Light Production by Ceramic Using Hunter-Gatherer-Fishers of the Circum-Baltic

By HARRY K. ROBSON, ALEXANDRE LUCQUIN MARJOLEIN ADMIRAAL, EKATERINA DOLBUNOVA, KAMIL ADAMCZAK, AGNIESZKA CZEKAJ-ZASTAWNY, WILLIAM W. FITZHUGH, WITOLD GUMIŃSKI, JACEK KABACIŃSKI, ANDREAS KOTULA, STANISŁAW KUKAWKA, ESTER ORAS, HENNY PIEZONKA, GYTIS PILIČIAUSKAS, SØREN A. SØRENSEN, LAURA THIELEN, GÜNTER WETZEL, JOHN MEADOWS, SÖNKE HARTZ, OLIVER E. CRAIG, and CARL P. HERON

APPENDIX S1

RADIOCARBON DATING

We are aware of 14 radiocarbon (¹⁴C) ages on samples of charred organic residue taken from oval bowls found at sites surrounding the southwest Baltic (Table S2). These measurements were obtained by Accelerator Mass Spectrometry (AMS) at five different laboratories over more than two decades. In general, these laboratories would have dated a chemical fraction of the residue which remained insoluble after acid-alkali-acid extraction (designed to dissolve any organic and inorganic compounds absorbed from the burial environment), with variations between laboratories in reaction times, temperatures and pH. Procedures may also have changed over time; for example, KIA-6995-6998, but not the other samples dated by the Kiel laboratory, were treated with solvents to remove soluble lipids prior to the normal acid-alkali-acid extraction. These variations may not have had a measurable effect on the ¹⁴C results; for example, soluble lipids may only have accounted for a tiny fraction of the carbon in the organic residue and these lipids may not have had a different ¹⁴C age to the insoluble fraction

Accepting that the published ¹⁴C ages are accurate and comparable, the main interpretative challenge is that (given the pattern of results seen in isotopic and biomolecular analyses of carbonised surface deposits on other oval bowls in this region) we may assume that most, if not all, of the dated carbon was derived from aquatic organisms. Bulk stable isotope results probably provide the best indicators for the sources of carbon in the dated chemical fraction (as more than half of the bulk residue normally survives acid-alkali-acid extraction), but the correlation between bulk and soluble lipid δ^{13} C values recorded in this study suggests that soluble and insoluble carbon were largely derived from the same ingredients

Aquatic food webs (marine or freshwater ecosystems) are almost always depleted in ¹⁴C relative to terrestrial food webs which rely solely on photosynthesis of atmospheric CO₂. In marine ecosystems, ¹⁴C depletion is caused mainly by long residence times; atmospheric CO₂ absorbed at the surface is cycled through the deep ocean over several centuries, giving rise to 'marine reservoir effects' (MREs), which vary geographically according to circulation patterns. ¹⁴C samples of marine origin can be calibrated (converted to calendar dates) using a global circulation model (Heaton *et al.* 2020), with a local correction (Δ R) based on ¹⁴C measurements of known-age marine species. In the south-west Baltic, evidence from archaeological remains at coastal sites (Philippsen 2018; Fischer & Olsen 2021) suggests that the local MRE at *c.* 4000 cal BC was only about 300 ¹⁴C years, which is consistent with an estimated Δ R value in modern marine species of –198±75 (values updated for use with the Marine20 calibration curve (Heaton *et al.* 2020))

In freshwater ecosystems there are several potential causes of ¹⁴C depletion, most prominently the dissolution of mineral carbonates which can supply ¹⁴C-free carbon to the pool of dissolved inorganic carbon (DIC) used in photosynthesis by submerged plants. Rivers and lakes in northern Germany often have large freshwater reservoir effects (FREs) of over 1000 years (Fernandes *et al.* 2013;

2016; Philippsen & Heinemeier 2013). Modern fish from Friesack 4, one of the sites concerned here, have FREs of *c*. 1200 years (Meadows *et al.* 2018). The FRE at Dąbki 9 is unknown, but a value of *c*. 850 years can be estimated to account for the scatter of ¹⁴C ages from foodcrusts on Early Neolithic Funnel Beaker sherds (Meadows unpublished data)

In one case (Timmendorf-Nordmole I, a submerged coastal site in the Bay of Wismar), a dated oval bowl was found in a closed context for which there are several ¹⁴C ages on wooden finds, averaging *c*. 5300 BP, which date the context to the late 5th millennium cal BC (Klooß *et al.* 2009). If the bowl was contemporaneous with the wooden finds, its ¹⁴C age implies that its carbon content was almost entirely of marine origin. The Nøddekonge oval bowl ¹⁴C age is *c*. 300 years greater than ¹⁴C ages of two wooden artefacts from the same context, which date to the early 4th millennium (Fischer 2002), presumably due to a freshwater reservoir effect. The Åkonge oval bowl is included in a Bayesian chronological model (Robson *et al.* 2021) that dates it to the beginning of the 4th millennium and implies only a small reservoir effect (although the local FRE was modest, so the carbon content could still be mainly aquatic in origin)

For the other directly dated bowls, contextual dating is more problematic. At Friesack 4, almost all the published ¹⁴C ages associated with the Neolithic phase are on foodcrust samples, which either were not subject to organic residue analyses or were assessed to contain freshwater fish (Wetzel 2015; Shevchenko *et al.* 2018). At Dąbki 9, wood and bone dates span over a millennium, and these finds are not meaningfully stratified (Kotula *et al.* 2015), so they cannot be used to constrain the deposition dates of the oval bowls. The East Holstein coastal sites (Grube-Rosenhof LA 58, Siggeneben Suïd LA 12, Wangels LA 505) have both late Ertebølle and early Funnel Beaker occupation phases, so the oval bowls could date either to the later 5th or to the earlier 4th millennium cal BC. As a first-order approximation, the chronological interpretation proposed here assumes that in residues from coastal sites, 80–100% of carbon extracted for dating was of marine origin (reflecting the availability of marine mammal blubber), whereas 50–100% of carbon in residues from inland sites is attributed to freshwater organisms

Figure S1 shows a chronology based on simple calibration of the uncorrected ¹⁴C ages of oval bowls (upper pane) which incorporates the assumption that all the samples represent a single uniform phase of production (ie bowls are equally likely to date to any time within this phase; this assumption allows the start and end of bowl production to be estimated). All the dated cases appear to fall in the 5th millennium. The lower pane shows a similar chronological model in which contextual dating is used for the Danish inland oval bowls, and the other ¹⁴C ages are calibrated using a rough approximation of potential reservoir effects as discussed above. This shows that it is more likely that most of the dated oval bowls were made in the first half of the 4th millennium

METHODS

Technological, morphological, ornamental and use-wear analysis

Technological analysis was based on recording the macrotraces which appeared as a result of vessel modelling and further reconstruction of the *chaîne opératoire*, including determination of temper materials (Creswell 1976; Arnold 1985; Shepard 1985; Livingstone-Smith 2001; Gosselain 2002; Pétrequin *et al.* 2006). Use-wear analysis involved characterisation of the carbonised surface deposits (ie, interior foodcrusts or exterior sooted deposits), including their location as well as traces of abrasion and other physical impacts on the vessel body as a result of use (Skibo 2015).

Bayesian chronological models, implemented in OxCal v4.4 (Bronk Ramsey 2009) for the production of oval bowls in Denmark and northern Germany. Upper panel: ¹⁴C ages of carbonised organic residues adhering to these bowls (Table S2) are calibrated using the atmospheric calibration curve (Reimer *et al.* 2020), assuming no reservoir effects. Lower panel: ¹⁴C ages from northern German sites calibrated using the Mix_Curves function, with specified contributions from marine or freshwater curves, with specified MRE and FREs (see text). Context dates used for the Danish cases. Both models assume that the dated cases represent a single, uniform phase of activity, whose beginning and end can be estimated using OxCal's Boundary function. The KDE_Plot distributions summarise the modelled dates of individual samples (Bronk Ramsey 2017)

Organic residue analysis

During cooking or storage lipids penetrate into the ceramic matrix or accumulate on the vessel surface as carbonised surface deposits (ie, interior foodcrusts or exterior sooted deposits). In this study, lipids were extracted from powdered ceramic potsherds as well as carbonised surface deposits and analysed using a combination of bulk carbon (δ^{13} C) and nitrogen (δ^{15} N) stable isotope analysis, gas chromatography-mass spectrometry (GC-MS) and GC-combustion-isotope ratio (MS) to characterise the molecular and isotopic compositions of the extracts

Bulk $\delta^{13}C$ and $\delta^{15}N$ stable isotope analysis

Bulk δ^{13} C and δ^{15} N stable isotope analysis was undertaken on 111 carbonised surface deposits (ie, interior foodcrusts and exterior sooted deposits) derived from both the oval bowls throughout the circum-Baltic, and stone lamps from North America. The majority (n = 105) of the measurements were obtained from two laboratories: the University of Bradford (UK) and the University of York (UK). In addition, one sample was measured at Aarhus University (Denmark), with the remainder (n = 5) being analysed at the University of Tartu (Estonia). The samples were directly removed from the sherd surfaces using a scalpel, homogenised using a sterile mortar and pestle, weighed (0.8–1.2 mg) out into pressed tin capsules (OEA Laboratories Limited, Exeter, UK), and analysed without any pre-treatment. At Bradford, a Flash EA1112 Elemental Analyzer with ConFlo III coupled to a Thermo Fisher Delta V Advantage was used, whilst a Sercon GSL analyzer linked to a Sercon 20-22 mass spectrometer was employed at York. The results from the analyses are reported in parts per mille (‰) relative to Vienna-Pee Dee Belemnite (V-PDB) and atmospheric nitrogen (AIR N₂), the international standards for δ^{13} C and δ^{15} N respectively. A range of laboratory standards traceable to international isotopic reference standards were analysed alongside the samples following standard procedures. Fish Gel and Bovine Liver Serum were analysed with IAEA-600 Caffeine, IAEA-N-1 Ammonium Sulfate and IAEA-CH-3 Cellulose (International Atomic Energy Agency, Vienna, Austria) at Bradford, whilst Fish Gel as well as IAEA-600 Caffeine, IAEA-N-1 Ammonium Sulfate and IA-R006 Cane (International Atomic Energy Agency, Vienna, Austria) were analysed at York. The two elements were measured separately since the quantity of carbon (%C) was often higher than that of nitrogen (%N). The majority of the samples were measured in duplicate, sometimes triplicate, and the results were averaged where applicable (Craig et al. 2007; 2011; 2013; Heron et al. 2013; 2015). The accuracy and precision of the instrument was calculated from the repeated measurements of each sample, and was ±0.2‰ for both elements. As an additional quality indicator, data were ignored if %C values were <10 and/or %N values were <1. Of the 111 samples analysed, 86 yielded data that could be confidently incorporated into the results and discussion

Sample preparation for acidified methanol extraction

In order to avoid potential contamination resulting from the extraction procedure or subsequent analysis, nitrile gloves were worn at all times. In addition, all glassware and tools had been washed in solvent ($3 \times$ dichloromethane (DCM)). All reagents were of analytical grade. To assess any possible contamination, a blank sample (method blank) was prepared and analysed with each batch of archaeological samples, as described elsewhere (Craig *et al.* 2007; 2011; Heron *et al.* 2013; 2015)

To reduce contamination from the burial environment, the surfaces of the potsherds were removed to a depth of 1–2 mm using a Dremel modelling drill fitted with a tungsten carbide bit – this powder was then disposed of. To extract absorbed residues from the ceramic matrix, *c*. 1 g of the ceramic powder was removed by drilling to a depth of 2–4 mm from the interior surfaces of the potsherds. To extract absorbed residues from the carbonised surface deposits, when present, *c*. 20 mg of the interior foodcrusts or exterior sooted deposits were directly removed from the sherd surfaces using a scalpel. Both the powdered ceramic potsherds as well as carbonised surface deposits were homogenised using a sterile mortar and pestle for acidified methanol extraction followed by GC-MS and GC-C-IRMS

Acidified methanol extraction

In total, 94 oval bowls throughout the circum-Baltic and eight stone lamps from North America were selected for analysis. Lipids were directly extracted and methylated using an acidified methanol extraction procedure (Craig *et al.* 2013; Correa-Ascencio & Evershed 2014; Papakosta *et al.* 2015). Briefly, methanol (4 mL) was added to each sample. The samples were ultrasonicated in a water bath for 15 min, acidified with concentrated sulphuric acid (800 μ L), vortexed and heated in closed vials for 4 h at 70°C. After centrifugation, the acidified supernatants were transferred to sterilised and clean vials. Lipids were extracted with *n*-hexane (3 × 2 mL), and filtered through a pipette with potassium carbonate and glass wool to neutralise any sulphuric acid. The extracts were evaporated under a gentle stream of N₂ at 37°C, resuspended with *n*-hexane and transferred to a new vial. At the beginning and end of the extraction procedure 10 μ L of an internal standard (1.0 μ g μ L⁻¹, alkanes C₃₄ and C₃₆) was added to each sample. Finally, copper turnings were added to many of the extracts to remove cyclic octaatomic sulphur before analysis by GC-MS and GC-C-IRMS using published methodologies (Hansel *et al.* 2004; Craig *et al.* 2007; 2012)

Gas Chromatography-Mass Spectrometry

The acidified methanol extracts were initially analysed by GC-MS using an Agilent 7690A Series Gas Chromatograph coupled to an Agilent 5975C Inert XL Mass-Selective Detector with a Quadrupole Mass Analyser and Triple-Axis Detector (Agilent Technologies, Cheadle, UK). To calculate the lipid yields and identify the main molecular compounds, a DB-5MS column (30 m × 250 μ m × 0.25 μ m; J&W Scientific, Inc., Folsom, USA) was employed. The carrier gas (3 ml min⁻¹) was helium, whilst the oven temperature was set at 50°C for 2 min, which was increased by 10°C min⁻¹ until 325°C was achieved. This temperature was held for 15 min. The ionisation energy of the mass spectrometer was 70 eV and spectra were obtained in scanning mode between *m*/*z* 50 and 800

The acidified methanol extracts were subsequently analysed by GC-MS using a DB-23 (50%cyanopropyl)-methylpolysiloxane column (60 m x 250 μ m × 0.25 μ m; J&W Scientific, Inc., Folsom, USA). The carrier gas (1.5 ml min⁻¹) was helium, whilst the oven temperature was set at 50°C for 2 min, which was increased to 100°C (10°C min⁻¹). Then, the temperature was raised by 4°C min⁻¹ to 140°C, followed by 0.5°C min⁻¹ to 160°C, and finally by 20°C min⁻¹ to 250°C. It was held at this temperature for 10 min. To target specific ion groups related to aquatic organisms, selected-ion monitoring (SIM) mode was used: *m*/*z* 74, 87, 213, 270 for 4,8,12-trimethyltridecanoic acid (TMTD), *m*/*z* 74, 88, 101, 312 for pristanic acid, *m*/*z* 74, 101, 171, 326 for phytanic acid, and *m*/*z* 74, 105, 262, 290, 318, 346 for ω -(*o*alkylphenyl) alkanoic acids of carbon lengths C₁₆ to C₂₂ (APAA₁₆₋₂₂). Furthermore, separation of the two phytanic acid diastereomers (3S,7R,11R,15-phytanic acid, SRR and 3R,7R,11R,15-phytanic acid, RRR) was obtained, which enabled the calculation of *SRR*% in total phytanic acid by integrating the *m*/*z* 101 ion (Lucquin *et al.* 2016)

Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry

To further distinguish the origins of the different foodstuffs, the acidified methanol extracts were analysed by GC-C-IRMS using a Delta V Advantage Isotope Ratio Mass Spectrometer (Thermo Fisher Scientific, Bremen, Germany) linked to a Trace 1310 Gas Chromatograph (Thermo Fisher Scientific, Bremen, Germany) with a ConFlo IV interface (CuO combustion reactor held at 850°C). 1 µl of each sample was injected into a DB-5MS fused-silica column (60 m × 250 µm × 0.25 µm; J&W Scientific, Inc., Folsom, USA). The carrier gas (2 ml min⁻¹) was ultra high-purity-grade helium, whilst the temperature was set at 50°C for 0.5 min, which was increased by 25°C min⁻¹ to 175°C, and then raised by 8°C min⁻¹ to 325°C. It was held at this temperature for 20 min. The eluted products were combusted to CO₂ and ionised in the source of the mass spectrometer by electron ionisation. The ion intensities of m/z 44, 45, and 46 were monitored to automatically compute the ¹³C/¹²C ratio of each peak in the acidified methanol extract. Computations were performed with Isodat 3.0 Gas Isotope Ratio MS Software (version 3.0; Thermo Fisher Scientific, Bremen, Germany) that were based on comparisons with a standard reference gas (CO₂) of known isotopic composition that was repeatedly measured. The results from the analyses

are reported in parts per mille (‰) relative to Vienna-Pee Dee Belemnite (V-PDB). The accuracy and precision of the instrument was determined on *n*-alkanoic acid ester standards of known isotopic composition (Indiana standard F8-3). The mean ±Std Dev values of these were $-29.90\pm0.20\%$ and $-23.19\pm0.12\%$ for the methyl ester of C_{16:0} (reported mean value vs. V-PDB $-29.90\pm0.03\%$) and C_{18:0} (reported mean value vs. V-PDB $-23.24\pm0.01\%$) respectively. Each sample was measured in replicate (mean of Std Dev 0.04‰ for C_{16:0} and 0.03‰ for C_{18:0}). Values were also corrected subsequent to analysis to account for the methylation of the carboxyl group that occurs during acidified methanol extraction. Corrections were based on comparison with a standard mixture of C_{16:0} and C_{18:0} fatty acids of known isotopic composition processed in each batch under identical conditions

