.6	350
	LS1*	4364	5-9	9.6	1.3	0.6	0.0	1.9	0.0	0.3	0.0	0.3	1.6	1.9	0.0	3.5	0.0	0.0	0.0	0.0	78.9	14.1	1.3	94.2	5.8	313
	LS13	4366	6-7	0.6	10.8	8.1	0.3	19.2	0.3	2.3	0.0	2.6	11.0	5.8	0.3	17.2	1.2	0.3	0.0	1.5	50.9	7.8	0.9	59.6	39.0	344
	LS12*	4367	6-7	1.4	0.9	1.5	0.3	2.6	0.0	0.3	0.0	0.3	1.5	2.6	0.3	4.4	0.0	0.0	0.0	0.0	50.9	40.4	1.5	92.7	7.3	344
	LS10*	4368	~/ (6-/)	0.6	0.6	1.8	0.0	2.5	0.0	0.9	0.3	1.2	1.5	1.8	0.3	3.7	0.3	0.0	0.0	0.3	/3.5	16.9	1.8	92.3	7.4	325
	KIM-A2	4365	5-9	n/a	8.3	3.5	0.0	11.8	0.8	1.6	0.0	2.4	9.8	7.1	0.0	16.9	2.0	0.0	0.0	2.0	63.0	3.9	0.0	00.9	31.1	254
	LS23	4369	9-10	10.5	0.6	1.5	0.0	2.2	0.0	0.6	0.3	0.9	1.5	3./	0.0	5.2	0.0	0.6	0.0	0.6	72.2	16.4	2.5	91.0	8.3	324
	LSI9	4370	9.5-10.8	8.4	2.0	3.4	0.0	5.4	0.0	1.1	0.0	1.1	1./	1.4	0.0	3.1	0.6	0.0	0.0	0.6	/8.1	11.6	0.0	89.8	9.7	352
	LS10 LS22*	43/1	9.5-10.8	5.4 2.2	0.8	5.4 1.2	0.0	4.8	0.0	1.1	0.5	1.4	0.8	5.0 1.2	0.3	0./	0.5	0.6	0.0	0.8	07.2	17.4	1./	80.3 04.4	5 2	337 204
	LS22.	4372	11.55-12.10	2.5	0.5	1.5	0.5	2.0	0.0	1.0	0.0	1.0	0.0	1.5	0.5	1.0	0.0	0.5	0.0	0.5	76.0	15.5	5.0	94.4	5.5	240
	Dower*	4373	17 5 18 8	2.5 n/o	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.0	2.0	0.0	+.3 2 2	0.3	0.0	0.0	0.9	70.2	21.5	2.5	94.0	0.3 3.4	349
ĸs	LS37	4374	5-9	11/a 5 0	0.0	1.8	0.3	20	0.0	2.1	0.0	0.3 2 1	1.8	2.2	0.0	3.0	1.0	0.0	0.0	0.3	57.4	31.3	1.3	90.5	- 3.4 • 8.0	383
Кb	1536	4376	5-9	2.0	0.8	3.0	0.5	44	0.0	11	0.0	14	1.0	0.8	0.0	2.2	0.0	1.1	0.0	1.0	57.8	30.1	3.0	91.0	79	365
	LS35*	4377	5-9	13	2.2	2.0	0.2	47	0.0	0.7	0.0	07	0.7	2.5	0.5	40	0.5	0.2	0.0	07	50.9	35.4	35	89.8	9 5	401
	LS43	4378	<8 (7-9)	1.0	14	17	0.0	3.1	0.0	1.0	0.0	1.2	17	3.6	0.0	5.2	17	1.0	0.0	2.6	57.2	29.9	0.7	87.9	9.5	421
	LS41*	4379	$\sim 8(7-9)$	1.0	2.5	2.2	0.0	4.7	0.0	0.3	0.3	0.5	1.6	19	0.0	3.6	0.0	0.0	0.0	0.0	75.3	15.6	0.3	91.2	8.8	365
	LS40	4380	~8 (7-9)	0.8	3.0	1.3	0.0	4.3	0.0	1.3	0.0	1.3	2.4	3.7	0.0	6.0	0.6	0.0	0.0	0.6	77.8	9.1	0.9	87.7	11.7	463
	Avg. All		- ()					5.6				2.1				8.0				1.2				83.1	15.8	
A	vg. 5 'pure	e'						16.6				6.7				23.8				2.9				49.9	47.2	

