
FIGURE 15. Excluded range for the pair of chambers.

Supplementary materials

Excluded Range

The excluded range for a pair of two circular chambers can
be calculated as follows: Let us denote v as a direction of line
connecting centers of overlapping chambers (see Fig. 15). The
excluded range is defined as (v 2 a,v 1 a). From Figure 15 we
have the following relations:

a
cos a 5 (5a)

r2

a 1 b 5 L (5b)

2 2 2b 1 x 5 r (5c)1

2 2 2a 1 x 5 r . (5d)2

Let us eliminate b from equation (5c) by using equation (5b):

2 2 2(L 2 a) 1 x 5 r (5e)1

2 2 2 2L 2 2aL 1 a 1 x 5 r . (5f )1

Let us do the same with a2 by using equation (5d):

2 2 2 2 2L 2 2aL 1 r 2 x 1 x 5 r (5g)2 2 1

2 2 2L 2 2aL 1 r 5 r (5h)2 1

2 2 2r 2 r 1 L2 1a 5 . (5i)
2L

Angle a is calculated this way:

2 2 2a r 2 r 1 L2 1cos a 5 5 (5j)
r 2r L2 2

2 2 2r 2 r 1 L2 1
a 5 arccos . (5k)1 22r L2

The Program Code

In this section we present a core code of the program for gen-
erating foram shells. The program has been implemented in
C11, one of the most popular object-oriented languages. Com-
pared with other well-known programming languages such as

C and Pascal, which are called structural languages, C11 pro-
vides higher abstraction level allowing to define new types of
data, more closely related to real objects. Thus, we have defined
types such as Vector, Cell, and Foraminifera, corre-
sponding to fundamental terms of our model.

We can also define basic functionality in a form of subrou-
tines. Vector data type, widely used in this code, provides rich
functionality for manipulating 2-D vectors as translations, ro-
tations and scaling. In this way we can also define new vectors
in various ways, e.g., by using polar or euclidean coordinates.
The addNewCell subroutine implements the main model al-
gorithm as it is described in the section ‘‘Algorithm.’’ We do not
present the full code of the program because of space limitation;
however, detailed comments should supply the necessary in-
formation. We do not include definitions of the subroutines used
in this code, but their internal functionality is obvious or can be
easily deducted from the model description. The Cell type rep-
resents a single circular chamber and it stores coordinates of a
center, a radius of the chamber, and an aperture. The Forami-
nifera type is a simple container for Cell types. The series of
Cell objects is stored as a one-directional chain: variable
lastCell indicates the previously added chamber.

//add new cell in each iteration

int Foraminifera::addNewCell()
{
float newCenterX, newCenterY;

//r—indicates aperture location
//r.radius—size of new chamber
Vector r;

//size of new cell
//‘‘scale’’ function may implement
//any method of (isometric) scalling
r.radius 5 scale(lastCell-.radius);

//v—growth vector
//the same direction as reference growth axis
Vector v(lastCell-.centerX, lastCell-.centerY,
lastCell-.aperturX, lastCell-.aperturY);

//scale by TF factor
scaleGrowthVector(v, r.radius);

//modifies growth vector by deviating
//it from the reference growth axis
deviateGrowthVector(v);

//center of new cell
newCenterX 5 lastCell-.apertureX 1 v.x;
newCenterY 5 lastCell-.apertureY 1 v.y;

//new aperture location
//two candidates:
float tmpGamma1 5 minimize(v,r.radius)
float tmpGamma2 5 tmpGamma1 1 PI;

Vector tmpR1(r.radius, tmpGamma1);
Vector tmpR2(r.radius, tmpGamma2);

Vector u1 5 v 1 tmpR1;
Vector u2 5 v 1 tmpR2;
if(u1.length() , u2.length)
r 5 tmpR1;

else
r 5 tmpR2;

//What if new aperture lies inside any other cell
//calculate excluded range
Cell* itCell 5 firstCell;
float cLimitL 5210000.0f, cLimitR 5 10000.0f;

//iterate through all the previous chambers



for(; itCell ; itCell 5 itCell-.nextCell)
{
//count distance between centers
Vector L(newCenterX, newCenterY,

itCell-.centerX, itCell-.centerY);

float distance 5 L.length();
if(distance . (itCell-.radius 1 r.radius))

continue; //this cell does not overlap new cell
//else
//count range of overlapping
float alpha 5 acos((r.radius * r.radius—

itCell-.radiusR * itCell-.radiusR 1
distance*distance) /
(2 * distance * r.radius);

float limitL, limitR;
limitL 5 L.getPhi()—alpha;
limitR 5 L.getPhi() 1 alpha;

//do the corrections (0 5, angle 5, 2PI)
if(limitL , 0.0f)

limitL 5 2 * PI 1 limitL;
if(limitR . 2 * PI)

limitR 5 limitR2 2 * PI;

//update global excluded range

if(cLimitL . limitL)
cLimitL 5 limitL;

if(cLimitR , limitR)
cLimitR 5 limitR;

}

//if new foramina lies between cLimitL and cLimitR
if(r.gamma . cLimitL && r.gamma , cLimitR)
{
Vector candidatep1(r.radius, cLimitL);
Vector candidatep2(r.radius, cLimitR);

Vector r1 5 v 1 candidatep1;
Vector r2 5 v 1 candidatep2;
if(r1.length() , r2.length())
r 5 r1;

else
r 5 r2;

}
lastCell-.nextCell 5 new Cell(newCenterX,

newCenterY, r.radius,
newCenterX1r.x, newCenterY1r.y);

lastCell 5 lastCell-.nextCell;
return 0;
}