BIBLIOGRAPHY

- Admiraal, M., Lucquin, A., Tersch, M. von, Jordan, P.D. & Craig, O.E. 2018. Investigating the function of prehistoric stone bowls and griddle stones in the Aleutian Islands by lipid residue analysis. *Quaternary Research* 91(3), 1003–15
- Andersen, S.H. 1975. Ringkloster: En jysk inlandsboplads med Ertebøllekultur. Kuml 1973–1974, 11–108
- Andersen, S.H. 1985. Tybrind Vig: a preliminary report on a submerged Ertebølle settlement on the west coast of Fyn. *Journal of Danish Archaeology* 4, 52–69
- Andersen, S.H. 1989. Norsminde: A "Køkkenmødding" with Late Mesolithic and Early Neolithic occupation. *Journal of Danish Archaeology* 8, 13-40
- Andersen, S.H. 1994-1995. Ringkloster. Ertebølle trappers and wild boar hunters in Eastern Jutland. Journal of Danish Archaeology 12, 13–59
- Andersen, S.H. 2009. *Ronæs Skov: Marianarkæologiske undersøgelser af kystboplads fra Ertebølletid*. Højbjerg: Jysk Arkæologisk Selskab
- Andersen, S.H. 2013. *Tybrind Vig: submerged Mesolithic settlements in Denmark*. Aarhus: Nationalmuseet and Moesgård Museum
- Andersen, S.H. 2018. *Vængesø and Holmegaard: Ertebølle fishers and hunters on Djursland*. Aarhus: Aarhus University Press
- Andreasen, N.H. 2002. Ertebøllekulturens indlandsbopladser et overset potentiale? En arkæologisk analyse af Præstelyngen – en naturvidenskabeligt udgravet boplads i den vestsjællandske Åmose. Unpublished Masters Dissertation, University of Copenhagen
- Arnold, D. E. 1985. Ceramic Theory and Cultural Process. Cambridge: Cambridge University Press
- Bērziņš, V. 2008. *Sārnate: living by a coastal lake during the east Baltic Neolithic*. Oulu: Acta Universitatis Ouluensis B, 86
- Bradtmöller, M. 2008. Fedderingen-Wurth, an Ertebølle site at the North Sea coast. *Quartär* 55, 127–34 Brazaitis, D. 2002. Narviškos keramikos stiliai Rytų Lietuvoje. *Lietuvos archeologija* 23, 51–72
- Brinch Petersen, E. 1971. Ølby Lyng. En østsjællansk kystboplads med Ertebøllekultur. *Aarbøger for Nordisk Oldkyndighed og Historie* 1970, 5–42
- Broholm, H.C. & Rasmussen, J.P. 1931. Ein steinzeitlicher Hausgrund bei Strandegaard, Ostseeland. Acta Archaeologica 11, 265–78
- Broholm, H.C., Degerbøl, M. & Jessen, K. 1928. Langøfundet. En boplads fra den ældre stenalder på Fyn. *Aarbøger for Nordisk Oldkyndighed og Historie* 1928, 19–28
- Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-60
- Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809-33
- Correa-Ascencio, M. & Evershed, R.P. 2014. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. *Analytical Methods* 6, 1330–40
- Courel, B., Robson, H.K., Lucquin, A., Dolbunova, E., Oras, E., Adamczak, K., Andersen, S.H., Astrup, P.M., Charniauski, M., Czekaj-Zastawny, A., Ezepenko, I., Hartz, S., Kabaciński, J., Kotula, A., Kukawka, S., Loze, I., Mazurkevich, A., Piezonka, H., Piličiauskas, G., Sørensen, S.A., Talbot, H.M., Tkachou, A., Tkachova, M., Wawrusiewicz, A., Meadows, J., Heron, C.P. & Craig, O.E.

2020. Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter-gatherers. *Royal Society Open Science* 7, 192016 [https://doi.org/10.1098/rsos.192016]

- Craig, O. E., Forster, M., Andersen, S. H., Koch, E., Crombé, P., Milner, N. J., Bailey, G. & Heron, C. 2007. Molecular and isotopic demonstration of the processing of aquatic products in Northern European prehistoric pottery. *Archaeometry* 49(1), 135–42
- Craig, O.E., Allen, R.B., Thompson, A., Stevens, R.E., Steele, V.J. & Heron, C.P. 2012. Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. *Rapid Communications in Mass Spectrometry* 26, 2359–64
- Craig, O.E., Steele, V.J., Fischer, A., Hartz, S., Andersen, S.H., Donohoe, P., Glykou, A., Saul, H., Jones, D.M., Koch, E. & Heron, C. 2011. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. *Proceedings of the National Academy of Sciences* of the United States of America 108(44), 17910–15
- Craig, O.E., Saul, H., Lucquin, A., Nishida, Y., Tache, K., Clarke, L., Thompson, A., Altoft, D.T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C.P. & Jordan, P. 2013. Earliest evidence for the use of pottery. *Nature* 496, 351–4
- Cramp, L.J.E., Król, D., Rutter, M., Heyd, V. & Pospieszny, Ł. 2019. Organic residue analysis of Rzucewo culture pottery from Rzucewo. *Pomorania Antiqua* 28, 245–59
- Creswell, R. 1976. Techniques et culture: les bases d'un programme de travail. *Techniques et cultures* 1, 7–59
- Dumpe, B., Valdis, B. & Stilborg, O. 2011. A dialogue across the Baltic on Narva and Ertebølle pottery. In Hartz *et al.* (eds) 2011, 409–41
- Ehrlich, B. 1936. Succase. Elbinger Jahrbuch 12/13, 41-98
- Evershed, R.P., Copley, M.S., Dickson, L. & Hansel, F.A. 2008. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. *Archaeometry* 50(1), 101–13
- Felczak, O. 1983. Wyniki badań wykopaliskowych na osadzie kultury rzucewskiej w Rewie, gm. Kosakowo, woj. Gdańsk. *Sprawozdania Archeologiczne* 35, 51–68
- Fernandes, R., Dreves, A., Nadeau, M-J. & Grootes, P.M. 2013. A freshwater lake saga: Carbon routing within the aquatic food web of Lake Schwerin. *Radiocarbon* 55, 1102–13
- Fernandes, R., Rinne, C., Nadeau, M-J. & Grootes, P. 2016. Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. *Environmental Archaeology* 21, 285–94
- Fischer, A. 1986. Kongemose A and L. Journal of Danish Archaeology 5, 258-9
- Fischer, A. 2002. Food for feasting? An evaluation of explanations of the Neolithisation of Denmark and southern Sweden. In A. Fischer & K. Kristensen (eds), *The Neolithisation of Denmark – 150 years* of debate, 343–93. Sheffield: J. R. Collis Publications
- Fischer, A. & Asmussen, E. 1988. Spangkonge. Journal of Danish Archaeology 7, 245
- Fischer, A. & Olsen, J. 2021. The Nekselø fish weir and marine reservoir effect in Neolithization period Denmark. *Radiocarbon* 63, 805–20
- Fischer, A., Gotfredsen, A.B., Meadows, J., Pedersen, L. & Stafford, M. 2021. The Rødhals kitchen midden – marine adaptations at the end of the Mesolithic world. *Journal of Archaeological Science: Reports* 39: 103102 [https://doi.org/10.1016/j.jasrep.2021.103102]
- Gabrielsen, S. 1953. Udgravningen på Flynderhage 1945-47. Aarhus Stifts Aarbøger 46, 5-16
- Gaerte, W. 1927. Die steinzeitliche Keramik Ostpreußens. Königsberger: Gräfe & Unzer
- Galiński, T. 2012. Kultura protoneolityczna na Pomorzu w świetle najnowszych badań w Tanowie. *Archeologia Polski* 57, 79–112
- Girininkas, A. & Daugnora, L. 2015. *Ūkis ir visuomenė Lietuvos priešistorėje, T. 1.* Klaipėda: Klaipėdos Universiteto Leidykla
- Glykou, A. 2016. Neustadt LA 156. Ein submariner Fundplatz des späten Mesolithikums und frühesten Neolithikums in Schleswig-Holstein. Untersuchungen zur Subsistenzstrategie der letzten Jäger,

Sammler und Fischer an der norddeutschen Ostseeküste. Kiel, Hamburg: Untersuchungen und Materialien zur Steinzeit in Schleswig-Holstein und im Ostseeraum 7

- Gosselain, O. 2002. Poteries du cameroun meridional. Styles techniques et rapports à l'identité. Paris: CNRS Monographies du CRA 26
- Gumiński, W. 2011. Importy i naśladownictwa ceramiki kultury brzesko-kujawskiej i kultury pucharów lejkowatych na paraneolitycznym stanowisku kultury Zedmar Szczepanki na Mazurach. In U. Stankiewicz & A. Wawrusiewicz (eds), *Na rubieży kultur. Badania nad okresem neolitu i wczesną epoką brązu*, 149–60. Białystok: Muzeum Podlaskie w Białymstoku
- Gurina N.N. 1967. Iz istorii drevnikh plemen zapadnykh oblastey SSSR (po materialam narvskoy ekspeditsii). *Materialy i issledovaniya po arkheologii SSSR*, 144
- Hansel, F.A., Copley, M.S., Madureira, L.A.S. & Evershed, R. P. 2004. Thermally produced ω-(*o*-alkylphenyl)alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. *Tetrahedron Letters* 45, 2999–3002
- Hartz, S. 2011. From pointed bottom to round and flat bottom tracking early pottery from Schleswig-Holstein. In Hartz *et al.* 2011, 241–76
- Hartz, S. & Lübke, H. 2006. New evidence for a chronostratigraphic division of the Ertebølle culture and the earliest Funnel Beaker culture on the Southern Mecklenburg Bay. In C.-J. Kind (ed.), *After the Ice Age. Settlements, Subsistence and Social Development in the Mesolithic of Central Europe*, 59–74. Stuttgart: Konrad Theiss
- Hartz, S., Luth, F. & Terberger, T. (eds). 2011. *Early Pottery in the Baltic Dating, Origin and Social Context*. Frankfurt: Bericht der Römish-Germanischen Kommission 89
- Haugsted, E. 1947. *Bopladsen på Rugholm*. Aarhus: Aarhus Museums Undersøgelser ved Østenden af Brabrand Sø 1944–1945
- Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., Grootes, P.M., Hughen, K.A., Kromer, B., Reimer, P.J., Adkins, J., Burke, A., Cook, M.S., Olsen, J. & Skinner, L. C. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). *Radiocarbon* 62, 779–820
- Heron C., Andersen S., Fischer A., Glykou A., Hartz S., Saul H., Steele V. & Craig O. 2013. Illuminating the Late Mesolithic: residue analysis of 'blubber' lamps from Northern Europe. *Antiquity* 87, 178–88
- Heron C., Craig O. E., Lucquin A. J. A., Steele V. J., Thompson A. & Piličiauskas G. 2015. Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3300–2400 cal BC. *Journal* of Archaeological Science 63, 33–43
- Hirsch, K., Klooß, S. & Klooß, R. 2007. Der endmesolithisch-neolithische Kustensiedlungsplatz bei Baabe im Sudosten der Insel Rugen. *Bodendenkmalpflege in Mecklenburg-Vorpommern* 55, 11–51
- Hulthén, B. 1977. *On Ceramic Technology during the Scanian Neolithic and Bronze Age*. Stockholm: Theses and Papers in North-European Archaeology 6
- Ilkiewicz, J. 1989. From studies on cultures of the 4th millenium B.C. in the central part of the Polish coastal area. *Przegląd Archeologiczny* 36, 17–55
- Ilkiewicz, J. 1997. From studies on Ertebølle Type Cultures in the Koszalinian Coastal Area (Dąbki 9, Koszalin-Dzierżęcino). In D. Król (ed.), *The Built Environment of Coast Areas during the Stone Age. The Baltic Sea-Coast Landscapes Seminar. Session No. 1*, 50–65. Gdansk: Regional Centre for Studies and Preservation of Built Environments in Gdansk
- Jaanits, L. 1959. Poseleniya epokhi neolita i rannego metalla v priust'ye r Emayygi (Estonskaya SSR). Tallin: II AN ESSR
- Jaanits, L. 1965. Über die Ergebnisse der Steinzeitforschung in Sowjetestland. Finskt Museum 72, 5-46
- Jennbert, K. 1984. *Den Produktiva Gåvan. Tradition og innovation I Syskandinavien föromkring* 5300 år sedan. Bonn/Lund: Acta Archaeologica Lundensia Series in 4 Nr 16
- Kabaciński, J. & Terberger, T. 2011. Pots and pikes at Dabki 9, Koszalin district (Poland) the early pottery on the Pomeranian coast. In Hartz *et al.* (eds) 2011, 361–92

- Kabaciński, J., Król, D. & Terberger, T. 2011. Early pottery from the coastal site Rzucewo, Gulf of Gdańsk (Poland). In Hartz *et al.* (eds) 2011, 393–407
- Kabaciński, J., Hartz, S., Raemaekers, D.C.M. & Terberger, T. (eds). 2015. *The Dąbki Site in Pomerania and the Neolithisation of the North European Lowlands (c. 5000–3000 calBC)*. Leidorf: Archäologie und Geschichte im Ostseeraum, Band 8
- Kilian, L. 1955. Haffükstenkultur und Ursprung der Balten. Bonn: Rudolf Habelt
- Kjellmark, K. 1903. En stenåldersboplats i Järavallen vid Limhamn. Stockholm: Antikvarisk tidskrift för Sverige del 17 nr. 3
- Klooß, S., Lübke, H. & Mahlstedt, S. 2009. Der endmesolithische Fundplatz Timmendorf-Nordmole I.
 In U. Müller, S. Kleingärtner & F. Huber (eds), Zwischen Nord- und Ostsee. Zehn Jahre Arbeitsgruppe für maritime und liminische Archäologie (AMLA) in Schleswig-Holstein, 187–208.
 Bonn: Universitätsforschungen zur Prähistorischen Archäologie 165
- Kotula, A. 2009. Der endmesolithische Fundplatz Saiser 1 (Lietzow-Buddelin) im Lichte der Ausgrabungen 2002–2003. Unpublished Masters Dissertation, University of Greifswald
- Kotula, A. 2015. Contact and adaptation the early local pottery at Dąbki and its relations to neighbouring hunter-gatherer ceramics. In Kabaciński *et al.* (eds) 2015, 175–202
- Kotula, A., Piezonka, H. & Terberger, T. 2015a. New pottery dates on the Mesolithic–Neolithic transition in the north-central European lowlands. In Kabaciński *et al.* (eds) 2015, 489–509
- Kotula, A., Czekaj-Zastawny, A., Kabaciński, J. & Terberger, T. 2015b. Find distribution, taphonomy and chronology of the Dąbki site. In Kabaciński *et al.* (eds) 2015, 113–36
- Kramer, F.E. 2001. En mesolitisk inlandsboplads i Salptermosen, Nordsjælland en foreløbig meddelelse. In O.L. Jensen, S. Sørensen & K.M. Hansen (eds), *Danmarks Jægerstenalder – Status* og Perspektiver, 155–60. Hørsholm: Hørsholm Egns Museum
- Kriiska, A., Oras, E., Lõugas, L., Meadows, J., Lucquin, A. & Craig, O.E. 2017. Late Mesolithic Narva stage in Estonia: pottery, settlement types and chronology. *Estonian Journal of Archaeology* 21(1), 52–86
- Kukawka S. 1997. Na rubieży środkowoeuropejskiego świata wczesnorolniczego. Społeczności ziemi chełmińskiej w IV tys. p.n.e. Toruń: Wydawnictwo Naukowe UMK
- Kukawka S. 2010. Subneolit północno-wschodnioeuropejski na Niżu Polskim. Toruń: Wydawnictwo Naukowe UMK
- Livingstone-Smith, A. 2001. *Chaînes opératoires de la poterie. Références ethnographiques, analyse et reconstitution.* Unpublished doctoral thesis, University of Brussels
- Loze, I. A. 1988. Poseleniya kamennogo veka Lubanskoy niziny. Mezolit, ranniy i sredniy neolit. Zinatne: Riga
- Loze, I. 1992. The Early Neolithic in Latvia. Acta Archaeologica 63, 119–40
- Loze, I. & Eberhards, G. 2015. Vēlā Neolīta Aboras I apmetnes apdzīvotība: Jauni radioaktīvā oglekļa datējumi Lubāna mitrājā. *Latvijas Zinātņu akadēmijas vēstis* 66(5/6), 26–38
- Lubke, H. 2000. Timmendorf-Nordmole und Jäckelberg-Nord. Erste Untersuchungsergebnisse zu submarinen Siedlungsplätzen der endmesolithischen Ertebølle-Kultur in der Wismar-Bucht, Mecklenburg-Vorpommern. *Nachrichtenblatt Arbeitskreis Unterwasserarchäologie* 7, 17–35
- Lucquin, A., Colonese, A.C., Farrell, T.F.G. & Craig, O.E. 2016. Utilising phytanic acid diastereomers for the characterisation of archaeological lipid residues in pottery samples. *Tetrahedron Letters* 57, 703–7
- Madsen, A.P., Muller, S., Neergaard, C., Petersen, C.G.J., Rostrup, E., Steenstrup, K.J.V. & Winge, H. 1900. *Affaldsdynger fra Stenalderen i Danmark: Undersøgte for Nationalmuseet*. Copenhagen: C.A. Reitzel
- Mathiassen, T. 1919. Ertebøllekulturens bopladser ved Roskilde Fjord. Aarbog Udgivet af Historisk Samfund for Københavns Amt, 7–25
- Mathiassen, T. 1935. Blubber lamps in the Ertebølle culture? Acta Archaeologica 6, 139–52
- Mathiassen, T. 1943. Stenalderbopladser i Aamosen. Nordiske Fortidsminder 3, 1-146
- Mathiassen, T., Degerbøl, M. & Troels-Smith, J. 1942. *Dyrholmen: En Stendalderboplads paa Djursland*. Copenhagen: Det Kongelige Danske Videnskabernes Selskab