										Volu	metric	(weighte	ed) com	position	$(\%)^1$									
				DIP		_		NDG		_		NDO		_		OB		_		NB				•
State	Sample number ²	Age (Ma)	<10 µm	10-50 µm	>50 µm	DIP total	<10 µm	10-50 µm	>50 µm	NDG total	<10 µm	10-50 µm	>50 µm	NDO total	<10 µm	10-50 µm	>50 µm	OB total	<10 μm	10-50 µm	>50 µm	NB total	Phytoliths, total volumetric contribution	Purity class ⁴
NE	LS25	2-3	0.0	12.2	0.0	12.3	0.0	5.0	21.7	26.7	0.1	13.1	3.6	16.8	0.0	1.4	0.0	1.4	0.2	24.5	18.1	42.8	55.8	p
	LS24*	2-3	0.0	0.6	0.0	0.6	0.0	0.6	0.0	0.6	0.0	6.2	4.9	11.1	0.0	1.2	0.0	1.3	0.5	56.2	29.7	86.4	12.4	np
	LS20 LS27	5-5.5	0.0	13.9	5.7	19.0	0.0	8.6	14.5	22.8	0.0	19.6	5./	25.4	0.0	2.5	2.9	5.4	0.1	12.5	14.3	26.8	67.8	p
	LS27 LS5*	5-5.5 5-7	0.1	10.9 2 4	3.0 0.0	14.0	0.0	24	14.5	27.0	0.1	12.7	10.9	23.7	0.0	3.2 1.2	0.0	3.2 1 2	0.1	62.1	18.1	30.9 02 7	6.1	p
	LS5 LS4*	5-7	0.0	2.4	8.2	82	0.0	1.0	0.0	2.4	0.0	4.1	0.0	42	0.0	0.0	0.0	0.0	1.4	52.5	32.9	86.6	13.4	np
	LS3	5-7	0.0	9.6	0.0	9.6	0.0	3.2	0.0	3.2	0.1	8.0	0.0	8.1	0.0	0.0	0.0	0.0	2.2	51.3	25.6	79.1	20.9	ln
	LS1*	5-9	0.0	2.3	0.0	2.3	0.0	1.2	0.0	1.2	0.0	7.0	0.0	7.0	0.0	0.0	0.0	0.0	1.3	51.1	37.1	89.5	10.5	np
	LS13	6-7	0.1	22.4	6.4	28.9	0.0	6.4	0.0	6.4	0.1	16.0	6.4	22.5	0.0	0.8	0.0	0.8	0.6	21.6	19.2	41.4	57.8	p
	LS12*	6-7	0.0	2.4	3.8	6.2	0.0	0.5	0.0	0.5	0.0	4.3	3.8	8.1	0.0	0.0	0.0	0.0	0.4	65.9	19.0	85.3	14.7	np
	LS10*	~7 (6-7)	0.0	4.4	0.0	4.4	0.0	2.2	5.9	8.1	0.0	4.4	5.9	10.4	0.0	0.0	0.0	0.0	0.8	40.7	35.5	77.0	23.0	lp
	Kim-A2	5-9	0.2	21.4	0.0	21.7	0.0	9.5	0.0	9.5	0.3	42.9	0.0	43.1	0.1	0.0	0.0	0.1	1.8	23.8	0.0	25.6	74.4	p
	LS23	9-10	0.0	3.4	0.0	3.4	0.0	1.4	5.4	6.8	0.0	8.2	0.0	8.2	0.0	1.4	0.0	1.4	0.7	36.0	43.5	80.3	18.4	np
	LS19	9.5-10.8	0.1	18.9	0.0	19.0	0.0	6.3	0.0	6.3	0.0	7.9	0.0	7.9	0.0	0.0	0.0	0.0	2.0	64.7	0.0	66.7	33.2	lp
	LS16	9.5-10.8	0.0	6.6	8.8	15.5	0.0	2.2	4.4	6.6	0.0	11.0	4.4	15.5	0.0	1.1	0.0	1.1	0.6	34.2	26.5	61.3	37.6	lp
	LS22*	11.55-12.18	0.0	2.7	5.3	8.0	0.0	3.3	0.0	3.3	0.0	2.7	5.3	8.0	0.0	0.7	0.0	0.7	0.7	31.3	48.0	80.0	19.3	np
	LS21	11.55-12.18	0.0	0.0	0.0	0.0	0.0	3.5	0.0	3.5	0.0	6.3	22.5	28.8	0.0	1.4	0.0	1.4	0.9	37.3	28.1	66.2	32.3	lp
VO	Dawes*	17.5-18.8	0.0	1.3	5.2	6.5	0.0	0.7	0.0	0.7	0.0	4.6	0.0	4.6	0.0	0.0	0.0	0.0	0.7	45.7	41.8	88.2	11.8	np
KS	L837	5-9	0.0	3.6	4.2	7.8	0.0	4.2	0.0	4.2	0.0	4.2	0.0	4.2	0.0	0.0	0.0	0.0	0.5	62.5	20.8	83.8	16.2	np
	LS30 LS25*	5.0	0.0	4.5	0.5	10.7	0.0	1.0	5.2	4./	0.0	1.2	3.2 7 7	4.4	0.0	1.0	0.0	1.0	0.4	45.5	26 1	/0.0	19.8	np
	1 \$43	-9 <8 (7-9)	0.0	2.9	2.0	5.5 3 7	0.0	2.1	4.2	6.3	0.0	3.2 7 9	0.0	79	0.0	0.5	0.0	0.5	0.3	45.8	12.7	02.2 70 0	17.4	np
	LS41*	$\sim 8(7-9)$	0.0	8.9	0.0	8.9	0.0	11	4.2 8.9	10.0	0.0	7.7	0.0	7.8	0.0	0.0	0.0	0.0	1.4	63.1	89	73.4	26.6	ln
	LS40	~8 (7-9)	0.1	5.7	0.0	5.8	0.0	5.7	0.0	5.7	0.0	16.2	0.0	16.3	0.0	0.0	0.0	0.0	1.6	40.1	30.5	72.2	27.8	lp
	Avg. All	~ (/				9.4				7.1				12.8				0.9			2	69.9	29.2	-r
A	vg. 5 'pur	e'				19.4				18.6				26.3				2.2				33.5	64.3	

