Supplementary materials
Excluded Range

The excluded range for a pair of two circular chambers can
be calculated as follows: Let us denote w as a direction of line
connecting centers of overlapping chambers (see Fig. 15). The
excluded range is defined as (0 — a,w + «). From Figure 15 we
have the following relations:

cos a = (5a)
"
a+b=1L (5b)
b* + x2=r? (5¢)
a? + x? = 2 (5d)

Let us eliminate b from equation (5c) by using equation (5b):
(L — a)* + x2 = r? (5e)
L? — 2alL + a? + x2 = r2 (5f)

Let us do the same with a2 by using equation (5d):

L2 — 2aL + 1> — x,2 + x2 =12 (5g)
L2 — 2aL + 2 =r? (5h)
r? —r?+ L?
g=2—1 - (5i)
2L

Angle a is calculated this way:

a 1?2 —r?+L? .
cosa = — = —F—— (5j)
7, 2r,L

(5K)

2 — r? + L?
a = arccos| ———|.

2r,L

The Program Code

In this section we present a core code of the program for gen-
erating foram shells. The program has been implemented in
C++, one of the most popular object-oriented languages. Com-
pared with other well-known programming languages such as

FIGURE 15. Excluded range for the pair of chambers.

C and Pascal, which are called structural languages, C++ pro-
vides higher abstraction level allowing to define new types of
data, more closely related to real objects. Thus, we have defined
types such as Vector, Cell, and Foraninifera,
sponding to fundamental terms of our model.

We can also define basic functionality in a form of subrou-
tines. Vect or data type, widely used in this code, provides rich
functionality for manipulating 2-D vectors as translations, ro-
tations and scaling. In this way we can also define new vectors
in various ways, e.g., by using polar or euclidean coordinates.
The addNewCel | subroutine implements the main model al-
gorithm as it is described in the section ““Algorithm.”” We do not
present the full code of the program because of space limitation;
however, detailed comments should supply the necessary in-
formation. We do not include definitions of the subroutines used
in this code, but their internal functionality is obvious or can be
easily deducted from the model description. The Cel | type rep-
resents a single circular chamber and it stores coordinates of a
center, a radius of the chamber, and an aperture. The For ami -
ni f er a type is a simple container for Cel | types. The series of
Cel | objects is stored as a one-directional chain: variable
|l ast Cel | indicates the previously added chamber.

corre-

/'l add newcel | ineachiteration

int Foram nifera::addNewCel | ()

{
fl oat newCent er X, newCenterY;

/'l r—ndi cat es aperture | ocation
Il r.radi us—si ze of newchanmber
Vector r;

/1 size of newcell

/1" scale’’ function may i npl enent
/'l any nmet hod of (isonetric) scalling
r.radi us = scal e(l ast Cel | - >radi us);

/1 v—growt h vect or

/'l the same direction as reference growt h axi s

Vector v(lastCell->centerX, |lastCell->centerY,
| ast Cel | - >aperturX, |astCell->aperturY);

Il scal e by TF factor
scal eG owt hVector (v, r.radius);

/I nodi fies gromt h vector by devi ati ng
I'lit fromthe reference growt h axi s
devi at eGrowt hVect or (v);

/'l center of newcell
newCent er X = | ast Cel | - >apertureX + v. x;
newCenterY = | ast Cel | - >apertureY + v.y;

/'l newaperture | ocation

/'l two candi dat es:

float tnpGammal = mi ni m ze(v, r.radius)
float tnpGanmma2 = t npGammal + Pl ;

Vector t npRL(r.radius, tnmpGanmmal);
Vect or t npR2(r.radius, tnmpGamma2);

Vector ul =v + tnpR1;
Vector u2 =v + tnpR2;
if(ul.length() <u2.length)
r =tnmpR1;
el se
r =tnmpR2;

/1 What i f newaperture lies insideany other cell
/'l cal cul at e excl uded r ange
Cell*itCell =firstCell;
float cLimtL =—10000. 0f, cLi m tR = 10000. Of ;

Iliterate through all the previous chanbers

for(; itCell
{
I/ count di stance bet ween cent ers
Vect or L(newCenter X, newCenterY,
itCell->centerX itCell->centerY);

;itCell =itCell->nextCell)

float distance = L.l ength();
if(distance > (itCell->radius + r.radius))
continue; //this cell does not overl ap newcel |
Ilelse
/'l count range of overl appi ng
fl oat al pha = acos((r.radius * r.radi us—
itCell->radiusR* itCell->radiusR +
di st ance*di st ance) /
(2 * distance * r.radius);

float limtL, limtR;
limtL = L. getPhi()-al pha;
limtR=L.getPhi() + al pha;

/'l do the corrections (0 =<angle =< 2Pl)
if(limtL <O0.0f)
limtL=2*Pl +1linmtL;
if(limMmtR>2*Pl)
limtR=1intR-2*Pl;

/| updat e gl obal excl uded range

if(clinmitL>1limtL)
cLimtL=1limtL;

if(cLinitR<IimtR)
cLimtR=1imtR

}

I'1'if newforaminalies betweencLimtL andcLimtR
if(r.gamma >cLimtL & r.gamm < cLim tR)
{

Vect or candi date_1(r.radius, cLimtlL);

Vect or candi date2(r.radius, cLimtR);

Vector r1 =v + candi dat e_1;
Vector r2 = v + candi dat e_2;
if(rl.length() <r2.length())
r=ril;
el se
r=r2;
}
| ast Cel | - >next Cel | = new Cel | (newCent er X,
newCenterY, r.radius,
newCent er X+r. x, newCenterY+r.y);

lastCell =1lastCell->nextCell;
return O;

}