- Meadows, J., Robson, H. K., Groß, D., Hegge, C., Lübke, H., Schmölcke, U., Terberger, T. & Gramsch,
 B. 2018. How fishy was the inland Mesolithic? New data from Friesack, Brandenburg,
 Germany. *Radiocarbon* 60, 1621–36
- Mertens, E.-M. & Schirren, C.M. 2000. Bandkeramik und Stichbandkeramik an der Kuste Vorpommerns. In F. Luth, U. Schoknecht, O. Nakoinz, H. Beer, C. Börker, H. Schlichtherle, T. Förster, M. Mainberger & J. Riederer (eds), Schutz des Kulturerbes unter Wasser. Veränderungen europäischer Lebenskultur durch Fluß- und Seehandel, 451–5. Lubstorf: Beiträge zur Ur- und Fruhgeschichte Mecklenburg-Vorpommerns 35
- Meurers-Balke, J. 1983. Siggeneben-Suä. Ein Fundplatz der frühen Trichterbecherkultur an der holsteinischen Ostseekuste. Neumünster: Offa-Bucher 50
- Nowak, M. 2009. Hunter-gatherers and early ceramics in Poland. In P. Jordan & M. Zvelebil (eds), *Ceramics Before Farming*, 449–75. Walnut Creek CA: Left Coast Press
- Oras, E., Lucquin, A., Lembi, L., Tõrv, M., Kriiska, A. & Craig, O.E. 2017. The adoption of pottery by north-east European hunter gatherers: evidence from lipid residue analysis. *Journal of Archaeological Science* 78, 112–19
- Papakosta, V., Oras, E. & Isaksson, S. 2019. Early pottery use across the Baltic A comparative lipid residue study on Ertebølle and Narva ceramics from coastal hunter-gatherer sites in southern Scandinavia, northern Germany and Estonia. *Journal of Archaeological Science: Reports* 24, 142– 51
- Papakosta, V., Smittenberg, R. H., Gibbs, K., Jordan, P. & Isaksson, S. 2015. Extraction and derivatization of absorbed lipid residues from very small and very old samples of ceramic potsherds for molecular analysis by gas chromatography-mass spectrometry (GC-MS) and single compound stable carbon isotope analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). *Microchemical Journal* 123, 196–200
- Pétrequin, A-M., Pétrequin, P., Weller, O. & Saint-Germain-en-Laye, M.D.N. de. 2006. Objets de pouvoir en Nouvelle-Guinée. Approche ethnoarchéologique d'un système de signes sociaux. Catalogue de la donation Anne-Marie et Pierre Pétrequin. Paris: RMN
- Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1, 24
- Philippsen, B. 2018. Reservoir effects in a Stone Age fjord on Lolland, Denmark. *Radiocarbon* 60(2), 653–65
- Philippsen, B. & Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. *Radiocarbon* 55(3), 1085–101
- Philippsen, B. & Meadows, J. 2014. Inland Ertebølle Culture: the importance of aquatic resources and the freshwater reservoir effect in radiocarbon dates from pottery food crusts. *Internet Archaeology* 37 [https://doi.org/10.11141/ia.37.9]
- Philippsen, B., Kjeldsen, H., Hartz, S., Paulsen, H., Clausen, I. & Heinemeier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 268, 995–8
- Piezonka H. 2015. Jäger, Fischer, Töpfer: Wildbeutergruppen mit früher Keramik in Nordosteuropa im 6. und 5. Jahrtausend v. Chr. Bonn: Hebert-Verlag
- Piezonka, H., Meadows, J., Hartz, S., Kostyleva, E., Nedomolkina, N., Ivanishcheva, M., Kosorukova, N. & Terberger, T. 2016. Stone Age pottery chronology in the Northeast European forest zone: new AMS and EA-IRMS results on foodcrusts. *Radiocarbon* 58(2), 267–89
- Piličiauskas, G. & Heron, C.P. 2015. Aquatic radiocarbon reservoir offsets in the southeastern Baltic. *Radiocarbon* 57(4), 539–56
- Piličiauskas, G., Skipitytė, R. & Heron, C. 2018. Mityba Lietuvoje 4500–1500 cal BC maisto liekanų keramikoje izotopinių tyrimų duomenimis. *Lietuvos archeologija* 44, 9–41
- Piličiauskas, G., Lavento, M., Oinonen, M. & Grižas, G. 2011. New 14C dates of Neolithic and Early Metal Period ceramics in Lithuania. *Radiocarbon* 53(4), 629–43
- Price, T.D. 2006. Vejle Kro skaldyngen. In Rigsantikvarens Arkæologiske Sekretariat (ed), *Arkæologiske udgravninger i Danmark: Katalog 2004*, 24. Elektronisk udgave: Kulturarvsstyrelsen

- Price, T.D. & Gebauer, A.B. 2005. Smakkerup Huse: a Late Mesolithic coastal site in northwest Zealand, Denmark. Aarhus: Aarhus University Press
- Price, T.D., Ritchie, K., Gron, K.J., Gebauer, A.B. & Nielsen, J. 2018. Asnæs Havnemark: a late Mesolithic Ertebølle coastal site in western Sjælland, Denmark. *Danish Journal of Archaeology* 7(2), 255–76
- Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M. *et al.* 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). *Radiocarbon* 62(4), 725–57
- Richter, J. & Noe-Nygaard, N. 2003. A Late Mesolithic hunting station at Agernæs, Fyn, Denmark. *Acta* Archaeologica 74, 1–64
- Rimantienė, R. 1989. Nida: senųjų baltų gyvenvietė. Vilnius: Mokslas
- Rimantienė, R. 2005. *Die Steinzeitfischer an der Ostseelagune in Litauen*. Vilnius: National Museum of Lithuania
- Rimantienė, R. 2016. *Nida: a Bay Coast culture settlement on the Curonian Lagoon*. Vilnius: National Museum of Lithuania
- Robson, H.K. 2015. *Evaluating the change of consumption and culinary practices at the transition to agriculture: a multi-disciplinary approach from a Danish kitchen midden*. Unpublished PhD Thesis, University of York
- Robson, H.K., Skipitytė, R., Piličiauskienė, G., Lucquin, A., Heron, C.P., Craig, O.E. & Piličiauskas, G.
 2019. Diet, cuisine and consumption practices of the first farmers in the south-eastern Baltic. *Archaeological and Anthropological Sciences* 11, 4011–24
- Robson, H.K., Saul, H., Steele, V.J., Meadows, J., Nielsen, P.O., Fischer, A., Heron, C.P. & Craig, O.E. 2021. Organic residue analysis of Early Neolithic 'bog pots' from Denmark demonstrates the processing of wild and domestic foodstuffs. *Journal of Archaeological Science: Reports* 36, 102829.
- Saltsman, E.B. 2013. Dwelling construction materials from Pribrezhnoye in the context of the formation of Primorskaya culture. *Archaeologia Baltica* 19, 12–29
- Saltsman, E.B. 2016. The origin of the Primorskaya Culture (an analysis of the Pribrezhnoe and Ushakovo-3 dig sites). *IKBFU's Vestnik. SER. The Humanities and Social Science* 2016(1), 6–38
- Saul, H. 2011. *Infusion Cuisine: a study of the value of foods in a pottery context across the transition to agriculture in the southern Baltic.* Unpublished PhD Thesis, University of York
- Schuldt, E. 1973. Die steinzeitliche Inselsiedlung im Malchiner See bei Basedow, Kreis Malchin. Bodendenkmalpflege in Mecklenburg 1973, 7–65
- Schwabedissen, H. 1994. Die Ellerbek-Kultur in Schleswig-Holstein und das Vordringen des Neolithikums über die Elbe nach Norden. In J. Hoika & J. Meurers-Balke (eds), Beiträge zur frühneolithischen Trichtebecherkultur im westlichen Ostseegebiet. 1, 361–401. Neumünster: Untersuchungen und Materialien zur Steinzeit in Schleswig-Holstein aus dem Archäologischen Landesmuseum der Christian-Albrechts-Universität 1
- Shepard, A. 1985. Ceramics for the Archaeologist. Washington DC: Carnegie Institution of Washington
- Sherriff, B.L., Tisdale, M.A., Sayer, B.G., Schwarcz, H.P. & Knyf, M. 1995. Nuclear magnetic resonance spectroscopic and isotopic analysis of carbonized residues from subarctic Canadian prehistoric pottery. *Archaeometry* 37(1), 95–111
- Shevchenko, A., Schuhmann, A., Thomas, H. & Wetzel, G. 2018. Fine Endmesolithic fish caviar meal discovered by proteomics in foodcrusts from archaeological site Friesack 4 (Brandenburg, Germany). PLoS ONE 13(11), e0206483
- Skaarup, J. 1973. Hesselø-Sølager: Jagtstationen der südskandinavischen Trichterbecherkultur. Copenhagen: Akademisk Forlag
- Skaarup, J. & Grøn, O. 2004. *Møllegabet II. A submerged Mesolithic settlement in southern Denmark*. Oxford: British Archaeological Report S1328
- Skibo, J. M. 2015. The adoption of pottery in the eastern United States: a performance-based approach. In W.H. Walker & J.M. Skibo (eds), *Explorations in Behavioral Archaeology*, 138–55. Salt Lake City UT: University of Utah Press

- Stillborg, O. & Holm, L. 2009. Ceramics as a novelty in northern and southern Sweden. In P. Jordan & M. Zvelebil (eds), *Ceramics Before Farming*, 319–45. Walnut Creek CA: Left Coast Press
- Terberger, T. & Seiler, M. 2004. Flintschläger und Fischer Neue interdisziplinäre Forschungen zu steinzeitlichen Siedlungsplätzen auf Rugen und dem angrenzenden Festland. Bodendenkmalpflege in Mecklenburg-Vorpommern 52, 155–83
- Thomsen, T. & Jensen, A. 1906. Brabrand-fundet fra den ældre stenalder. *Aarbøger for Nordisk* Oldkyndighed og Historie 1906, 1–74
- Vankina, L. V. 1970. Torfânikovaâ stoânka Sarnate. Riga: Zinatne
- Westerby, E. 1927. *Stenalderbopladser ved Klampenborg.* Nogle bidrag til studiet af den Mesolitiske periode. København: H.H. Thieles Bogtrykkeri
- Wetzel, G. 2015. Frühneolithische Funde von Friesack 4, Lkr. Havelland (Land Brandenburg), und Uhyst 13, Lkr. Görlitz (Freistaat Sachsen), und ihr kulturelles Umfeld. In Kabaciński *et al.* (eds) 2015, 511–35.
- Wetzel, G. 2021. Frühe Keramik in Brandenburg und den Lausitzen zwischen Bandkeramik und Trichterbecherkultur. In W. Schier, J. Orschiedt, H. Stäuble & C. Liebermann (eds), *Mesolithikum oder Neolithikum? Auf den spuren später wildbeuter*, 151–203. Universität Berlin und der Humboldt-Universität zu Berlin: Druckerei Kühne & Partner GmbH & Co. KG
- Wetzel, G. & Beran, J. forthcoming. Friesack 4, Lkr. Havelland die endmesolithische, neolithische und metallzeitliche Keramik und die Friesack-Boberger Gruppe/Kultur. *Arbeitsberichte zur Bodendenkmalpflege in Brandenburg* 36

Site name	Location	Culture/ware	No sherds	Reference
one nume	Locurion	Denmark western Baltic	110. 51101 115	Rejerence
Agernæs	Coastal	Ertebølle	12	Richter & Noe-Nygaard 2003:
				Andersen 2009
Åkonge	Inland	Ertebølle	1	Fischer 2002
Asnæs Havnemark	Coastal	Ertebølle	3	Price <i>et al.</i> 2018
Bloksbjerg	Coastal	Ertebølle	6	Westerby 1927, 122; Mathiassen
, 0				1935, 140
Bodal K	Inland	Ertebølle	3	Saul 2011
Bogensø NØ	Coastal	Ertebølle	Р	Skaarup 2004 in Skaarup & Grøn
				2004
Brabrand/Rugholm	Coastal	Ertebølle	2	Thomsen & Jensen 1906, 40;
				Mathiassen 1935, 141; Haugsted
				1947, 20
Dejrø NØ	Coastal	Ertebølle	Р	Skaarup 2004 in Skaarup & Grøn
				2004
Dyreborg	Coastal	Ertebølle	Р	Skaarup 2004 in Skaarup & Grøn
				2004
Dyrholmen	Coastal	Ertebølle	3	Mathiassen <i>et al.</i> 1942, 30
Elinelund	Inland	Ertebølle	Р	This study
Ertebølle	Coastal	Ertebølle	3	Tranekjer pers. comm.
Fårevejle	Coastal	Ertebølle	2	Madsen <i>et al.</i> 1900, 119;
			2	Mathiassen 1919, 24; 1935, 141
Flynderhage	Coastal	Ertebølle	2	Gabrielsen 1953
Gamborg Fjord (4257)	Coastal	Ertebølle	1	Andersen 2009
Goastea Mose	Inland	Ertebølle	5	Mathiassen 1935, 141; Tranekjer
Cardon Win (F. Jama)	Casatal	Estab alla	2	pers. comm.
Gudsø Vig (E. Jørg)	Coastal	Ertebølle	5 11	Mathiasson 1925, 150, 2:
Museum)	Coastai	Enebøne	11	Anderson 2009
Hallebygård	Inland	Frteballe	р	This study
Hiarna Sund	Coastal	Ertebølle	1	Astrup pers comm
Hiarna Vesterboyed	Coastal	Ertebølle	2	Astrup pers. comm
Kalvø	Coastal	Ertebølle	1	This study
Klintesø	Coastal	Ertebølle	1	Mathiassen 1935–141
Kolding Fiord	Coastal	Ertebølle	5	Mathiassen 1935, 140: Andersen
8)====			-	2009
Kongemose L	Inland	Ertebølle	1	Fischer 1986
Maglelyng XL	Inland	Ertebølle	7	Tranekjer pers. comm.
Meilgaard	Coastal	Ertebølle	1	This study
Møllegabet I	Coastal	Ertebølle	2	Gron & Skaarup 2004
Neverkær	Inland	Ertebølle	Р	This study
Nøddekonge	Inland	Ertebølle	1	Fischer 2002
Norsminde	Coastal	Ertebølle	2	Andersen 1989
Øgårde	Inland	Ertebølle	6	Mathiassen <i>et al.</i> 1942, 95;
				Tranekjer pers. comm.
Øksnebjerg ('Langø')	Coastal	Ertebølle	4	Broholm et al. 1928, 172;
				Mathiassen 1935, 140–1; Skaarup
				2004 in Skaarup & Grøn 2004
Ølby Lyng	Coastal	Ertebølle	5	Brinch Petersen 1971, 8
Præstelyngen	Inland	Ertebølle	1	Andreasen 2002
Ringkloster	Inland	Ertebølle	2	Andersen 1975; 1994-1995

TABLE S1: ALL KNOWN OVAL BOWL BEARING SITES THROUGHOUT THE CIRCUM-BALTIC REGION, INCLUDING DETAILS ON THEIR CULTURAL AFFILIATION &/OR WARE, THE NUMBER OF SHERDS & RELEVANT CITATION

Site name	Location	Culture/ware	No. sherds	Reference
Rødhals	Coastal	Ertebølle	1	Fischer et al. 2021
Ronæs Skov	Coastal	Ertebølle	14	Andersen 2009
Salpetermosen	Inland	Ertebølle	Р	Kramer 2001
Smakkerup Huse	Coastal	Ertebølle	1	Price & Gebauer 2005, 123, 214
Sølager	Coastal	Ertebølle	Р	Skaarup 1973
Spangkonge	Inland	Ertebølle	1	Fischer & Asmussen 1988
Stenø	Inland	Ertebølle	1	Saul 2011
Stensballe Sund	Coastal	Ertebølle	1	This study
Strandegaard	Coastal	Ertebølle	1	Broholm & Rasmussen 1931, 272;
-				Mathiassen 1935, 145
Syltholm sites	Coastal	Ertebølle	16	This study
Teglgård-Helligkilde	Coastal	Ertebølle	3	Andersen 2009
Tybrind Vig	Coastal	Ertebølle	4	Andersen 1985; 2013
Vængesø III	Coastal	Ertebølle	1	Andersen 2018, 184
Vålse Vig	Coastal	Ertebølle	Р	This study
Vedbæk Fjord	Coastal	Ertebølle	1	This study
Vejle Kro	Coastal	Ertebølle	1	Price 2006
Vente	Coastal	Ertebølle	2	Mathiassen 1935, 141
Vestermosen at Vester	Inland	Ertebølle	16	Mathiassen 1935, 141; Tranekjer
Ulslev				pers. comm.
Estonia, eastern Baltic				-
Akali	Inland	Narva	1	Jaanits 1959; This study
Kääpa	Inland	Narva	35	Jaanits 1965
Narva III	Estuary	Narva	Р	Gurina 1967
Narva Joaorg	Estuary	Narva	6	Oras et al. 2017; this study
Zveisalas	Inland	Narva	1	Loze 1988
Germany, western Baltic				
Altfriesack	Inland	Ertebølle/Friesack-	1	Wetzel & Beran forthcoming
		Boberg		-
Baabe 2	Coastal	Ertebølle	2	Hirsch et al. 2007
Basedow 30	Inland	Ertebølle	1	Schuldt 1973
Feddersen Wurth LA 51	Coastal	Ertebølle	1	Bradtmöller 2008
Friesack 4	Inland	Friesack-Boberg	3	Kotula <i>et al.</i> 2015; Wetzel 2015;
	- ·		_	2021
Grube-Brücke LA 66	Coastal	Ertebølle	1	This study
Grube-Rosenhof LA 58	Coastal	Ertebølle	14	Hartz 2011; this study
Hamburg-Boberg 15 and 15-east	Inland	Friesack-Boberg	9	This study
Kiel-Ellerbek LA 1	Coastal	Ertebølle	2	Schwabedissen 1994
Lietzow-Buddelin/Saiser	Coastal	Ertebølle	1	Terberger & Seiler 2004: Kotula
1				2009
Neustadt LA 156	Coastal	Ertebølle	14	Glykou 2016
Parow 4	Coastal	Ertebølle	1	Mertens & Schirren 2000
Rhinow 30	Inland	Ertebølle/Friesack-	1	Wetzel & Beran forthcoming
		Boberg		0
Schlamersdorf LA 05	Inland	Ertebølle	1	Meyer pers. comm.
Siggeneben Sud LA 12	Coastal	Ertebølle	4	Meurers-Balke 1983
Speichrow 10	Inland	Ertebølle/Friesack-	1	Wetzel 2021
-		Boberg		
Timmendorf-Nordmole I	Coastal	Ertebølle	1	Lübke 2000
Wangels LA 505	Coastal	Ertebølle	16	Hartz 2011; this study

