Appendix

Vectors are denoted by bold lowercase letters (e.g., x) and ma-
trices by bold uppercase letters (e.g., X). T denotes the trans-
pose. A boldface f in f(x) indicates that f returns a vector for a
given value of the vector x. Individual vector or matrix elements
are denoted by subscript indices (e.g., Xj).

The Bayesian Solution to Inverse Problems.—The central part of
Bayesian inference relies on the product rule of probability the-
ory (Jaynes 2003), given by

P(A, B|C) = p(A|C)p(B|A, O), (A1)

where p(A, B|C) is the joint conditional probability that prop-
ositions A and B are true given that proposition C is true. Be-
cause p(B, A|C) = p(A, B|C), we obtain Bayes’s Theorem:
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Equation A.2 defines the posterior probability density function
(PPD) on A, which allows inferences to be made on A taking into
account B and C. If we substitute proposition A with a given
model parameterization m, proposition B with the observed
data d, and C with prior information I, we have essentially the
PPD solution to the inverse problem:
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In equation A.3, p(m]| 1) is the prior distribution, which repre-
sents prior knowledge of the model parameters, the geological
setting, the ecology of the organism, and other factors.
p(d|m, I) quantifies how probable the observed data d are for
a choice m of model parameters. It is often called the likelihood
function when expressed as a function of m given d, and it in-
corporates the data-model misfit function (see below). The de-
nominator p(d | I), sometimes called the “evidence,” is the in-
tegral of the product of the prior and the likelihood over all pos-
sible values of m (i.e., the prior expectation of the likelihood),
and represents a normalizing factor that makes the total prob-
ability equal one. p(d | I) is not a function of the model param-
eters in m (i.e., they are “integrated out’’), and for the purpose
of parameter estimation it is often denoted by a constant k*. To
simplify notation, the conditional term | 1 is dropped from here
on, the prior is denoted p(m), and p(d|m) is expressed as the
likelihood L(m | d). Thus, the PPD can be written as

p(m|d, 1) = (A3)

pm|d)= kp(m)L(m]d). (A.4)

This quantity is taken to represent the information available on
the model, and its calculation depends on the data, any prior
information, and the error statistics, all of which are discussed
in the paper.

Shape Quantification.—The Zahn and Roskies (1972) normal-
ized shape function is given by
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where [ is the cumulative arc length along the outline, L is total
arc length, and ¢(I) is the cumulative angular deviation, such
that $(0) =0 and ¢(L)= —2m for any closed curve. The normal-
ized variant $*(I) quantifies shape in terms of its deviation from
a circle. Given a matrix Z of standardized (zero mean, unit var-
iance) shape functions (columns) for a sample of specimens
(rows), an estimate of the mean shape z can be obtained by sin-
gular value decomposition of Z,

Z = UDV’, (A.6)

where the columns of U represent empirical shape functions
(i.e., eigenshapes; Lohmann 1983), D is the diagonal matrix of
singular values, and the columns of VD are projections of spec-

imens onto the eigenshapes. The first eigenshape is taken as an
estimate of the mean shape.

Fossil Abundance and Preservation.—Let d denote water depth,
and g denote grain size. Let p, be the species’ preferred depth,
o, the depth tolerance, p, the preferred grain size, and o, the
grain size tolerance. If we assume that the species’ response to
each environmental variable is uncorrelated, the depth and
grain size parameters describe a bivariate Gaussian density
function representing the probability of occurrence of an or-
ganism given the d and g values in a sample:
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Local abundance # is found by scaling the peak of f(d, g) to the
peak abundance n,,,. The number of individuals preserved as
fossils in a sample, K, is determined by (a) local abundance 7,
where each individual is considered a binomial (success-failure)
trial, and (b) per capita preservation probability g, representing
the intrinsic fossilization potential of the organism as well as the
probability of collection. Because 7 is generally very large rel-
ative to g, we can model this as a Poisson process with density
function

e i(ng)*
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Multivariate Phenotypic Evolution.—If the phenotypic distri-
bution of traits is multivariate Gaussian, then the evolution of
the multivariate mean phenotype can be expressed as

(A.8)

Az = BG, (A.9)

where Az is the change in population mean phenotype in one
generation, G is the additive genetic covariance matrix, and
is the vector of selection coeffcients acting on each of the phe-
notypic traits (Lande 1976, 1979; Arnold et al. 2001). Equation
(A.9) can be rewritten as

Az = BHP, (A.10)

where H is a matrix of trait heritabilities that transforms the
phenotypic covariance matrix P into G. Because we can estimate
P from fossil samples, multivariate evolution can be modeled by
using the product BH as a parameter vector. This is the ap-
proach taken by Polly (2004), who also described how a more
effcient, reduced-dimension simulation can be performed by
projecting equation A.10 into principal component shape space.
The P-matrix can be expressed in terms of its principal com-
ponents (eigenvectors) and eigenvalues,