TABLE 1B. Volumetrically weighted composition (%) of heavy liquid yields. See text for explanation.

 1 DIP = diagnostic phytoliths; NDG = non-diagnostic (potential) grass phytoliths (e.g., cuneiform bulliforms, elongate sinuous, echinate, and dendritic, acicular hair cells); NDO = non-diagnostic phytoliths; OB = other biosilica, including diatoms, sponge spicules, and chrysophyte cysts; NB = volcanic ash and other non-biogenic silica; Phytoliths total contribution = DIP + NDG + NDO. ² Samples identified in bold are "pure." ³ UWBM = University of Washington Burke Museum of Natural History and Culture.

 4 p = pure; >50% phytoliths by volume; lp = less pure; 20-50% phytoliths by volume; np = not pure; <20% phytoliths by volume.

* Assemblages not included in quantitative assemblage analysis because of insufficient preservation.

													Phy	tolith m	orphotypes,	, relative	e abundan	ce of to	tal coun	$t(\%)^5$	-				
								Non	hing	Non n	hr:talit	h hiar	DIP		GSSC										
			Stable	carbon i	sotones	Preservation		NON- sil-	-biog.	Non-p	nytonu silica ⁴	n biog.			0350	PACM						Tree	over		
			Stable	carbon	solopes	Freservation	0	511	lca		sinca		-			FACM	AD IOI	-				IIee (lover	-	
State	Sample number	Absolute age (Ma)	δ ¹³ C (‰ VPDB)	Standard deviation (‰)	# Replicate measurements	Qualitative ²	Semi-quantitative index ³	Secondary silica	Volcanic ash	Diatoms	Chrysophyte cysts	Sponge spicules	AQ	FI TOT (incl. Palm)	CH TOT + POOID-D + POOID-ND	PAN + CHLOR	PACMAD general	OTHG	NDG	NDO	Grass % out of DIP + NDG	FI-t ratio (%)	FI-t ratio 95% C.I. (%)	FI TOT+GSSC count	Total phytolith count
NE	LS25	2-3	-17.1	0.35	2	G (et, fra)	2.5	р	mab	р	n.o.	n.o.	0.3	7.5	20.5	3.6	5.2	7.8	17.6	37.5	87.5	16.8	(12.6-21.0)	309	693
	LS24*	2-3	-23	1.55	3	G	2	mab	vab	р	n.o.	n.o.	n.o.	р	р	n.o.	n.o.	р	n.o.	р	N/A	N/A	N/A	N/A	N/A
	LS26	5-5.5	-20.6	0	1	G (et, alt)	2.5	mab	р	p-mab	р	р	0.3	6.8	14.1	9.4	6.3	5.1	19.1	38.9	88.5	16.2	(12.0-20.4)	284	681
	LS27	5-5.5	-21.3	0.9	2	G (et)	2	n.o.	р	р	р	р	0.4	7.8	12.0	9.5	5.9	6.3	19.2	39.0	86.6	18.8	(14.5-23.4)	304	735