Site name	Location	Culture/ware	No. sherds	Reference
		Latvia, eastern Baltic		
Abora I	Inland	Late Subneolithic	Р	Loze & Eberhards 2015
		Narva/Porous Ware		
Bērzpils Osas	Inland	Narva	Р	This study
Dviete	Inland	Narva	Р	This study
Iča	Inland	Narva	Р	Kriiska <i>et al.</i> 2017
Osa	Inland	Narva	Р	Dumpe <i>et al.</i> 2011
Sārnate (Užavas Sārnates)	Estuarine/	Narva	16	Vankina 1970; Bērziņš 2008; this
	Lagoonal			study
Zvidze	Inland	Narva	40	Loze 1988; 1992
		Lithuania, eastern Baltic		
Daktariškė 5	Inland	Porous Ware	2	This study
Kretuonas 1B	Inland	Narva	16	Brazaitis 2002; Piezonka 2015
Nida	Estuarine/	Rzucewo	100	Rimantienė 1989; 2016;
	Lagoonal			Piličiauskas & Heron 2015
Šventoji 1	Estuarine/	Late Subneolithic	16	Rimantienė 2005
	Lagoonal	Narva/Porous Ware		
Šventoji 2/4	Estuarine/	Late Subneolithic	33	Rimantienė 2005
	Lagoonal	Narva/Porous Ware		
Šventoji 23	Estuarine/	Late Subneolithic	114	Rimantienė 2005
	Lagoonal	Narva/Porous Ware		
Šventoji 3	Estuarine/	Late Subneolithic	41	Rimantienė 2005
	Lagoonal	Narva/Porous Ware		
Šventoji 5	Estuarine/	Late Subneolithic	1	Rimantienė 2005
~	Lagoonal	Narva/Porous Ware		
Šventoji 6	Estuarine/	Late Subneolithic	15	Rimantienė 2005
~	Lagoonal	Narva/Porous Ware		
Żemaitiškė 1	Inland	Narva	Р	Girininkas & Daugnora 2015
Żemaitiškė 3	Inland	Narva	Р	Piezonka 2015
		Poland, western/eastern Balt	ic	
Dąbki 9	Inland	Late Mesolithic	87	Ilkiewicz 1989; Kotula 2015
		ceramic phase	_	
Koszalin-Dzierżęcino 7	Inland	Ertebølle	Р	Ilkiewicz 1997
Rewa	Coastal	Rzucewo	1	Felczak 1983
Rzucewo	Coastal	Rzucewo	P	Kabacinski <i>et al.</i> 2011
Suchacz	Coastal	Rzucewo	Р	Ehrlich 1936
Swęty Kamień (Wieck-	Coastal	Corded Ware	1	Gaerte 1927, 200; Mathiassen
Luisenthal)				1935, 148
Szczepanki 8	Inland	Brześć Kujawski	1	Gumiński 2011
—		Group	D	
Tanowo 3	Inland	Ertebølle	P	Nowak 2010, 457; Galinski 2012
	Coastal	Rzucewo	P	Kilian 1955, 22
Wercz Wielki IUB	Inland	Funnel Beaker	1	Kukawka 1997; 2010
Kaliningrad Oblast, Russian Fe	deration, eastern B	altic	D	C h 2010 14 04
Pribrezhnoye	Coastal	Rzucewo	P	Saltsman 2013, 14, 24
	Inland	RZUCEWO Za lasara	r D	Saltsman 2016
Zeumar A	iniana	Sanadan anastara Palti-	ľ	Gaerte 1927; Saitsman 2013, 25
Hagastad	Inland	Sweuen, western Duttic	1	Hulthán 1077
Löddesborg	Coastal	Erteballe	1 1	Induced 1977
Soldattorpot	Coastal	Ertoballo	1	Kiollmark 1903 80 05 104.
Joluanorper	Coastai	Енеропе	3	Njellilai K 1703, 09, 93, 104; Mathiassan 1025 147. Stilharg 6-
				Holm 2010 336
Vik	Coastal	Frtaballa	2	Hulthán 1977-22
AT A	Cuastal	ынеовне	5	$1101010111777_{1}20$

Key: P = present

Site name	Location	Culture/ware	Sample type	Lab no.	Radiocarbon age (BP)	$\delta^{13}C$ (‰) ± 1 σ	Reference
Denmark			51		0		
Nøddekonge	Inland	Ertebølle	Exterior sooted deposit	Ka-6612	5320±80	-29	Fischer 2002
Åkonge	Inland	Ertebølle	Interior foodcrust	AAR-2678/ Ka-6611	5260±70	-32.5	Fischer 2002
Germany							
Friesack 4	Inland	Friesack- Boberg	Interior foodcrust	AAR-15047	5640±26	-32.6±0.1	Kotula <i>et al.</i> 2015a; 2015b
Friesack 4	Inland	Friesack- Boberg	Interior foodcrust	AAR-18760	5737±30	-29.7±0.1	Kotula <i>et al</i> . 2015a; 2015b
Friesack 4	Inland	Friesack- Boberg	Interior foodcrust	AAR-22211	5758±29	-28.3±0.2*	Wetzel & Beran forthcoming
Grube- Rosenhof LA 58	Coastal	Ertebølle	Interior foodcrust	UtC-5852	5530±50	-20.6	Hartz 2011
Siggeneben Sud LA 12	Inland	Ertebølle	Interior foodcrust	UtC-5857	5166±40	-21.3	Hartz 2011
Timmendorf- Nordmole I	Coastal	Ertebølle	Interior foodcrust	KIA-9500	5791±39	-19.8	Lübke pers. comm.
Wangels LA 505	Inland	Ertebølle	Interior foodcrust	KIA-6995	6140±35	-17.7	Hartz 2011
Wangels LA 505	Inland	Ertebølle	Interior foodcrust	KIA-6997	5510±54	-19.1	Hartz & Lübke 2006; Hartz 2011
Wangels LA 505	Inland	Ertebølle	Interior foodcrust	KIA-6998	5505±36	-20.2	Hartz & Lübke 2006; Hartz 2011
Wangels LA 505 Poland	Inland	Ertebølle	Interior foodcrust	KIA-4220	5390±40	-20.7	Hartz & Lübke 2006; Hartz 2011
Dąbki 9	Inland	Mesolithic	Interior foodcrust	Poz-10438	5750±40		Kotula 2015
Dąbki 9	Inland	Mesolithic	Interior foodcrust	Poz-18651	5560±35		Kabaciński & Terberger 2011

TABLE S2: PUBLISHED RADIOCARBON DATES OBTAINED DIRECTLY FROM OVAL BOWLS THROUGHOUT THE CIRCUM-BALTIC REGION

Key: *, $\delta^{15}N$ value also obtained (12.2‰)

Site	Location	Culture/ware	re Sample code Sample type δ (δ ¹³ C (‰)	%С	δ ¹⁵ N (‰)	%N	C:N atomic	Lab.	Aquatic biomarkers
									ratio		
			Acc	ceptable data							
			C	Dval bowls							
Dąbki 9	Inland	Late Mesolithic	Dą.2ea+b	Exterior sooted deposit	-30.0	25.0	11.0	1.3	22.4	York	1
Dąbki 9	Inland	Late Mesolithic	Dą.2ia+b	Interior foodcrust	-30.2	44.5	7.8	2.4	21.6	York	1
Dąbki 9	Inland	Late Mesolithic	D-2-Ia+b	Interior foodcrust	-25.5	49.6	11.9	7.9	7.4	Bradford	1
Dąbki 9	Inland	Late Mesolithic	D-4-Ia+b	Interior foodcrust	-26.5	30.1	8.0	2.8	12.5	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-7-Ia+b	Interior foodcrust	-30.9	49.1	9.5	3.3	17.5	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-9-Ia+b	Interior foodcrust	-27.1	42.9	11.0	5.4	9.3	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-10-Ia+b	Interior foodcrust	-28.8	43.9	5.8	1.8	28.3	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-11-Ia+b	Interior foodcrust	-23.8	57.4	9.0	10.2	6.5	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-12-Ia+b	Interior foodcrust	-30.6	59.5	10.1	3.7	18.8	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-13-Ia+b	Interior foodcrust	-31.3	39.5	9.2	1.8	25.8	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-14-Ia+b	Interior foodcrust	-27.5	46.1	8.3	3.7	14.5	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-15-Ia+b	Interior foodcrust	-33.2	36.5	7.7	2.0	21.6	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	D-16-Ia+b	Interior foodcrust	-30.7	60.3	9.5	3.2	22.2	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic-	D-18-Ia+b	Interior foodcrust	-29.9	18.3	9.9	1.2	17.6	Bradford	n/a
		Funnel Beaker									
Dąbki 9	Inland	Late Mesolithic-	D-19-Ia+b	Interior foodcrust	-27.0	19.4	7.0	1.3	17.2	Bradford	n/a
		Funnel Beaker									
Dąbki 9	Inland	Late Mesolithic	D9-EBK-45-Ea-c	Exterior sooted deposit	-28.5	15.2	8.8	1.9	9.1	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9-EBK-45-Ia-c	Interior foodcrust	-28.7	39.6	9.6	5.3	8.7	York	n/a
Flynderhage	Coastal	Ertebølle	FL-1-Ea+b	Exterior sooted deposit	-21.2	15.2	0.9	1.1	16.9	York	0
Friesack 4	Inland	Friesack–Boberg	excav. 1981; Tr	Interior foodcrust	-28.3	48.5	12.2	7.0	8.1	Aarhus	n/a
		-	C; H8; Layer 4								
Friesack 4	Inland	Friesack–Boberg	FR-1-Ea+b	Exterior sooted deposit	-29.2	49.6	10.8	6.4	9.1	York	n/a
Friesack 4	Inland	Friesack–Boberg	FR-1-Ia+b	Interior foodcrust	-29.0	42.6	9.1	6.4	7.8	York	n/a
Friesack 4	Inland	Friesack–Boberg	FR-2-Ea-d	Exterior sooted deposit	-33.3	53.6	7.9	1.7	38.6	York	n/a
Friesack 4	Inland	Friesack–Boberg	FR-2-Ia+b	Interior foodcrust	-28.9	52.0	11.8	8.2	7.4	York	n/a
Friesack 4	Inland	Friesack–Boberg	FR-4-Ea+b	Exterior sooted deposit	-29.0	27.0	9.2	3.2	9.7	York	n/a

TABLE S3: BULK δ^{13} C and δ^{15} N STABLE ISOTOPE DATA OBTAINED FROM CARBONISED SURFACE DEPOSITS ADHERING TO OVAL BOWLS FROM THE CIRCUM-BALTIC REGION AND STONE LAMPS FROM NORTH AMERICA ACQUIRED IN THIS STUDY

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
					(‰)		(‰)		atomic		biomarkers
									ratio		
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-3-Ea-d	Exterior sooted deposit	-19.8	21.1	4.9	1.7	14.7	York	n/a
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-4-Ea+b	Exterior sooted deposit	-22.0	27.6	6.2	1.0	31.8	York	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-5-Ea+b	Exterior sooted deposit	-19.9	39.9	7.0	1.2	39.4	York	n/a
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-6-Ea-d	Exterior sooted deposit	-20.4	53.4	6.9	2.4	26.6	York	n/a
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-9-Ea+b	Exterior sooted deposit	-20.3	49.1	9.2	2.3	25.3	York	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-11-Ea-d	Exterior sooted deposit	-20.4	51.3	7.2	2.5	24.5	York	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-12-Ea-d	Exterior sooted deposit	-20.4	50.2	8.2	2.4	24.9	York	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-13-E/Ia-d	Interior foodcrust	-20.4	50.8	7.7	2.5	24.7	York	n/a
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-14-E/Ia-d	Interior foodcrust	-20.5	29.7	4.2	1.5	23.9	York	n/a
Hamburg Boberg 15	Inland	Friesack–Boberg	HB-1-Ea+b	Exterior sooted deposit	-32.3	33.1	0.5	12.7	11.4	York	n/a
Iča	Inland	Narva	ICA 798-F	Interior foodcrust	-31.7	30.7	9.8	3.4	10.6	Bradford	1
Iča	Inland	Narva	ICA 799-F	Interior foodcrust	-30.5	29.2	9.6	2.3	15.0	Bradford	1
Iča	Inland	Narva	ICA 803-F	Interior foodcrust	-31.0	21.0	8.5	1.6	15.4	Bradford	1
Kääpa*	Inland	Narva	EO35	Interior foodcrust	-31.6	20.5	10.1	1.8	13.7	Tartu	1
Kääpa*	Inland	Narva	EO45	Interior foodcrust	-32.2	32.5	10.5	2.2	16.9	Tartu	1
Kääpa*	Inland	Narva	EO51	Interior foodcrust	-30.1	20.9	8.5	1.0	24.4	Tartu	1
Kääpa*	Inland	Narva	EO53	Interior foodcrust	-31.1	26.7	9.5	1.6	20.6	Tartu	1
Kääpa*	Inland	Narva	EO55	Interior foodcrust	-30.6	23.8	9.0	1.3	22.5	Tartu	1
Kiel-Ellerbek LA 1	Inland	Ertebølle	EK-1-I/Ea-d	Interior foodcrust	-30.7	40.3	8.9	3.3	14.4	York	n/a
Kiel-Ellerbek LA 1	Inland	Ertebølle	EK-2-Ea+b	Exterior sooted deposit	-22.7	14.7	0.4	1.1	15.1	York	n/a
Osa	Inland	Narva	OSA 807-F	Interior foodcrust	-33.4	51.9	9.8	5.8	10.4	Bradford	1
Osa	Inland	Narva	OSA 821-F	Interior foodcrust	-32.2	44.7	9.6	4.7	11.0	Bradford	1
Ringkloster	Inland	Ertebølle	RI-2Eiia+b; RI-	Exterior sooted deposit	-24.9	55.8	6.4	1.7	37.5	York	n/a
			2Eiiia+b								
Ronæs Skov	Coastal	Ertebølle	RO-1-Ea+b	Exterior sooted deposit	-17.3	28.7	0.6	1.0	32.7	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-2-Ea+b	Exterior sooted deposit	-22.2	34.1	7.4	3.0	13.1	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-3-Ea+b	Exterior sooted deposit	-18.3	32.6	4.4	1.3	29.4	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-4-Ia-d	Interior foodcrust	-24.2	15.1	4.9	1.3	13.7	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-5-Ea+b	Exterior sooted deposit	-16.3	43.1	5.1	1.0	48.0	York	1
Ronæs Skov	Coastal	Ertebølle	RO-6-Ea+b	Exterior sooted deposit	-19.7	47.0	7.4	3.1	17.8	York	1
Ronæs Skov	Coastal	Ertebølle	RO-6-Ia+b	Interior foodcrust	-19.7	50.4	6.8	2.6	22.5	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-8-Ea+b	Exterior sooted deposit	-17.6	34.2	3.8	1.0	38.2	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-10-Ea+b	Exterior sooted deposit	-14.1	10.1	7.5	1.0	11.7	York	n/a

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
					(‰)		(‰)		atomic		biomarkers
									ratio		
Siggeneben Suïd LA 12	Coastal	Ertebølle	SS-1-Ea-d	Exterior sooted deposit	-20.9	33.1	2.1	1.2	32.7	York	n/a
Siggeneben Sud LA 12	Coastal	Ertebølle	SS-1-Ia-d	Interior foodcrust	-21.0	24.2	2.7	1.3	23.6	York	n/a
Siggeneben Suïd LA 12	Coastal	Ertebølle	SS-2-Ia+b	Interior foodcrust	-20.4	27.4	3.6	1.0	31.9	York	n/a
Siggeneben Suïd LA 12	Coastal	Ertebølle	SS-2-Ea+b	Exterior sooted deposit	-20.8	41.7	5.9	1.2	42.2	York	1
Šventoji 4	Estuarine/	Narva/	SV-1-Ea+b	Exterior sooted deposit	-29.9	35.3	9.9	1.5	27.9	York	1
	Lagoonal	Porous Ware									
Šventoji 4	Estuarine/	Narva/	SV-1-Ia+b	Interior foodcrust	-30.2	48.5	9.5	3.0	19.0	York	n/a
	Lagoonal	Porous Ware									
Šventoji 4	Estuarine/	Narva/	SV-2-Ia+b	Interior foodcrust	-29.0	27.0	6.4	1.7	18.5	York	n/a
	Lagoonal	Porous Ware									
Šventoji 6	Estuarine/	Narva/	SV-3-Ia+b	Interior foodcrust	-28.0	57.2	9.0	2.4	27.4	York	n/a
	Lagoonal	Porous Ware									
Šventoji 6	Estuarine/	Narva/	SV-4-Ia+b	Interior foodcrust	-25.3	50.4	10.2	8.0	7.4	York	n/a
-	Lagoonal	Porous Ware									
Šventoji 6	Estuarine/	Narva/	SV-5-Ia+b	Interior foodcrust	-28.9	60.3	9.5	3.2	21.8	York	n/a
-	Lagoonal	Porous Ware									
Šventoji 6	Estuarine	Narva/	SV-6-Ia+b	Interior foodcrust	-30.3	56.4	7.8	2.7	24.6	York	n/a
	/Lagoonal	Porous Ware									
Šventoji 6	Estuarine/	Narva/	SV-7-Ia+b	Interior foodcrust	-29.2	56.5	8.3	2.6	25.2	York	1
	Lagoonal	Porous Ware									
Syltholm II	Coastal	Ertebølle	MLF906-	Exterior sooted deposit	-19.8	24.4	10.6	3.8	7.5	Bradford	n/a
			1X11033a+b								
Syltholm II	Coastal	Ertebølle	MLF906-	Exterior sooted deposit	-18.3	37.0	9.2	2.2	19.6	Bradford	n/a
			11X4726a+b								
Syltholm XIII	Coastal	Ertebølle	MLF939-1X37	Interior foodcrust	-25.7	30.3	5.7	4.0	8.9	Bradford	n/a
-			P144a+b								
Wangels LA 505	Coastal	Ertebølle	W-4-Ea+b	Exterior sooted deposit	-21.5	38.4	0.6	1.0	42.9	York	1
Wangels LA 505	Coastal	Ertebølle	W-9-Ea+b	Exterior sooted deposit	-19.4	17.6	4.3	1.3	15.3	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-9-Ia-d	Interior foodcrust	-19.8	24.2	6.4	2.9	9.7	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-11-Ea+b	Exterior sooted deposit	-19.6	17.3	3.2	1.2	16.7	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-12-Ea+b	Exterior sooted deposit	-20.7	18.4	3.0	1.0	20.9	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-13-Ea+b	Exterior sooted deposit	-20.8	27.6	4.9	1.8	17.5	York	n/a