P = UAU’, (A.11)

where U represents the eigenvectors of P (the loadings of the
original variables on the principal component axes), and A is a
diagonal matrix of the eigenvalues of P. The matrix U can be
used as a rotation matrix to project the shape onto the principal
component axes, and the evolution of the projected mean shape
(Polly 2004) is given by

Az* = AZU = BHPU = BHUAU'U

BHUA = (BH)*A. (A12)

The result can be rotated back into the original coordinate space
by post-multiplying with U”. Using S* = (BH)* as a vector of
projected selection differentials, different modes of evolution
can be simulated by drawing the elements of S* from different
underlying distributions. Furthermore, it is possible to limit the
number of elements of S* needed based on the eigenvalues as-
sociated with each principal component vector.

Defining Data-Model Misfit.—Given a set of model parameters
m, the forward model generates a predicted stratophenetic se-
ries g(m), which is compared to the observed stratophenetic se-
ries d. This data vector includes the number of fossils per sam-



ple (most samples are barren) and the mean sample shape func-
tion for each sample. Data-model misfit involves the sum of sep-
arate misfit measures for each of these two data types. In the
observed data vector d, the mean shape functions of samples
without fossils are not defined and are omitted from the misfit
calculation. In the predicted data vector g(m), the barren sample
mean shape functions are defined as zero vectors, to allow mis-
fit calculation when the observed shape is defined. Under the
Gaussian error statistics assumption, a large number of pure
“noise”’ stratophenetic series can be generated and their co-
variance matrix calculated as described by Gouveia and Scales
(1998). Assuming that the temporal correlation in the data un-
certainty is negligible, only the main diagonal of the covariance
matrix (noise variance) is needed. This noise vector €* thus con-
tains both sample size error and shape error.

Let N,, be the number of model parameters, N, the number of
samples, N, the number of preserved samples in the observed
data (stratophenetic series length), and N, the number of points
along the shape outline (phenotypic variables). A data-model
misfit measure can then be constructed as
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where v, = N, = N, and v, = N N, — N,, are the (approximate)
degrees of freedom. The likelihood function can be written as
1
L(m|d) = k exp(—EXZ(m)) (A.14)
where k is a normalizing constant (see eqs. A.3 and A.4).
The Prior Model Covariance Matrix.—From the definition of the
variance of a uniform distribution (Wackerly et al. 2002), we can
express the prior model covariance matrix as
1
—Amz? ifi=j
2

crr = (A.15)

0 otherwise,

where Am; is the range of the ith parameter.

Bayesian Integrals.—The 1-D marginal posterior distribution of
parameter m; is found by integrating the PPD over the remaining
dimensions N,, of the parameter space:

Ny
p(m;|d) = f -~-fp(m|d>kﬂdmk. (A16)
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The posterior model covariance matrix is given by
C,M= fm,m,!i(m|d) dm — (m;)(m;), (A17)

where (m,) is the posterior mean model for the ith parameter. If
the PPD is Gaussian then the mean model is located at the peak
of the PPD, but for nonlinear problems the shape of the PPD can
be complex, and CM is less easily interpreted (Tarantola 1987).
A model correlation matrix is calculated by dividing each ele-
ment C; ;™ by the product of the posterior standard errors of pa-
rameters n; and m; Furthermore, CM can be used to obtain a
model resolution matrix:

R =1- C.CM, (A.18)
where C;J,O, is the inverse prior covariance matrix (eq. A.15), and
Iis the identity matrix. A dimensionless resolution matrix is ob-
tained by multiplying each element of the resolution matrix by
the ratio of the prior standard errors of the parameters (Sam-
bridge 1999b).

The Bayesian integrals are calculated using Monte Carlo nu-
merical integration techniques implemented in the Neighbour-
hood Algorithm, and readers are referred to Sambridge
(1999a,b) for details.

Convergence of the Gibbs Sampler—All the Bayesian quantities
reported in the paper rely on the convergence of the Gibbs sam-
pler used to resample the ensemble and generate a distribution
that follows the approximate PPD. The convergence of the Gibbs
sampler can be evaluated by calculating a potential scale re-
duction (PSR) factor, which is deemed acceptable if the PSR val-
ues for all variables are less than 1.2 (Gelman et al. 1995). For
the numerical integrations in this paper, the Gibbs sampler
showed good convergence, with PSR values for all the param-
eters between 1.01 and 1.12, with a median of 1.04.
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