	LS5*	5-7	-25.5	0.24	2	(G-)P (et, alt)	0.5	ab	ab	р	n.o.	n.o.	n.o.	р	р	р	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS4*	5-7	-24.8	0	1	VP (et, alt)	0	ab	vab	р	n.o.	n.o.	р	р	р	n.o.	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS3	5-7	-25.8	0.23	2	G(-P) (et, alt)	1	ab	ab	n.o.	n.o.	n.o.	0.1	13.1	15.4	1.2	5.2	6.9	14.0	44.2	76.3	31.4	(26.8-36.1)	388	930
	LS1*	5-9	-26.5	0	1	(G-)VP (et, alt)	0.5	ab	ab	р	n.o.	n.o.	р	р	р	р	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS13	6-7	-27.9	0.07	2	G(-P) (et)	1.5	р	mab	р	n.o.	р	0.4	3.1	27.4	1.9	10.2	14.5	9.1	33.4	94.8	5.4	(3.0-8.1)	296	518
	LS12*	6-7	-29.6	0.44	2	(G-)VP (et, alt)	0	ab	vab	n.o.	р	р	n.o.	р	р	n.o.	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS10*	~7 (6-7)	-14.3	0.89	2	(G-)VP (et, alt)	0	ab	ab	р	n.o.	n.o.	n.o.	р	р	р	n.o.	р	р	р	N/A	N/A	N/A	N/A	N/A
	Kim-A2	5-9	-23.7	0	1	G (fra)	3	р	р	р	n.o.	n.o.	0.0	4.4	24.2	0.7	5.0	9.0	12.0	44.6	92.0	10.2	(6.8-13.9)	294	677
	LS23	9-10	-17	0.43	3	(G-)P (alt)	1	ab	ab	р	n.o.	n.o.	0.0	14.2	11.1	0.9	6.8	4.6	17.4	44.9	74.1	37.8	(31.9-44.1)	238	632
	LS19	9.5-10.8	-17.1	0.47	7	G-P (alt)	1.5	ab	ab	р	р	р	0.2	5.6	33.3	3.1	5.4	9.4	10.9	32.0	91.4	9.9	(6.6-13.6)	272	478
	LS16	9.5-10.8	-20.9	0.37	4	G	3	р	mab	р	р	р	0.4	23.1	15.5	0.9	5.7	5.9	10.7	38.0	62.0	45.4	(41.0-49.8)	478	938
	LS22*	11.55- 12.18 ± 0.12	-24.3	0.24	2	VP (alt)	0	ab	vab	р	n.o.	n.o.	n.o.	р	р	n.o.	n.o.	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS21	11.55- 12.18 ± 0.12	-20.1	0.07	2	P(-VP) (alt)	0.5	ab	vab	р	р	n.o.	0.0	10.6	5.4	1.5	2.4	2.8	16.0	61.3	72.6	46.7	(37.1-56.2)	105	462
	Dawes*	17.5- 18.8	-27.2	0	1	P(-VP) (et, alt)	0.5	mab	vab	р	n.o.	n.o.	р	р	р	n.o.	n.o.	n.o.	р	р	N/A	N/A	N/A	N/A	N/A
KS	LS37	5-9	-18.4	0	1	G	2.5	mab	ab	р	n.o.	n.o.	0.3	3.7	23.7	3.3	8.2	9.7	15.8	35.3	93.8	7.5	(4.7-10.8)	279	575
	LS36	5-9	-13.3	0	1	G (et, alt)	2	n.o.	ab	p-mab	р	n.o.	0.5	5.1	20.4	6.6	9.6	7.4	21.7	28.8	92.2	10.3	(6.9-13.7)	291	594
	LS35*	5-9	-13.5	0.78	2	VP (et, alt)	0	ab	ab	p?	p	р	n.o.	р	р	n.o.	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS43	<8 (7-9)	-18.3	1	2	G(-P) (et)	1.5	n.o.	ab	p	p	n.o.	0.0	4.7	21.6	2.8	6.3	12.4	11.6	40.6	92.0	9.9	(6.7-13.5)	312	653
	LS41*	~8 (7-9)	-19	0.54	3	P(-VP) (et, alt)	0.5	ab	ab	n.o.	n.o.	n.o.	n.o.	р	р	n.o.	р	р	р	р	N/A	N/A	N/A	N/A	N/A
	LS40	~8 (7-9)	-24	0.03	2	G (et, alt)	2	р	mab	р	р	n.o.	0.3	6.1	22.7	1.9	5.3	12.4	12.1	39.1	89.5	12.5	(9.2-16.2)	327	675