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
					(‰)		(‰)		atomic		biomarkers
									ratio		
Zvidze	Inland	Narva	ZVID 765-F	Interior foodcrust	-32.7	29.1	8.4	2.4	14.0	Bradford	1
Zvidze	Inland	Narva	ZVID 768-F	Interior foodcrust	-31.5	45.8	8.1	5.4	9.8	Bradford	1
Zvidze	Inland	Narva	ZVID 773-F	Interior foodcrust	-30.3	43.1	8.5	6.4	7.9	Bradford	1
Zvidze	Inland	Narva	ZVID 774-F	Interior foodcrust	-33.2	63.6	9.4	5.9	12.6	Bradford	1
Zvidze	Inland	Narva	ZVID 796-F	Interior foodcrust	-31.4	58.6	9.3	8.0	8.5	Bradford	1
Stone lamps											
Amaknak Island	Coastal	Late Aleutian	ARI-1a+b	Interior foodcrust	-25.9	36.0	17.3	1.6	25.8	York	1
Atka Island	Coastal	Late Aleutian	AI-1a+b	Interior foodcrust	-23.9	46.0	14.9	4.0	13.6	York	1
Uyak Bay	Coastal	Late Aleutian	UB-1a+b Interior foodcrust UB-2a+b Interior foodcrust		-24.6	37.9	16.2	1.3	34.1	York	1
Uyak Bay	Coastal	Late Aleutian	UB-2a+b	Interior foodcrust	-24.7	60.1	13.5	1.9	36.6	York	1
			Dis	carded data							
			О	val bowls							
Dąbki 9	Inland	Late Mesolithic	D-3-Ia-d	Interior foodcrust	-26.2	9.3	9.6	1.5	7.3	Bradford	n/a
Hamburg Boberg 15	Inland	Friesack–Boberg	HB-1-Ea+b	Exterior sooted deposit	-30.3	10.9	2.8	0.5	23.4	York	n/a
Kiel-Ellerbek LA 1	Coastal	Ertebølle	EK-2-Ea+b	Exterior sooted deposit	-21.5	13.8	6.9	0.4	36.5	York	n/a
Ringkloster	Inland	Ertebølle	RI-2Eia+b	Exterior sooted deposit	-24.0	22.2	4.5	0.8	34.5	York	1
Ronæs Skov	Coastal	Ertebølle	RO-1-Ea+b	Exterior sooted deposit	-16.9	32.6	4.0	0.7	51.9	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-3-Ea+b	Exterior sooted deposit	-18.0	32.9	7.6	0.9	43.4	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-7-Ea-d	Exterior sooted deposit	-18.8	21.3	4.3	0.7	36.3	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-8-Ea+b	Exterior sooted deposit	-17.5	29.8	4.8	0.7	52.4	York	n/a
Ronæs Skov	Coastal	Ertebølle	RO-10-Ea+b	Exterior sooted deposit	-14.5	9.8	6.2	1.2	9.3	York	n/a
Syltholm II	Coastal	Ertebølle	MLF906-	Exterior sooted deposit	-19.2	18.1	6.9	0.4	49.2	Bradford	n/a
			1X11841Outa+b								
Syltholm II	Coastal	Ertebølle	MLF906-	Interior foodcrust	-19.2	37.9	6.4	0.9	47.7	Bradford	n/a
			1X11841Ina+b								
Syltholm II	Coastal	Ertebølle	MLF906-	Interior foodcrust	-20.7	5.3	3.8	0.3	19.2	Bradford	n/a
			1X4132a+b								
Syltholm II	Coastal	Ertebølle	MLF906-1X5340	Interior foodcrust	-26.1	26.3	4.0	0.7	45.9	Bradford	n/a
			P234a+b								
Syltholm II	Coastal	Ertebølle	MLF906-	Interior foodcrust	-19.0	37.2	6.7	0.7	68.0	Bradford	n/a
			1X11837								
			P235a+b								

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{\scriptscriptstyle 13}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
					(‰)		(‰)		atomic		biomarkers
									ratio		
Syltholm II	Coastal	Ertebølle	MLF906-	Interior foodcrust	-17.9	50.7	9.0	0.8	78.9	Bradford	n/a
			1X11837								
			P236a+b								
Syltholm II	Coastal	Ertebølle	MLF906-	Interior foodcrust	-22.8	2.2	5.5	0.2	16.3	Bradford	n/a
			11X9044a+b								
Syltholm XIII	Coastal	Ertebølle	MLF939-	Interior foodcrust	-26.2	7.8	5.5	1.0	9.5	Bradford	n/a
			1X37a+b								
Wangels LA 505	Coastal	Ertebølle	W-3-Ea-d	Exterior sooted deposit	-20.5	31.1	0.5	0.8	49.8	York	1
Wangels LA 505	Coastal	Ertebølle	W-8-Ia-d	Interior foodcrust	-21.3	9.5	-9.2	0.8	13.0	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-8-Ea-d	Exterior sooted deposit	-21.8	26.5	-2.4	1.6	18.9	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-10-Ea+b	Exterior sooted deposit	-19.7	12.6	0.4	0.6	22.3	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-10-Ia+b	Interior foodcrust	-20.3	8.8	-7.7	0.7	13.9	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-14-Ea+b	Exterior sooted deposit	-21.3	21.2	-2.7	1.1	23.3	York	n/a
Wangels LA 505	Coastal	Ertebølle	W-14-Ia+b	Interior foodcrust	-22.2	19.6	-2.1	1.3	18.2	York	n/a
Stone lamps											
Atka Island	Coastal	Late Aleutian	AI-2a+b	Interior foodcrust	-24.5	4.2	6.7	0.2	21.6	York	1

Key: 1, aquatic biomarkers present; 0, aquatic biomarkers absent; n/a, aquatic biomarkers unknown; *, some data previously reported by Oras *et al.* (2017). The discarded data were deemed unreliable as they either had %C <10 or %N <1.

Site	Location	Culture	Sample code	Sample type	δ ¹³ C (‰)	%С	δ ¹⁵ N (‰)	%N	C:N atomic ratio	Lab.	Aquatic biomarkers	Reference
Acceptable data	ula.											
Vääna	us Inland	Norma	EO22	Interior	20.0	200	10.1	2 5	0.6	Vorl	0	Orea at al. 2017
каара	Infand	INarva	EO33	foodcrust	-30.9	28.8	12.1	3.5	9.6	TOLK	0	Oras et <i>u</i> . 2017
Kääpa	Inland	Narva	EO36	Exterior sooted deposit	-32.8	44.5	10.8	2.6	20.0	York	1	Oras <i>et al.</i> 2017
Kääpa	Inland	Narva	EO56	Exterior sooted deposit	-32.8	52.9	11.0	5.0	12.3	York	1	Oras <i>et al.</i> 2017
Kääpa	Inland	Narva	EO92	Exterior sooted deposit	-31.5	23.2	9.3	3.3	8.3	York	n/a	Oras <i>et al.</i> 2017
Kääpa	Inland	Narva	Kä-2007/70	Interior foodcrust	-29.2	57.6	10.7	8.3	8.1	Bradford	n/a	Piezonka <i>et al.</i> 2016
Neustadt LA 156	Coastal	Ertebølle	N1009sa	Exterior sooted deposit	-18.1	53.0	9.0	4.0	15.5	Bradford	1	Craig <i>et al.</i> 2011; Heron <i>et al.</i> 2013
Neustadt LA 156	Coastal	Ertebølle	N1682sa	Exterior sooted deposit	-22.8	27.0	11.0	1.2	26.3	Bradford	n/a	Heron <i>et al.</i> 2013
Nida	Estuarine/ Lagoonal	Rzucewo Ware	2/10A; EM 2243:2949	Interior foodcrust	-33.2	27.6	11.0	2.2	14.8	Bradford	n/a	Heron <i>et al.</i> 2015
Nida	Estuarine/	Rzucewo Ware	5/6A; em 2243:6121	Interior	-33.5	46.2	12.0	3.9	14.0	Bradford	n/a	Heron et al. 2015
Nida	Estuarine/	Rzucewo Ware	L12f	Interior	-32.8	56.5	10.2	2.8	23.6	Bradford	1	Heron <i>et al.</i> 2015
Nida	Eagoonal Estuarine/	Rzucewo Ware	L12s	Exterior sooted deposit	-33.1	31.9	11.6	1.0	35.7	Bradford	n/a	Heron <i>et al.</i> 2015
Sventoji 4	Estuarine/ Lagoonal	Narva	Prk2/115	Interior foodcrust	-31.7	52.9	11.2	3.8	20.0	Bradford	n/a	Heron <i>et al.</i> 2015

TABLE S4: PUBLISHED BULK δ¹³C & δ¹⁵N STABLE ISOTOPE DATA OBTAINED FROM CARBONISED SURFACE DEPOSITS ADHERING TO OVAL BOWLS FROM THE CIRCUM-BALTIC REGION AS WELL AS OVAL PLATES & STONE LAMPS FROM NORTH AMERICA

Site	Location	Culture	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Aquatic biomarkars	Reference
					(/00)		(/00)		ratio		<i>Diomurkers</i>	
Sventoji 6	Estuarine/ Lagoonal	Narva	31g	Interior foodcrust	-29.5	119. 5	9.9	5.0	29.6	Bradford	n/a	Heron <i>et al.</i> 2015
Teglgård- Helligkilde	Coastal	Ertebølle	TH1fa-d	Interior foodcrust	-18.9	31.7	10.2	1.2	32.2	Bradford / York	1	Craig <i>et al.</i> 2011; Heron <i>et al.</i> 2013; Robson 2015
Oval plates												
Kame Hills	Inland	Terminal Woodland	MAT1	Interior foodcrust	-32.9		10.5		14.8	Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT6	Interior foodcrust	-32.2		11.4		12.6	Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT7	Interior foodcrust	-30.7		10.6		13.4	Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT8	Exterior sooted deposit	-31.6		8.7			Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT9	Interior foodcrust	-32.5		9.7		25.5	Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT10	Exterior sooted deposit	-33.3		8.8		40.4	Guelph	n/a	Sherriff et al. 1995
Kame Hills	Inland	Terminal Woodland	MAT11	Interior foodcrust	-26.8		11.9		8.2	Guelph	n/a	Sherriff et al. 1995
Stone lamps												
Oiled Blade (UNL-318)	Coastal	Early Anangula	UNL318-48	Interior foodcrust	-23.9	37.5	11.9	2.2	19.7	York	1	Admiraal <i>et al.</i> 2018
Oiled Blade (UNL-318)	Coastal	Early Anangula	UNL318-49	Interior foodcrust	-23.7	38.2	12.3	1.3	34.8	York	1	Admiraal <i>et al.</i> 2018
Tanaxtaxak (UNL-55)	Coastal	Margaret Bay phase	UNL55-42	Interior foodcrust	-24.6	56.3	14.0	3.4	19.4	York	1	Admiraal <i>et al.</i> 2018
Discarded data Ceramic oval bowls												
Neustadt LA 156	Coastal	Ertebølle	N2285fa	Interior foodcrust	-23.4	10.0	8.5	0.6	19.4	Bradford	0	Craig <i>et al.</i> 2011; Heron <i>et al.</i> 2013

Key: 1. aquatic biomarkers present; 0. aquatic biomarkers absent; n/a, aquatic biomarkers unknown. The discarded data were deemed unreliable as they either had %C < 10 or %N < 1

Site	Location	Cultural epoch/ ware	Sample code	Sample type	δ ¹³ C (‰)	%С	δ ¹⁵ N (‰)	%N	C:N atomic ratio	Lab.	Aquatic biomarkers
Acceptable data											
Åkonge	Inland	Ertebølle	KML 50.0/75.5:8sa+b	Exterior sooted deposit	-27.2	47.0	10.7	10.8	10.4	Bradford	n/a
Åkonge	Inland	Ertebølle	KML 50.5/78.5:2sa+b	Exterior sooted deposit	-27.0	46.8	11.1	4.1	13.3	Bradford	n/a
Dąbki 9	Inland	Late Mesolithic	Dą.1ia+b	Interior foodcrust	-26.4	28.9	9.7	4.3	7.9	York	0
Dąbki 9	Inland	Late Mesolithic	Dą.1ea+b	Exterior sooted deposit	-26.7	64.7	10.1	5.7	13.3	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_01_Ia+b	Interior foodcrust	-26.0	45.9	4.3	3.8	14.0	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_02_Ia+b	Interior foodcrust	-26.5	51.8	3.7	4.2	14.5	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_02_Ea+b	Exterior sooted deposit	-25.7	44.8	7.4	4.2	12.4	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_03a_Ia+b; D9_EBK_03b_Ia+b	Interior foodcrust	-26.5	38.9	6.7	5.0	9.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_03b_Ea+b	Exterior sooted deposit	-25.6	29.2	10.3	2.6	13.0	York	n/a
Dabki 9	Inland	Late Mesolithic	D9 EBK 04 Ia+b	Interior foodcrust	-27.2	47.1	7.7	5.2	10.6	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_04_Ea+b	Exterior sooted deposit	-25.5	30.1	8.6	3.8	9.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_05_Ia+b	Interior foodcrust	-27.1	45.4	6.3	4.8	11.1	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_06_Ia+b	Interior foodcrust	-27.8	47.5	6.8	2.1	27.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_07_Ia+b	Interior foodcrust	-26.3	45.4	3.6	4.4	12.1	York	0
Dąbki 9	Inland	Late Mesolithic	D9_EBK_08_Ia+b	Interior foodcrust	-26.6	46.3	6.4	5.4	10.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_09_Ia+b	Interior foodcrust	-27.2	29.3	6.4	4.2	8.1	York	0
Dąbki 9	Inland	Late Mesolithic	D9_EBK_10_Ia+b	Interior foodcrust	-27.0	51.6	4.0	4.3	14.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_11_Ia+b	Interior foodcrust	-26.7	50.8	6.0	4.9	12.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_11_Ea+b	Exterior sooted deposit	-26.0	51.2	9.1	3.9	15.4	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_12_Ia+b	Interior foodcrust	-26.9	39.2	4.2	3.8	12.0	York	n/a

TABLE S5: BULK δ^{13} C & δ^{15} N STABLE ISOTOPE DATA OBTAINED FROM CARBONISED SURFACE DEPOSITS ADHERING TO CONTEMPORANEOUS COOKING VESSELS FROM THE CIRCUM-BALTIC REGION ACQUIRED IN THIS STUDY

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic ratio		biomarkers
Dąbki 9	Inland	Late Mesolithic	D9_EBK_12_Ea+b	Exterior sooted	-25.5	29.4	8.6	1.2	27.7	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_13_Ia+b	Interior foodcrust	-27.1	49.2	4.1	4.0	14.3	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_14_Ia+b	Interior foodcrust	-27.2	54.9	6.4	5.0	12.8	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_15_Ia+b	Interior foodcrust	-26.8	52.1	6.3	5.4	11.3	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_16_Ia+b	Interior foodcrust	-26.3	29.3	5.2	3.8	9.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_17_Ia+b	Interior foodcrust	-25.7	47.5	7.4	5.8	9.5	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_19_Ia+b	Interior foodcrust	-26.4	26.6	8.0	3.8	8.1	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_19_Ea+b	Exterior sooted	-26.3	47.9	9.9	4.5	12.3	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_20_Ia+b	Interior foodcrust	-27.6	36.5	7.8	4.0	10.8	York	0
Dąbki 9	Inland	Late Mesolithic	D9_EBK_21_Ia+b	Interior foodcrust	-27.1	39.9	8.2	6.1	7.7	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_22_Ia+b	Interior foodcrust	-26.5	29.8	5.5	3.2	11.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_23_Ia+b	Interior foodcrust	-27.1	38.2	6.2	6.3	7.1	York	0
Dąbki 9	Inland	Late Mesolithic	D9_EBK_23_Ea+b	Exterior sooted	-26.1	46.6	8.9	3.0	18.4	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_24_Iaa+b;	Interior foodcrust	-26.5	37.1	6.8	3.5	12.3	York	1
			D9_EBK_24_Iba+b;								
			D9_EBK_24_Ica+b								
Dąbki 9	Inland	Late Mesolithic	D9_EBK_24_Eaa+b;	Exterior sooted	-26.8	41.8	10.1	3.0	16.2	York	n/a
			D9_EBK_24_Eba+b	deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_25_Ia+b	Interior foodcrust	-27.4	56.5	3.7	4.4	15.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_26_Ia+b	Interior foodcrust	-26.9	53.4	5.5	4.8	13.0	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_27_Ia+b	Interior foodcrust	-26.6	51.6	3.1	4.5	13.3	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_28_Ia+b	Interior foodcrust	-22.1	43.7	11.8	11.6	4.4	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_29_Ia+b	Interior foodcrust	-24.6	31.6	7.8	4.9	7.5	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_30_Ia+b	Interior foodcrust	-26.3	39.6	8.8	5.4	8.5	York	1
Dąbki 9	Inland	Late Mesolithic	D9_EBK_30_Ea+b	Exterior sooted	-25.6	36.1	9.4	4.2	10.1	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_31_Iaa+b;	Interior foodcrust	-26.8	42.8	4.3	3.4	14.6	York	n/a
			D9_EBK_31_Iba+b								
Dąbki 9	Inland	Late Mesolithic	D9_EBK_31_Ea+b	Exterior sooted	-26.0	27.5	5.2	2.2	14.5	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_32_Ia+b	Interior foodcrust	-27.2	47.4	6.8	5.8	9.6	York	1