SUPPLEMENTARY TABLE 2. Stable carbon isotope ratios and phytolith assemblage composition of biosilica extracted from Neogene paleosols from Nebraska and Kansas.¹

 1 N/A = not applicable.

 2 G = good-pristine (occluded organic material and fine ornamentation routinely preserved on GSSC; elongates and bulliform cells may be etched or broken); P = poor (occluded material often missing and GSSC commonly broken or etched; elongates and bulliform cells often etched or broken); VP = very poor (phytoliths fragmentary or structurally/texturally altered to such a degree that identification is complicated); alt = altered; et = etched, fra = fragmented. 3 0-3; 3 = pristine, 2 = good, 1 = OK, 0 = poor-very poor. ⁴ Semiquantitative estimation: n.o. = not observed; p = present (rare); mab = moderately abundant; ab = abundant; vab = very abundant. ⁵ AQ = phytoliths from wetland plants (e.g., *Equisetum*, sedges); FI TOT = morphotypes typical of forest indicators (e.g., palms, woody and herbaceous dicotyledons, ferns, conifers); CH TOT = GSSCs produced primarily by members of the BE (Bambusoideae, Ehrhartoideae) clade (e.g., GPWG 2001) plus basal grasses; POOID-D + POOID-ND = GSSCs produced mainly by Pooideae; PAN + CHLOR = morphotypes of Panicoideae and Chloridoideae grasses; PACMAD general = morphotypes of (other) C_3/C_4 grasses in the PACMAD clade (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae; Duvall et al. 2007); OTHG = other, non-diagnostic or unidentified GSSC; NDG = non-diagnostic (potential) grass phytoliths; NDO = non-diagnostic and indeterminable phytoliths.

* Assemblages not included in quantitative assemblage analysis because of insufficient preservation.

				C_4	abundance in o	overall vegetati	on	C ₄ abundance within grass community							
				Minimum	n estimate	Maximur	n estimate	Minimu	m estimate	Maximu	ım estimate				
State	Sample number	Absolute age (Ma)	FI TOT+GSSC count	[(PAN+CHLOR) / (GSSC-OTHG)]* [GSSC/ (FI TOT +GSSC)] (%)	95% C.I. (%) ²	[(PACMAD TOT) / (GSSC-OTHG)]* [GSSC/ (F1 TOT+GSSC)] (%)	95% C.I. (%) ²	(PAN+CHLOR) / (GSSC-OTHG) (%)	95% C.I. (%) ²	(PACMAD TOT) / (GSSC-OTHG) (%)	95% C.I. (%) ²	C_4 abundance based on $\delta^{13}C$ (%)			
NE	LS25	2-3	309	10.2	(6.6-13.9)	25.0	(19.7-30.3)	12.3	(7.9-16.2)	30.0	(23.6-36.5)	83			
	LS24*	2-3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	33			
	LS26	5-5.5	284	26.4	(21.1-32.2)	44.2	(38.4-50.2)	31.5	(25.1-38.4)	52.7	(45.8-59.9)	53			
	LS27	5-5.5	304	28.3	(23.0-33.6)	45.7	(40.0-50.9)	34.8	(28.4-41.3)	56.2	(49.3-62.7)	48			
	LS5*	5-7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13			
	LS4*	5-7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18			
	LS3	5-7	388	3.7	(1.7-6.1)	20.0	(16.0-24.1)	5.4	(2.5 - 8.9)	29.2	(23.3-35.1)	10			
	LS1*	5-9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4			
	LS13	6-7	296	4.6	(1.8-7.4)	29.1	(23.8-35.3)	4.9	(2.0-7.8)	30.7	(25.1-37.3)	-7			
	LS12*	6-7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-22			
	LS10*	~7 (6-7)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	106			
	Kim-A2	5-9	294	2.2	(0.4-4.4)	17.3	(12.8-22.1)	2.5	(0.5-4.9)	19.2	(14.3-24.6)	28			
	LS23	9-10	238	3.1	(1.0-5.7)	25.6	(19.9-30.8)	5.0	(1.7-9.2)	41.2	(31.9-49.6)	83			
	LS19	9.5-10.8	272	6.8	(3.6-9.9)	18.5	(13.5-23.9)	7.5	(4.0-11.0)	20.5	(15.0-26.5)	83			
	LS16	9.5-10.8	478	2.1	(0.8-3.7)	16.2	(12.9-19.6)	3.9	(1.5-6.8)	29.6	(23.5-35.9)	51			
	LS22*	11.55-12.18	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23			
		± 0.12													
	LS21	11.55-12.18	105	8.7	(3.7-14.9)	22.3	(14.9-29.8)	16.3	(7.0-27.9)	41.9	(27.9-55.8)	58			
		± 0.12													
	Dawes*	17.5-18.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-2			
KS	LS37	5-9	279	8.7	(5.0-12.4)	30.2	(24.3-36.6)	9.4	(5.4-13.4)	32.7	(26.2-39.6)	72			
	LS36	5-9	291	16.1	(12.0-20.7)	39.7	(33.9-45.5)	18.0	(13.4-23.0)	44.2	(37.8-50.7)	114			
	LS35*	5-9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	113			
	LS43	<8 (7-9)	312	8.1	(5.0-11.7)	26.6	(21.2-32.4)	9.0	(5.5-13.0)	29.5	(23.5-36.0)	73			
	LS41*	~8 (7-9)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	67			
	LS40	~8 (7-9)	327	5.6	(3.0-8.7)	21.2	(16.0-27.3)	6.4	(3.5-9.9)	24.3	(18.3-31.2)	25			