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic ratio		biomarkers
Dabki 9	Inland	Late Mesolithic	D9 EBK 33 Ia+b	Interior foodcrust	-27.3	28.7	6.2	3.6	9.2	York	1
Dabki 9	Inland	Late Mesolithic	D9 EBK 33 Ea+b	Exterior sooted	-25.9	30.3	10.1	2.3	15.5	York	n/a
-2				deposit							, -
Dabki 9	Inland	Late Mesolithic	D9 EBK 34 Ia+b	Interior foodcrust	-27.1	38.5	7.2	4.8	9.3	York	0
Dabki 9	Inland	Late Mesolithic	D9 EBK 35 Ia+b	Interior foodcrust	-26.8	45.9	2.1	5.9	9.1	York	1
Dabki 9	Inland	Late Mesolithic	D9 EBK 36 Ia+b	Interior foodcrust	-28.2	45.8	8.1	4.5	11.9	York	0
Dabki 9	Inland	Late Mesolithic	D9 EBK 36 Ea+b	Exterior sooted	-26.2	38.4	9.5	2.6	17.4	York	n/a
U U				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_37_Ia+b	Interior foodcrust	-25.2	22.8	9.4	3.6	7.4	York	0
Dąbki 9	Inland	Late Mesolithic	D9_02_Ia+b	Interior foodcrust	-27.1	38.0	6.6	5.3	8.3	York	0
Dąbki 9	Inland	Late Mesolithic	D9_02_Ea+b	Exterior sooted	-26.2	33.0	8.6	2.6	15.0	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_03_Ia+b	Interior foodcrust	-27.9	43.0	7.7	7.1	7.0	York	1
Dąbki 9	Inland	Late Mesolithic	D9_03_Ea+b	Exterior sooted	-26.0	41.5	11.2	2.8	17.4	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_04_Ia+b	Interior foodcrust	-25.7	42.7	7.4	7.5	6.7	York	1
Dąbki 9	Inland	Late Mesolithic	D9_05_Ia+b	Interior foodcrust	-26.0	37.7	6.7	5.8	7.5	York	1
Dąbki 9	Inland	Late Mesolithic	D9_05_Ea+b	Exterior sooted	-24.9	27.8	7.1	1.9	17.3	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_06_Ia+b	Interior foodcrust	-27.2	50.9	5.3	5.0	11.8	York	1
Dąbki 9	Inland	Late Mesolithic	D9_07_Ia+b	Interior foodcrust	-26.5	39.6	4.4	3.4	13.7	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_08_Ia+b	Interior foodcrust	-27.2	52.4	6.0	6.1	10.1	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_09_Ia+b	Interior foodcrust	-27.7	35.8	8.5	4.3	9.7	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_10_Ia+b	Interior foodcrust	-27.9	42.6	7.6	8.1	6.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_10_Ea+b	Exterior sooted	-26.4	52.8	10.7	3.9	16.0	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_11_Ea+b	Exterior sooted	-24.5	28.6	10.5	4.4	7.5	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_12_Ia+b	Interior foodcrust	-26.4	34.1	6.7	5.6	7.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_12_Ea+b	Exterior sooted	-24.7	48.2	8.6	6.9	8.2	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_13_Ia+b	Interior foodcrust	-26.6	30.0	6.6	5.2	6.8	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_14_Ia+b	Interior foodcrust	-27.8	47.4	6.4	6.3	8.8	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_15_Ia+b	Interior foodcrust	-27.6	55.1	6.4	6.0	10.8	York	n/a

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic ratio		biomarkers
Dąbki 9	Inland	Late Mesolithic	D9_16_Ia+b	Interior foodcrust	-27.8	45.6	7.2	7.7	7.0	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_16_Ea+b	Exterior sooted	-26.1	26.7	9.4	1.6	19.7	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_17_Ia+b	Interior foodcrust	-28.2	57.6	7.1	3.7	18.3	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_18_Ia+b	Interior foodcrust	-26.3	31.5	7.2	5.7	6.5	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_19_Ia+b	Interior foodcrust	-26.4	27.3	6.9	5.2	6.1	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_20_Ia+b	Interior foodcrust	-28.0	44.2	7.5	7.0	7.4	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_20_Ea+b	Exterior sooted	-26.1	27.7	9.8	2.0	16.2	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_21_Ia+b	Interior foodcrust	-26.3	40.1	8.3	4.1	11.5	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_22_Ia+b	Interior foodcrust	-27.6	31.8	6.9	4.0	9.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_23_Ia+b	Interior foodcrust	-27.4	31.0	6.8	3.9	9.3	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_24_Ia+b	Interior foodcrust	-25.8	33.3	9.3	4.0	9.8	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_25_Ia+b	Interior foodcrust	-26.6	41.1	10.2	5.4	9.0	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_25_Ea+b	Exterior sooted	-26.5	22.0	10.0	1.8	14.6	York	n/a
Dabki 9	Inland	Late Mesolithic	D9 26 Ja+b	Interior foodcrust	-26.2	22.3	7.0	3.4	7.6	York	n/a
Dabki 9	Inland	Late Mesolithic	D9_27_Ia+b	Interior foodcrust	-26.8	11.9	6.5	1.6	87	York	n/a
Dabki 9	Inland	Late Mesolithic	$D9_27$ Ea+b	Exterior sooted	-26.0	30.5	9.8	2.4	14.8	York	n/a
Difold	Inturta	Luce mesonane		deposit	20.0	00.0	2.0	2.1	11.0	TOIR	ii/u
Dąbki 9	Inland	Late Mesolithic	D9_28_Ia+b	Interior foodcrust	-26.2	20.8	3.2	1.8	13.2	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_29_Ia+b	Interior foodcrust	-27.2	49.0	4.9	4.9	11.8	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_38_Ia+b	Interior foodcrust	-26.5	43.0	8.4	7.7	6.5	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_39_Ia+b	Interior foodcrust	-27.5	16.1	6.7	1.9	9.9	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_40_Iaa+b;	Interior foodcrust	-31.4	36.2	0.4	3.6	11.5	York	n/a
			D9_EBK_40_Iba+b;								
			D9_EBK_40_Ica+b								
Dąbki 9	Inland	Late Mesolithic	D9_EBK_40_Ea+b	Exterior sooted	-26.4	45.9	8.4	4.1	13.0	York	n/a
				deposit							
Dąbki 9	Inland	Late Mesolithic	D9_EBK_41_Ia+b	Interior toodcrust	-26.9	46.1	4.8	3.7	14.7	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_42_Ia+b	Interior foodcrust	-26.9	36.6	5.5	4.7	9.1	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_43_Ia+b	Interior foodcrust	-25.7	30.8	3.6	1.7	20.8	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_EBK_44_Ia+b	Interior foodcrust	-26.9	46.2	5.8	5.8	9.3	York	n/a

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic		biomarkers
									ratio		
Daktariškė 5	Inland	Narva	DAK 945.F	Interior foodcrust	-27.3	57.7	8.4	8.4	8.0	Bradford	1
Daktariškė 5	Inland	Narva	DAK 946.F	Interior foodcrust	-27.9	60.1	9.5	9.2	7.7	Bradford	1
Daktariškė 5	Inland	Narva	DAK 947.F	Interior foodcrust	-28.6	58.9	8.2	8.4	8.2	Bradford	1
Daktariškė 5	Inland	Narva	DAK 948.F	Interior foodcrust	-27.3	42.1	6.9	6.7	7.3	Bradford	0
Daktariškė 5	Inland	Narva	DAK 949.F	Interior foodcrust	-26.9	52.7	9.2	11.2	5.5	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	GR_EBK_Ia+b	Interior foodcrust	-24.0	38.9	11.7	4.1	11.1	York	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.42A-Fa+b	Interior foodcrust	-23.5	26.0	9.5	3.0	10.3	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.42B-Sa+b	Exterior sooted	-24.9	48.3	12.3	2.3	24.6	Bradford	1
				deposit							
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 841-Sa+b	Exterior sooted	-25.7	52.8	12.1	3.9	15.8	Bradford	1
				deposit							
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 842-Sa+b	Exterior sooted	-24.9	50.0	13.8	4.4	13.3	Bradford	1
				deposit							
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 843-Fa+b	Interior foodcrust	-26.1	13.2	7.9	1.4	11.1	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 844-Fa+b	Interior foodcrust	-26.2	45.5	9.7	2.8	19.3	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 844-Sa+b	Exterior sooted	-25.6	28.3	6.6	3.3	10.0	Bradford	0
				deposit							
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 854-Fa+b	Interior foodcrust	-24.6	60.3	7.6	3.9	18.2	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 855-Fa+b	Interior foodcrust	-24.5	27.7	7.6	2.6	12.7	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 859-Fa+b	Interior foodcrust	-27.3	37.4	9.8	1.9	22.7	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 860-Fa+b	Interior foodcrust	-25.2	43.3	6.6	3.0	16.8	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 864-Fa+b	Interior foodcrust	-24.2	48.5	7.0	3.1	18.1	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS 870-Fa+b	Interior foodcrust	-26.0	22.8	7.6	3.0	8.8	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.15-Fa+b	Interior foodcrust	-24.1	14.6	6.4	1.0	16.4	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.17-Fa+b	Interior foodcrust	-26.9	21.3	6.2	2.4	10.4	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.19-Fa+b	Interior foodcrust	-25.6	38.5	7.5	5.9	7.6	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.25-Fa+b	Interior foodcrust	-24.3	41.1	7.9	4.0	12.1	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.26-Fa+b	Interior foodcrust	-25.7	38.1	3.4	1.5	30.0	Bradford	0
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.28-Fa+b	Interior foodcrust	-25.2	33.6	7.9	4.1	9.5	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.29-Fa+b	Interior foodcrust	-26.3	15.1	5.8	1.6	10.9	Bradford	n/a
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.29-Sa+b	Exterior sooted	-25.2	15.4	9.2	1.4	13.2	Bradford	0
				deposit							

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic		biomarkers
									ratio		
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.31A-Fa+b;	Interior foodcrust	-24.2	34.7	7.0	3.4	11.2	Bradford	1
			ROS8.31B-Fa+b;								
			ROS8.31C-Fa+b								
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.33-Fa+b	Interior foodcrust	-23.6	43.1	8.2	3.8	13.2	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.33-Sa+b	Exterior sooted	-24.1	42.5	9.1	3.2	15.6	Bradford	1
				deposit							
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.34-Fa+b	Interior foodcrust	-25.6	50.3	10.4	4.2	14.0	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.35-Fa+b	Interior foodcrust	-25.5	32.8	6.6	2.6	14.9	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.36-Fa+b	Interior foodcrust	-21.7	38.0	7.8	3.0	15.0	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.37-Fa+b	Interior foodcrust	-25.2	31.5	8.2	3.7	10.0	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.38-Fa+b	Interior foodcrust	-22.7	30.7	8.3	3.7	9.8	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.39A-Fa+b	Interior foodcrust	-26.0	50.4	8.3	2.2	27.1	Bradford	1
Grube-Rosenhof LA 58	Coastal	Ertebølle	ROS8.40A-Fa+b;	Interior foodcrust	-25.4	41.4	9.8	3.6	14.6	Bradford	1
			ROS8.40B-Fa+b;								
			ROS8.41C-Fa+b								
Hjarnø	Coastal	Ertebølle	H1-Ia+b	Interior foodcrust	-25.9	48.5	4.3	3.0	18.9	York	1
Hjarnø	Coastal	Ertebølle	H2-Ea+b	Exterior sooted	-24.0	45.3	10.7	3.4	15.6	York	n/a
				deposit							
Hjarnø	Coastal	Ertebølle	H2-Ia+b	Interior foodcrust	-24.1	15.6	7.2	1.2	15.2	York	1
Hjarnø	Coastal	Ertebølle	H3-Ia+b	Interior foodcrust	-24.9	42.1	6.8	3.2	15.2	York	1
Iča	Inland	Narva	ICA 800-Fa+b	Interior foodcrust	-29.3	19.5	10.0	3.3	7.0	Bradford	1
Iča	Inland	Narva	ICA 802-Fa+b	Interior foodcrust	-30.1	36.7	9.7	5.9	7.3	Bradford	n/a
Kretuonas 1	Inland	Narva	KRET-964.F	Interior foodcrust	-28.8	16.9	9.4	2.0	9.7	Bradford	1
Margiai	Inland	Narva	968.F	Interior foodcrust	-34.2	46.4	10.7	4.4	12.4	Bradford	n/a
Osa	Inland	Narva	OSA 810-Fa+b	Interior foodcrust	-28.7	32.7	8.2	6.7	5.7	Bradford	n/a
Osa	Inland	Narva	OSA 811-Fa+b	Interior foodcrust	-33.4	49.0	8.4	6.5	8.9	Bradford	1
Osa	Inland	Narva	OSA 812-Fa+b	Interior foodcrust	-30.8	49.2	9.7	7.3	7.8	Bradford	1
Osa	Inland	Narva	OSA 813-Fa+b	Interior foodcrust	-32.8	49.1	9.9	5.8	9.9	Bradford	1
Osa	Inland	Narva	OSA 814-Fa+b	Interior foodcrust	-30.1	50.3	9.3	3.9	15.0	Bradford	1
Osa	Inland	Narva	OSA 815-Fa+b	Interior foodcrust	-30.9	57.3	9.1	4.7	14.3	Bradford	1
Osa	Inland	Narva	OSA 816-Fa+b	Interior foodcrust	-29.1	44.9	9.4	3.1	17.1	Bradford	0
Osa	Inland	Narva	OSA 819-Fa+b	Interior foodcrust	-29.1	64.4	9.0	2.9	25.9	Bradford	1
Osa	Inland	Narva	OSA 820-Fa+b	Interior foodcrust	-27.8	39.2	7.7	2.2	21.2	Bradford	1
Osa	Inland	Narva	OSA 822-Fa+b	Interior foodcrust	-30.0	21.3	8.2	3.5	7.2	Bradford	1

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic ratio		biomarkers
Osa	Inland	Narva	OSA 826-Fa+b	Interior foodcrust	-26.9	31.9	7.4	6.0	6.2	Bradford	1
Osa	Inland	Narva	OSA 828-Fa+b	Interior foodcrust	-33.3	58.8	10.0	6.0	11.4	Bradford	1
Osa	Inland	Narva	OSA 829-Fa+b	Interior foodcrust	-27.9	33.6	8.2	3.9	10.0	Bradford	1
Osa	Inland	Narva	OSA 830-Fa+b	Interior foodcrust	-33.5	47.0	9.4	5.5	10.0	Bradford	1
Osa	Inland	Narva	OSA 831-Fa+b	Interior foodcrust	-28.1	27.1	7.3	4.7	6.7	Bradford	1
Osa	Inland	Narva	OSA 832-Fa+b	Interior foodcrust	-33.4	35.0	8.5	2.5	16.6	Bradford	1
Osa	Inland	Narva	OSA 833-Fa+b	Interior foodcrust	-29.4	22.7	8.2	2.8	9.4	Bradford	0
Osa	Inland	Narva	OSA 834-Fa+b	Interior foodcrust	-32.4	47.9	9.7	7.7	7.3	Bradford	1
Neustadt LA 156	Coastal	Ertebølle	N1025sa	Exterior sooted	-26.5	45.0	10.0	4.0	13.4	Bradford	n/a
				deposit							
Neustadt LA 156	Coastal	Ertebølle	N162sa	Exterior sooted deposit	-25.4	45.0	10.2	4.7	11.1	Bradford	n/a
Neustadt LA 156	Coastal	Ertebølle	N3201sa	Exterior sooted deposit	-26.6	42.0	8.4	4.1	12.2	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-1X9644Inta-d	Interior foodcrust	-26.1	36.8	4.6	2.0	21.4	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-1X8352	Interior foodcrust	-18.4	48.2	9.7	6.6	8.5	Bradford	0
,			P253a+b								
Syltholm II	Coastal	Ertebølle	MLF906-1X5409	Interior foodcrust	-25.8	25.0	5.2	1.3	22.7	Bradford	n/a
	Control	Estable II.	P246a+b	Tata in Carlo Innet	22.0	20.0	0.4	2.0	10.0	D., 1(., 1	
Syltholm II	Coastal	Ertebølle	MLF906-1X8262 P247a+b	Interior foodcrust	-22.9	39.8	8.4	3.8	12.3	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-1X2873	Interior foodcrust	-22.1	30.2	8.0	3.1	11.5	Bradford	n/a
			P248a+b								
Syltholm II	Coastal	Ertebølle	MLF906-1X8714 P250a+b	Interior foodcrust	-20.8	20.7	9.3	2.2	11.2	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-11X4531a+b	Interior foodcrust	-23.4	38.0	8.0	4.7	9.5	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-11X4602a+b	Interior foodcrust	-22.1	21.1	8.5	3.2	7.9	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-11X5411a+b	Interior foodcrust	-25.7	32.1	7.4	2.9	13.2	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF00906-11X6254-1-	Interior foodcrust	-17.2	48.1	9.8	6.8	8.3	Bradford	n/a
,			a+b								
Syltholm II	Coastal	Ertebølle	MLF00906-11X6254-2-	Interior foodcrust	-17.6	47.4	9.3	8.1	6.9	Bradford	n/a
2			a+b								
Syltholm II	Coastal	Ertebølle	MLF00906-11X7110-a	Interior foodcrust	-15.4	22.4	10.0	4.2	6.3	Bradford	n/a

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic		biomarkers
									ratio		
Syltholm XIII	Coastal	Ertebølle	MLF939-1X1660a+b	Interior foodcrust	-19.6	35.6	7.6	1.1	40.2	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	1MLF939-1X2052a+b	Interior foodcrust	-26.6	18.3	3.7	1.3	16.6	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	1MLF939-1X2052	Interior foodcrust	-26.0	10.7	3.4	1.0	13.1	Bradford	n/a
			P168a+b								
Syltholm XIII	Coastal	Ertebølle	MLF939-1X232 P146a+b	Interior foodcrust	-25.2	22.9	7.9	2.8	9.7	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X605 P173a+b	Interior foodcrust	-17.6	15.4	10.1	2.2	8.3	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X607 P174a+b	Interior foodcrust	-20.5	29.7	9.5	3.1	11.4	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X627 P175a+b	Interior foodcrust	-21.2	23.6	8.6	3.1	9.0	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X821 P176a+b	Interior foodcrust	-26.3	27.0	5.1	2.2	14.7	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X822 P177a+b	Interior foodcrust	-25.8	30.9	5.5	2.0	18.4	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X1129	Interior foodcrust	-22.5	19.7	6.7	1.3	17.3	Bradford	n/a
			P178a+b								
Zacennie	Inland	Narva	BEL 475-F	Interior foodcrust	-26.9	37.9	7.4	5.8	7.6	Bradford	1
Zvidze	Inland	Narva	ZVID 761-Fa+b	Interior foodcrust	-33.7	45.3	8.6	5.1	10.3	Bradford	1
Zvidze	Inland	Narva	ZVID 762-Fa+b	Interior foodcrust	-29.4	55.0	9.3	5.9	10.9	Bradford	1
Zvidze	Inland	Narva	ZVID 763-Fa+b	Interior foodcrust	-25.7	64.4	10.9	3.0	25.2	Bradford	1
Zvidze	Inland	Narva	ZVID 764-Fa+b	Interior foodcrust	-26.6	52.8	9.4	3.1	20.0	Bradford	1
Zvidze	Inland	Narva	ZVID 766-Fa+b	Interior foodcrust	-30.2	18.5	9.0	3.4	6.3	Bradford	1
Zvidze	Inland	Narva	ZVID 769-Fa+b	Interior foodcrust	-32.5	43.3	10.1	6.4	7.9	Bradford	1
Zvidze	Inland	Narva	ZVID 770-Fa+b	Interior foodcrust	-28.4	36.6	8.2	7.6	5.6	Bradford	1
Zvidze	Inland	Narva	ZVID 771-Fa+b	Interior foodcrust	-30.5	57.6	8.9	5.6	12.1	Bradford	1
Zvidze	Inland	Narva	ZVID 772-Fa+b	Interior foodcrust	-31.2	42.4	7.8	5.8	8.6	Bradford	1
Zvidze	Inland	Narva	ZVID 775-Fa+b	Interior foodcrust	-27.4	35.6	10.2	3.2	13.1	Bradford	1
Zvidze	Inland	Narva	ZVID 776-Fa+b	Interior foodcrust	-27.7	53.1	11.1	4.0	15.3	Bradford	1
Zvidze	Inland	Narva	ZVID 777-Fa+b	Interior foodcrust	-27.8	43.8	9.9	4.6	11.0	Bradford	1
Zvidze	Inland	Narva	ZVID 778-Fa+b	Interior foodcrust	-31.0	52.9	8.6	3.4	18.2	Bradford	1
Zvidze	Inland	Narva	ZVID 780-Fa+b	Interior foodcrust	-32.5	30.4	9.4	3.9	9.0	Bradford	1
Zvidze	Inland	Narva	ZVID 781-Fa+b	Interior foodcrust	-25.6	32.8	9.6	6.0	6.4	Bradford	1
Zvidze	Inland	Narva	ZVID 783-Fa+b	Interior foodcrust	-30.1	49.8	9.5	6.4	9.1	Bradford	1
Zvidze	Inland	Narva	ZVID 785-Fa+b	Interior foodcrust	-27.1	39.3	9.3	4.4	10.5	Bradford	1
Zvidze	Inland	Narva	ZVID 786-Fa+b	Interior foodcrust	-26.4	29.9	8.9	3.1	11.2	Bradford	1
Zvidze	Inland	Narva	ZVID 787-Fa+b	Interior foodcrust	-28.0	55.8	9.6	6.0	10.8	Bradford	1
Zvidze	Inland	Narva	ZVID 788-Fa+b	Interior foodcrust	-32.8	21.8	8.6	3.1	8.3	Bradford	0
Zvidze	Inland	Narva	ZVID 790-Fa+b	Interior foodcrust	-29.8	30.8	8.1	5.4	6.6	Bradford	1