SUPPLEMENTARY TABLE 3. Abundances of C4 grasses in the Neogene of Nebraska and Kansas based on phytolith assemblages and carbon isotope ratios, respectively.¹

 1 N/A = not applicable. For other abbreviations, see Suppl. Table 2; for further explanations, see text. 2 The 95% confidence intervals (C.I.) were calculated using bootstrapping with 1000 replicates (Resampling Stats 5.0, available at http://www.resample.com/).

* Assemblages not included in quantitative assemblage analysis because of insufficient preservation.

Taxon	Clade	Photosynthetic pathway	Non-GSSC (% of total assemblage)	NDG (% of total assemblage)
Pharus lappulaceus ssp	Pharoideae	C ₃	12.4	5.1
lappulaceus Guaduella macrostachyus	Puelioideae	C_3	5.1	2.1
Otatea acuminata ssp aztecorum	Bambusoideae	C ₃	18.7	10.3
Olyra caudata	Bambusoideae	C_3	29.8	16.7
Chusquea patens	Bambusoideae	C_3	51.2	44.4
Streptogyna gerontogaea	Bambusoideae- Ehrhartoideae clade	C ₃	13.2	7.9
Lygeum spartum	Pooideae	C ₃	8.6	5.9
Glyceria striata var striata	Pooideae	C_3	10.1	4.2
Dactylis glomerata ssp hispanica	Pooideae	C_3	20.1	12.1
Triticum aestivum	Pooideae	C_3	30.4	6.9
Avena fatua	Pooideae	C_3	39.6	23.1
Deschampsia caespitosa	Pooideae	C_3	41.6	13.2
Ampelodesmos mauritanicus	Pooideae	C_3	41.9	32.5
Festuca rubra	Pooideae	C_3	53.2	18.4
Nassella pulchra	Pooideae	C_3	57.6	23.3
Nassella pulchra	Pooideae	C_3	72.8	36.1
Calamagrostis ophitidis	Pooideae	C_3	66.4	29.3
Aristida purpurea var wrightii	Aristidoideae	C_4	73.5	45.7
Arundo donax ssp versicolor	Arundinoideae	C_3	54.0	41.0
Chasmanthium latifolium	Centothecoideae	C_3	27.1	11.2
Sporobolus airoides	Chloridoideae	C_4	15.1	5.8
Eragrostis ferruginea	Chloridoideae	C_4	36.6	24.1
Danthonia sp	Danthonioideae	C ₃	26.5	23.7
Panicum virgatum	Paniceae	C_4	14.7	3.6

SUPPLEMENTARY TABLE 4. Relative abundance of non-GSSC phytoliths and nondiagnostic (potential) grass phytoliths (NDG) in leaf assemblage from Strömberg 's reference collection (Strömberg 2003, unpublished data).

SUPPLEMENTARY FIGURE 1. Poaceae phylogeny with C_3/C_4 photosynthetic pathway character states shown at tips and the four C_3-C_4 contrasts generated using phylocom. Dated phylogeny modified from Bouchenak-Khelladi et al. (2009).