Site	Location	Cultural epoch/	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Aquatic
		ware			(‰)		(‰)		atomic ratio		biomarkers
Zvidze	Inland	Narva	ZVID 792-Fa+b	Interior foodcrust	-27.7	58.3	9.2	5.8	11.8	Bradford	1
Zvidze	Inland	Narva	ZVID 793-Fa+b	Interior foodcrust	-29.3	27.4	6.9	3.7	8.6	Bradford	1
Zvidze	Inland	Narva	ZVID 795-Fa+b	Interior foodcrust	-28.7	45.2	8.6	3.5	15.0	Bradford	1
Zvidze	Inland	Narva	ZVID 797-Fa+b	Interior foodcrust	-30.0	45.9	9.8	6.8	7.9	Bradford	1
			Dise	carded data							
Dąbki 9	Inland	Late Mesolithic	D9_28_Ea+b	Exterior sooted deposit	-25.8	8.4	2.6	0.8	11.6	York	n/a
Dąbki 9	Inland	Late Mesolithic	D9_30_Ea+b	Exterior sooted deposit	-24.7	8.9	7.1	1.1	9.5	York	n/a
Flynderhage	Coastal	Ertebølle	FL EBK Ia+b	Interior foodcrust	-25.3	1.9	1.9	0.3	6.4	York	1
Syltholm II	Coastal	Ertebølle	MLF906-1X3311a+b	Interior foodcrust	-24.3	5.2	4.1	0.4	14.9	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-1X10047a+b	Interior foodcrust	-25.6	46.4	3.8	0.9	61.5	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-1X12261 P249a+b	Interior foodcrust	-18.3	10.0	7.8	0.8	15.6	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-11X9877.1a+b	Interior foodcrust	-26.7	5.7	3.0	0.5	15.0	Bradford	n/a
Syltholm II	Coastal	Ertebølle	MLF906-11X8042a+b	Interior foodcrust	-21.3	4.0	7.5	0.4	12.4	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X1660 P167a+b	Interior foodcrust	-21.8	3.0	4.0	0.2	17.0	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X1659 P179a+b	Interior foodcrust	-21.9	2.5	5.2	0.2	14.6	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X2333 P180a+b	Interior foodcrust	-26.4	1.7	5.2	0.2	10.1	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X102int P169a+b	Interior foodcrust	-23.8	1.2	2.9	0.1	15.4	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X102outer P170a+b	Exterior sooted deposit	-21.6	2.8	8.8	0.3	12.7	Bradford	n/a
Syltholm XIII	Coastal	Ertebølle	MLF939-1X325 P171a+b	Interior foodcrust	-27.0	45.8	5.2	0.5	112.9	Bradford	n/a

Key: 1. aquatic biomarkers present; 0. aquatic biomarkers absent; n/a, aquatic biomarkers unknown. The discarded data were deemed unreliable as they either had %C<10 or %N <1

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Reference
			·		(‰)		(‰)		atomic		-
									ratio		
				Acceptable da	ita						
Akali	Inland	Narva	EO60	Interior	-31.3	17.1	12.7	2.0	10.2	York	Oras <i>et al</i> . 2017
				foodcrust							
Akali	Inland	Narva	EO63	Interior	-31.4	31.9	12.9	3.9	9.4	York	Oras <i>et al</i> . 2017
0				foodcrust							
Åkonge	Inland	Ertebølle	KML 49.5/	Interior	-29.6	31.3	7.3	4.4	8.3	Bradford	Robson 2015
0			77.0:113fa+b	foodcrust							
Åkonge	Inland	Ertebølle	KML 49.5/	Interior	-28.1	17.5	7.3	2.5	8.4	Bradford	Robson 2015
0			78.0:49f(1)a+b	foodcrust							
Åkonge	Inland	Ertebølle	KML 49.5/	Interior	-28.3	20.2	7.9	2.6	9.3	Bradford	Robson 2015
0			78.0:49f(2)a+b	foodcrust							
Åkonge	Inland	Ertebølle	KML 50.0/	Interior	-27.5	27.2	7.7	4.6	6.9	Bradford	Robson 2015
			75.5:84fa+b	foodcrust							
Daktariškė 5	Inland	Narva	Dk16-497D1	Exterior	-27.9	53.3	10.1	5.6	11.1	Vilnius	Piličiauskas <i>et al.</i> 2018
				sooted deposit							
Daktariškė 5	Inland	Narva	Dk16-259D	Interior	-29.4	53.5	7.2	6.2	10.1	Vilnius	Piličiauskas <i>et al.</i> 2018
				foodcrust							
Daktariškė 5	Inland	Narva	Dk16-485C	Interior	-28.6	39.9	8.5	7.2	6.5	Vilnius	Piličiauskas <i>et al.</i> 2018
				foodcrust							
Daktariškė 5	Inland	Narva	Dk16-230C	Interior	-27.8	42.2	8.5	8.2	6.0	Vilnius	Piličiauskas <i>et al.</i> 2018
				foodcrust							
Daktariškė 5	Inland	Narva	Dk16-526D1	Interior	-28.8	41.1	9.6	7.1	6.7	Vilnius	Piličiauskas <i>et al.</i> 2018
				foodcrust							
Daktariškė 5	Inland	Narva	II 6b	Exterior	-26.6	47.0	9.3	8.2	6.7	Bradford	Piličiauskas <i>et al.</i> 2018
				sooted deposit							
Gamborg Fjord	Coastal	Ertebølle	A7154a-d	Interior	-23.2	47.5	4.9	4.9	11.4	York	Robson 2015
				foodcrust							

TABLE S6: PUBLISHED BULK $\delta 13$ C and $\delta 15$ N stable isotope data obtained from carbonised surface deposits adhering to contemporaneous cooking vessels from the circum-baltic region

Site	Location	Culture/ware	Sample code	Sample type	δ ¹³ C (‰)	%С	δ ¹⁵ N (‰)	%N	C:N atomic ratio	Lab.	Reference
Kääpa	Inland	Narva	EO27	Exterior sooted deposit	-28.5	52.9	10.8	6.3	10.0	York	Oras et al. 2017
Kääpa	Inland	Narva	EO30	Interior foodcrust	-31.0	22.7	11.7	3.1	8.5	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO31	Exterior sooted deposit	-29.2	54.1	13.0	8.1	7.8	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO38	Interior foodcrust	-28.9	44.0	7.2	6.1	8.3	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO40	Interior foodcrust	-32.6	46.4	11.6	7.8	6.9	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO42	Interior foodcrust	-30.8	49.5	11.2	8.0	7.3	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO47	Interior foodcrust	-29.1	48.6	9.3	6.8	8.5	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO49	Interior foodcrust	-25.8	22.7	6.7	2.7	9.9	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO99	Interior foodcrust	-29.8	32.8	10.2	5.6	6.9	York	Oras <i>et al</i> . 2017
Kääpa	Inland	Narva	EO100	Exterior sooted deposit	-30.9	16.8	8.5	1.1	17.3	York	Oras <i>et al</i> . 2017
Kayhude LA 8	Inland	Ertebølle	KAY8-432,01	Interior foodcrust	-28.4	60.5	7.0	8.5	8.8	Aarhus	Philippsen <i>et al</i> . 2010; Philippsen 2013; Philippsen & Heinemeier 2013; Philippsen & Meadows 2014
Kayhude LA	Inland	Ertebølle	KAY8-168,01	Interior foodcrust	-28.9	56.9	12.5	8.1	8.3	Aarhus	Philippsen <i>et al</i> . 2010; Philippsen 2013; Philippsen & Heinemeier 2013; Philippsen & Meadows 2014

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Reference
					(‰)		(‰)		atomic		
									ratio		
Kayhude LA 8	Inland	Ertebølle	KAY8-412.01	Interior	-26.5	43.5	6.4	2.9	17.8	Aarhus	Philippsen et al. 2010;
				foodcrust							Philippsen 2013;
											Philippsen & Heinemeier
											2013; Philippsen &
	- ·										Meadows 2014
Kõnnu	Coastal	Narva	EO95	Interior	-24.0	13.2	10.1	1.1	13.7	York	Oras <i>et al</i> . 2017
	- ·			toodcrust							-
Kõnnu	Coastal	Narva	EO97	Interior	-23.9	14.5	8.7	1.5	11.6	York	Oras <i>et al</i> . 2017
	- ·			toodcrust							-
Kõnnu	Coastal	Narva	EO98	Interior	-25.2	15.9	8.4	1.2	14.8	York	Oras <i>et al</i> . 2017
K		N		foodcrust	2 0 -	24.0	10.0	2 (0.0	D 1/ 1	
Kretuonas IC	Inland	Narva	NM848:487/2408	Interior	-30.5	24.9	10.9	3.6	8.0	Bradford	Piliciauskas & Heron 2015
1.	F ()	NT	FOX	foodcrust	05.0	01 (0.1	1 1	04 5	N/ 1	
Kroodi	Estuarine/	Narva	EO86	Interior	-25.8	31.6	8.1	1.1	34.5	York	Oras <i>et al</i> . 2017
	Lagoonal	Nterre	E071	foodcrust	25.0	24.2	11 17	()		V l	0
Narva Joaorg	Estuarine/	Narva	EO/1	Interior	-25.0	34.2	11./	6.0	6.7	YORK	Oras <i>et al</i> . 2017
Name Issan	Lagoonal	Name	E072	Interior	07 F	1()	12.0	2.0	0.4	Varl	Orea at al 2017
Narva Joaorg	Estuarine/	Inarva	EO73	Interior	-27.5	16.2	12.0	2.0	9.4	YORK	Oras et <i>u</i> l. 2017
Name Issan	Lagoonal	Name	EQ04	Interior	07 F	20.2	10.0	2.0	0.1	Varl	Orea at al 2017
Narva Joaorg	Estuarine/	Inarva	EO94	Interior	-27.5	20.3	10.6	2.6	9.1	YORK	Oras et <i>u</i> l. 2017
Noustadt	Coostal	Ertoballo	N1102fa	Interior	21 5	18.0	11 1	5.0	11 /	Bradford	Craig at al 2011
I A 156	Coastai	Litebølle	1117518	foodcruct	-21.5	40.0	11.1	5.0	11.4	Diautoru	
LA 150 Noustadt	Coastal	Frtaballa	N1456fa+b	Interior	26.0	38 7	97	10	01	Bradford	Polson 2015
I A 156	Coastai	Litebolle	1145014+0	foodcrust	-20.0	56.7	9.1	4.9	9.1	Diautoru	K005011 2013
Neustadt	Coastal	Frteballe	N1317fa	Interior	_23.7	<u>19 0</u>	81	4.4	13.1	Bradford	Craig at al 2011: Robson
I A 156	Coastai	Litebolie	1101710	foodcrust	20.7	47.0	0.1	1.1	10.1	Diddioid	2015
Neustadt	Coastal	Frteballe	N1919fa	Interior	-24.4	26.0	91	31	99	Bradford	Robson 2015
LA 156	Coustai	Litebolie	IVI)I)Iu	foodcrust	21.1	20.0	7.1	0.1	.,	Diadiora	10050112010
Neustadt	Coastal	Ertebølle	N2452fa+b	Interior	-23.7	37.3	9.1	5.4	8.0	Bradford	Robson 2015
LA 156	coubia	211000110		foodcrust	_0.7	0.10		0.1	0.0	_ maiora	
Neustadt	Coastal	Ertebølle	N262fa	Interior	-27.8	24.0	7.4	4.0	7.1	Bradford	Robson 2015
LA 156				foodcrust			•-				

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Reference
					(‰)		(‰)		atomic		
									ratio		
Neustadt	Coastal	Ertebølle	N2756fa	Interior	-24.0	45.0	11.1	5.2	10.1	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N2772fa	Interior	-27.7	17.0	8.1	2.3	8.6	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3020fa	Interior	-24.7	50.0	11.9	3.8	15.4	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3148fa	Interior	-22.5	44.0	8.8	6.9	7.4	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3304fa	Interior	-22.9	37.0	7.2	3.4	12.9	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3305fa	Interior	-24.2	47.0	8.3	3.8	14.3	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3377fa+b	Interior	-25.0	49.8	9.2	5.9	9.8	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N629fa	Interior	-20.6	36.0	9.3	5.8	7.3	Bradford	Robson 2015
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N2860fa+b	Interior	-28.6	40.1	9.8	5.1	9.2	Bradford	Craig <i>et al.</i> 2011
LA 156				foodcrust							
Neustadt	Coastal	Ertebølle	N3020sa	Exterior	-23.0	44.0	7.6	4.7	10.7	Bradford	Craig et al. 2011; Robson
LA 156				sooted deposit							2015
Neustadt	Coastal	Ertebølle	N2648fa	Interior	-29.8	38.0	9.7	6.2	7.2	Bradford	Robson 2015
LA 156				foodcrust							
Nida	Estuarine/	Rzucewo Ware	L5f	Interior	-30.5	43.0	9.0	5.7	8.8	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L5s	Exterior	-30.1	33.3	12.3	2.7	14.5	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	L6f	Interior	-29.5	25.1	8.4	2.8	10.4	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L6s	Exterior	-28.0	28.0	9.7	1.5	22.3	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	L7f	Interior	-28.2	20.3	7.6	1.9	12.6	Bradford	Heron <i>et al</i> . 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L7s	Exterior	-28.6	36.2	10.5	2.8	15.1	Bradford	Heron <i>et al</i> . 2015
	Lagoonal			sooted deposit							
Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{15}N$	%N	C:N	Lab.	Reference
------	------------	--------------	----------------	----------------	-------------------	------	----------------	-----	--------	----------	----------------------------------
					(‰)		(‰)		atomic		
									ratio		
Nida	Estuarine/	Rzucewo Ware	L8f	Interior	-31.2	35.4	10.3	3.7	11.1	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L8s	Exterior	-29.9	39.8	10.7	3.4	13.5	Bradford	Heron <i>et al</i> . 2015
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	L9s	Exterior	-32.2	42.7	9.7	2.1	23.1	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	L10f	Interior	-28.0	36.7	6.6	4.0	10.7	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L10s	Exterior	-26.9	16.0	7.5	1.9	9.8	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	L11f	Interior	-27.7	11.9	8.6	1.2	11.3	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L19f	Interior	-31.8	16.9	10.0	1.3	15.2	Bradford	Heron <i>et al.</i> 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	L9f	Interior	-30.7	44.7	10.4	5.5	9.4	Bradford	Heron <i>et al</i> . 2015;
	Lagoonal			foodcrust							Piličiauskas & Heron 2015
Nida	Estuarine/	Rzucewo Ware	Nd7336/7359	Exterior	-30.3	35.3	10.8	2.1	19.5	Bradford	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd8045	Interior	-29.2	36.8	8.4	4.6	9.4	Vilnius	Piličiauskas <i>et al</i> . 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd7880	Exterior	-30.0	29.9	9.0	1.5	23.7	Vilnius	Piličiauskas <i>et al</i> . 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd8387	Exterior	-28.2	39.6	11.7	3.7	12.6	Vilnius	Piličiauskas <i>et al</i> . 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd8254	Exterior	-28.9	45.7	10.4	2.3	22.9	Vilnius	Piličiauskas <i>et al</i> . 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd3556 (=8556)	Exterior	-29.7	38.2	11.9	3.8	11.8	Bradford	Piličiauskas <i>et al</i> . 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd8522	Interior	-28.7	46.5	9.6	4.3	12.5	Vilnius	Piličiauskas <i>et al</i> . 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd8823	Interior	-32.4	35.2	10.0	2.3	17.6	Bradford	Piličiauskas <i>et al</i> . 2018
	Lagoonal	_		foodcrust	_		_				
Nida	Estuarine/	Rzucewo Ware	Nd10093	Exterior	-26.0	36.4	8.9	6.9	6.2	Bradford	Piličiauskas <i>et al</i> . 2018
	Lagoonal			sooted deposit							

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Reference
					(‰)		(‰)		atomic		
									ratio		
Nida	Estuarine/	Rzucewo Ware	Nd8840	Interior	-31.4	48.3	11.1	3.1	18.4	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9055	Exterior	-30.3	46.6	9.9	6.2	8.7	Vilnius	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9170	Exterior	-31.6	44.6	9.8	5.4	9.6	Vilnius	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9283	Exterior	-29.7	41.2	10.1	5.1	9.3	Bradford	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9304	Interior	-28.7	40.7	10.4	5.3	9.0	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9402	Exterior	-31.0	36.9	10.0	5.6	7.7	Vilnius	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9504	Exterior	-28.9	41.3	8.7	7.2	6.7	Vilnius	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9301	Exterior	-28.2	44.2	8.6	5.3	9.7	Vilnius	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9740	Interior	-28.0	37.1	8.2	4.5	9.7	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9734	Interior	-27.2	32.2	4.5	3.2	11.7	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9682	Interior	-31.4	37.4	9.4	4.4	9.9	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9578	Interior	-30.7	46.8	9.4	5.4	10.2	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9917	Interior	-29.6	41.9	8.3	4.5	10.8	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9570	Interior	-29.9	40.7	9.4	5.2	9.1	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9916	Interior	-28.7	43.4	8.8	8.0	6.3	Vilnius	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9973	Interior	-29.7	37.2	9.7	6.5	6.6	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							

Site	Location	Culture/ware	Sample code	Sample type	δ13C	%C	δ15	%N	C:N	Lab.	Reference
					(‰)		Ν		atomic		
							(‰)		ratio		
Nida	Estuarine/	Rzucewo Ware	Nd9943	Interior	-30.0	43.0	9.4	6.9	7.2	Bradford	Piličiauskas <i>et al.</i> 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9783	Interior	-29.8	29.2	10.1	4.4	7.8	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9816	Interior	-28.0	40.5	8.3	5.6	8.4	Bradford	Piličiauskas <i>et al.</i> 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd9976	Interior	-29.0	44.4	9.4	5.0	10.4	Bradford	Piličiauskas <i>et al.</i> 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd10006	Exterior	-31.7	40.8	9.2	2.3	21.0	Bradford	Piličiauskas <i>et al.</i> 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	Nd9942	Interior	-30.9	34.5	10.7	3.5	11.6	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	Nd10044	Interior	-29.7	39.6	9.5	5.5	8.3	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	189	Interior	-30.4	36.1	9.8	4.2	10.0	Bradford	Piličiauskas & Heron 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	6921	Interior	-29.0	36.6	8.3	5.5	7.8	Bradford	Piličiauskas & Heron 2015
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	EM2243:3778	Interior	-29.4	34.6	8.8	4.3	9.4	Bradford	Piličiauskas et al. 2011;
	Lagoonal			foodcrust							Piličiauskas & Heron 2015
Nida	Estuarine/	Rzucewo Ware	EM2243:2321	Interior	-29.3	43.6	9.2	5.6	9.1	Bradford	Piličiauskas et al. 2011;
	Lagoonal			foodcrust							Piličiauskas & Heron 2015
Nida	Estuarine/	Rzucewo Ware	EM2243:3760	Interior	-31.6	47.5	8.5	5.0	11.0	Bradford	Piličiauskas et al. 2011;
	Lagoonal			foodcrust							Piličiauskas & Heron 2015
Nida	Estuarine/	Rzucewo Ware	EM2243:4331	Exterior	-27.1	30.8	9.6	6.5	5.6	Bradford	Piličiauskas et al. 2011;
	Lagoonal			sooted deposit							Piličiauskas & Heron 2015
Nida	Estuarine/	Rzucewo Ware	6930	Exterior	-33.6	33.3	11.5	1.1	36.0	Bradford	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	5472	Exterior	-30.2	29.3	11.0	1.9	17.8	Bradford	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							
Nida	Estuarine/	Rzucewo Ware	2030	Interior	-29.3	49.9	9.5	6.1	9.5	Bradford	Piličiauskas et al. 2018
	Lagoonal			foodcrust							
Nida	Estuarine/	Rzucewo Ware	17	Exterior	-29.3	37.2	11.3	3.0	14.5	Bradford	Piličiauskas et al. 2018
	Lagoonal			sooted deposit							

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Reference
					(‰)		(‰)		atomic ratio		
Nida	Estuarine/ Lagoonal	Rzucewo Ware	2/28R	Interior foodcrust	-32.9	15.9	9.9	0.6	29.0	Bradford	Piličiauskas et al. 2018
Ringkloster	Inland	Ertebølle	1592 AACJBa	Interior foodcrust	-31.7	39.0	11.2	5.0	8.6	Bradford	Craig et al. 2007
Ringkloster	Inland	Ertebølle	1592 BVAEa	Interior foodcrust	-28.7	10.0	8.4	1.0	7.9	Bradford	Craig <i>et al.</i> 2007; Robson 2015
Ringkloster	Inland	Ertebølle	1592 CSANa	Interior foodcrust	-27.5	41.0	3.9	3.0	14.2	Bradford	Craig <i>et al.</i> 2007; Robson 2015
Ronæs Skov	Coastal	Ertebølle	3705_ABEa-d	Interior foodcrust	-23.1	34.8	4.9	3.9	10.4	York	Courel <i>et al</i> . 2020; Robson 2015
Ronæs Skov	Coastal	Ertebølle	3705_AQQa-d	Interior foodcrust	-23.0	33.2	5.0	3.3	11.8	York	Courel <i>et al</i> . 2020; Robson 2015
Ronæs Skov	Coastal	Ertebølle	3705_AFWa-d	Interior foodcrust	-25.0	42.2	6.6	2.7	18.5	York	Courel <i>et al</i> . 2020; Robson 2015
Ronæs Skov	Coastal	Ertebølle	3705_AWJa-f	Interior foodcrust	-23.4	40.6	6.7	4.4	10.9	York	Courel <i>et al.</i> 2020; Robson 2015
Ronæs Skov	Coastal	Ertebølle	3705_AYUa	Interior foodcrust	-21.8	49.5	5.6	6.3	9.2	York	Courel <i>et al</i> . 2020; Robson 2015
Satrup- Förstermoor LA 71	Inland	Ertebølle	F51fa+b	Interior foodcrust	-23.5	44.8	7.8	5.3	9.8	Bradford	Robson 2015
Schlamersdorf LA 5	Inland	Ertebølle	SLA5-2683	Interior foodcrust	-33.0	41.1	6.9	3.8	12.1	Aarhus	Philippsen <i>et al</i> . 2010; Philippsen 2013; Philippsen & Heinemeier 2013; Philippsen & Meadows 2014
Stenø	Inland	Ertebølle	ST_X004_201fa+b	Interior foodcrust	-29.2	28.8	6.7	3.9	8.7	Bradford	Robson 2015
Stenø	Inland	Ertebølle	ST_X004_205fa	Interior foodcrust	-27.4	9.3	7.2	1.0	10.8	Bradford	Robson 2015
Stenø	Inland	Ertebølle	ST_X018_215f	Interior foodcrust	-28.1	19.1	5.9	2.5	8.9	Bradford	Robson 2015

(‰) (‰) atomic ratio Stenø Inland Ertebølle ST_X026_222fa+b Interior foodcrust -27.7 43.3 7.9 7.2 7.0 Bradford Robson 2015 Stenø Inland Ertebølle ST_X028_217fa+b Interior -28.2 28.9 8.1 3.3 10.2 Bradford Robson 2015	
ratio Stenø Inland Ertebølle ST_X026_222fa+b Interior -27.7 43.3 7.9 7.2 7.0 Bradford Robson 2015 Stenø Inland Ertebølle ST_X028_217fa+b Interior -28.2 28.9 8.1 3.3 10.2 Bradford Robson 2015	
Stenø Inland Ertebølle ST_X026_222ta+b Interior -27.7 43.3 7.9 7.2 7.0 Bradford Robson 2015 foodcrust Stenø Inland Ertebølle ST_X028_217fa+b Interior -28.2 28.9 8.1 3.3 10.2 Bradford Robson 2015	
foodcrust Stenø Inland Ertebølle ST_X028_217fa+b Interior –28.2 28.9 8.1 3.3 10.2 Bradford Robson 2015	
Stenø Inland Ertebølle S1_X028_21/ta+b Interior –28.2 28.9 8.1 3.3 10.2 Bradford Kobson 2015	
IOODCRUST	
Steriø Initalia Ertebøne 51_X062_0291a+b Initerior -26.4 0.5 7.7 4.9 12.5 Bradiora Kobson 2015	
Steng Inland Erteballe ST X087 007fa+b Interior -28.6 33.3 6.3 5.1 7.6 Bradford Robson 2015	
foodcrust	
Stenø Inland Ertebølle ST X095 039fa Interior –26.5 26.1 7.7 2.9 11.0 Bradford Robson 2015	
foodcrust	
Stenø Inland Ertebølle ST X095 047f Interior –28.6 24.3 7.7 3.4 8.3 Bradford Robson 2015	
foodcrust	
Stenø Inland Ertebølle ST_X095_047s Exterior –27.0 36.6 9.8 2.9 14.6 Bradford Robson 2015	
sooted deposit	
Timmendorf- Coastal Ertebølle T151fa+b Interior –26.5 26.5 13.0 2.5 12.8 Bradford Robson 2015	
Nordmole foodcrust	
Timmendorf- Coastal Ertebølle T850fa+b Interior –25.4 29.5 10.1 2.2 15.6 Bradford Robson 2015	
Nordmole foodcrust	
Tybrind Vig Coastal Ertebølle 2033 AAXa Interior –23.1 47.0 10.4 6.0 7.9 Bradford Craig et al. 2011; Robso	son
foodcrust 2015	
Tybrind Vig Coastal Ertebølle 2033 AFKa+b Interior –23.7 40.1 8.0 5.3 7.5 Bradford Craig et al. 2011; Robso	son
foodcrust 2015	
Tybrind Vig Coastal Ertebølle 2033 BGUa Interior –24.8 41.0 7.1 5.0 7.9 Bradford Craig <i>et al.</i> 2011; Robso	son
foodcrust 2015	
Tybrind Vig Coastal Ertebølle 2033 BHJa Interior –22.5 35.0 9.1 7.0 5.3 Bradford Craig <i>et al.</i> 2007; 2011;	;
foodcrust Robson 2015	
Tybrind Vig Coastal Ertebølle 2033 BNKa Interior –23.0 22.0 10.3 3.0 7.1 Bradford Craig <i>et al.</i> 2011; Robso	son
IOODCRUST 2015 Tubrind Via Coostal Ertaballa 2022 ESZa Interior 22.2 21.0 6.7 4.0 7.5 Preddord Crain et al 2011, Poles	
foodgrust 2015	5011
Tybrind Vig Coastal Erteballe 2013 LCKa Interior -22.0 40.0 10.5 7.0 5.4 Bradford Craig <i>et al</i> 2011: Robec	son
foodcrust 2015	5011
Tybrind Vig Coastal Ertebølle 2033 MBOa Interior -24.2 27.0 7.0 4.0 7.0 Bradford Craig <i>et a</i> l 2011	
foodcrust	

Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C$	%С	$\delta^{\scriptscriptstyle 15} N$	%N	C:N	Lab.	Reference
					(‰)		(‰)		atomic		
									ratio		
Tybrind Vig	Coastal	Ertebølle	2033 MTCa	Interior	-22.7	26.0	11.0	4.0	6.3	Bradford	Craig et al. 2011; Robson
				foodcrust							2015
Tybrind Vig	Coastal	Ertebølle	2033 NRWa	Interior	-22.7	38.9	10.3	3.0	15.3	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 PCMa	Interior	-22.6	37.0	9.2	4.0	8.8	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 PJTa+b	Interior	-24.0	52.5	9.9	4.2	13.1	Bradford	Craig et al. 2011; Robson
				foodcrust							2015
Tybrind Vig	Coastal	Ertebølle	2033 ABa	Interior	-24.3	51.5	11.3	3.0	20.3	Bradford	Craig et al. 2011; Robson
				foodcrust							2015
Tybrind Vig	Coastal	Ertebølle	2033 BOFa	Interior	-24.6	45.0	7.5	7.0	6.7	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 QMEa+b	Interior	-21.9	46.3	7.0	8.2	5.8	Bradford	Craig et al. 2011; Robson
				foodcrust							2015
Tybrind Vig	Coastal	Ertebølle	2033 RAGa+b	Interior	-21.8	70.8	9.0	7.5	11.7	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 RBDa	Interior	-22.3	27.6	8.7	2.2	14.3	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 RCFa	Interior	-22.8	59.5	9.9	3.8	18.3	Bradford	Craig et al. 2011; Robson
				foodcrust							2015
Tybrind Vig	Coastal	Ertebølle	2033 SGBa	Interior	-23.6	51.6	7.3	4.0	15.2	Bradford	Craig et al. 2007; 2011;
				foodcrust							Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033_BQL.E.Ra+b	Interior	-22.6	22.2	12.3	2.8	9.4	York	Robson 2015
				foodcrust							

Discarded data											
Akali	Inland	Narva	EO93	Interior foodcrust	-27.9	4.3	2.4	0.3	18.9	York	Oras <i>et al</i> . 2017
Kõnnu	Coastal	Narva	EO96	Exterior sooted deposit	-25.1	9.1	8.4	0.6	18.0	York	Oras <i>et al</i> . 2017
Schlamersdorf LA 5	Inland	Ertebølle	SLA5-1713	Interior foodcrust	-28.0	8.8	3.4	0.4	16.3	Aarhus	Philippsen <i>et al.</i> 2010; Philippsen 2013; Philippsen & Heinemeier 2013; Philippsen & Meadows 2014
Stenø	Inland	Ertebølle	ST_X004_205fa	Interior foodcrust	-27.4	9.3	7.2	1.0	10.8	Bradford	Robson 2015
Stenø	Inland	Ertebølle	ST_X082_029fa+b	Interior foodcrust	-28.4	0.5	7.7	4.9	12.3	Bradford	Robson 2015
Tybrind Vig	Coastal	Ertebølle	2033 KPUa	Interior foodcrust	-23.7	9.0	10.9	2.0	6.0	Bradford	Craig <i>et al</i> . 2011; Robson 2015

Key: 1. aquatic biomarkers present; 0. aquatic biomarkers absent; n/a, aquatic biomarkers unknown. The discarded data were deemed unreliable as they either had %C <10 or %N <1

Region	Site	Location	Culture/ware	Sample code	Sample type	δ ¹³ C ₁₆ :0 (‰)	$\delta^{13}C_{18}:0$ (‰)	$\Delta^{13}C$	Aquatic biomarkers
Ceramic oval bowls	3								
Western Baltic	Dąbki 9	Inland	Late Mesolithic	Dą.2i	Interior foodcrust	-29.2	-30.2	-1.0	1
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-2-I	Interior foodcrust	-27.8	-28.2	-0.3	1
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-5-S	Interior sherd powder	-31.6	-32.0	-0.4	0
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-6-S	Interior sherd powder	-28.9	-29.6	-0.6	0
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-9-S	Interior sherd powder	-29.5	-29.4	0.2	0
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-10-S	Interior sherd powder	-29.5	-29.8	-0.4	1
Western Baltic	Dąbki 9	Inland	Late Mesolithic	D-13-S	Interior sherd powder	-31.9	-32.0	-0.1	1
Western Baltic	Flynderhage	Coastal	Ertebølle	FL-1-E	Exterior sooted deposit	-26.2	-26.3	0.0	0
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-1-S	Interior sherd powder	-22.3	-22.4	-0.1	0
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-2-S	Interior sherd powder	-23.4	-23.4	0.0	0
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-5-S	Interior sherd powder	-20.8	-20.0	0.8	0
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-6-S	Interior sherd powder	-21.0	-21.2	-0.2	1
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-9-E	Exterior sooted deposit	-20.1	-19.6	0.6	1
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-11-E	Exterior sooted deposit	-20.9	-21.0	0.0	1
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-12-E	Exterior sooted deposit	-21.8	-22.0	-0.2	1
Western Baltic	Grube-Rosenhof LA 58	Coastal	Ertebølle	GR-14-S	Interior sherd powder	-19.4	-19.4	0.0	0
Western Baltic	Hamburg Boberg 15	Inland	Friesack-Boberg	HB-1-S	Interior sherd powder	-31.1	-32.7	-1.7	0
Western Baltic	Hamburg Boberg 15	Inland	Friesack-Boberg	HB-2-S	Interior sherd powder	-29.6	-29.9	-0.2	0
Western Baltic	Hamburg Boberg 15	Inland	Friesack-Boberg	HB-3-S	Interior sherd powder	-30.0	-29.9	0.2	0
Western Baltic	Hamburg Boberg 15-east	Inland	Friesack-Boberg	HB22iA	Interior sherd powder	-31.1	-31.3	-0.2	n/a
				(1959:34_3)	-				
Western Baltic	Hamburg Boberg 15-east	Inland	Friesack-Boberg	HB22iM	Interior sherd powder	-28.7	-28.9	-0.2	n/a
				(1959:34_3)	-				
Eastern Baltic	Iča	Inland	Narva	ICA 798-W	Whole sherd	-32.6	-32.8	-0.2	1
Eastern Baltic	Iča	Inland	Narva	ICA 798-F	Interior foodcrust	-32.5	-33.2	-0.7	1
Eastern Baltic	Iča	Inland	Narva	ICA 799-W	Whole sherd	-33.3	-32.7	0.6	1
Eastern Baltic	Iča	Inland	Narva	ICA 799-F	Interior foodcrust	-32.7	-33.0	-0.3	1
Eastern Baltic	Iča	Inland	Narva	ICA 803-W	Whole sherd	-34.2	-30.7	3.5	1
Eastern Baltic	Iča	Inland	Narva	ICA 803-F	Interior foodcrust	-32.2	-31.7	0.5	1

TABLE S7: CARBON (δ¹³C) STABLE ISOTOPE VALUES OF INDIVIDUAL MID-CHAIN FATTY ACIDS (PALMITIC, C16:0 & STEARIC, C18:0) OBTAINED FROM OVAL BOWLS THROUGHOUT THE CIRCUM-BALTIC & STONE LAMPS FROM NORTH AMERICA ACQUIRED IN THIS STUDY

Region	Site	Location	Culture/ware	Sample	Sample type	$\delta^{1}3C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic
				code		(‰)	(‰)		biomarkers
Eastern Baltic	Kretuonas 1B	Inland	Narva/Porous Ware	KRET-961.W	Whole sherd	-32.4	-34.0	-1.5	0
Eastern Baltic	Kretuonas 1B	Inland	Narva/Porous Ware	KRET-966.W	Whole sherd	-33.7	-34.3	-0.6	1
Western Baltic	Meilgaard	Coastal	Ertebølle	ME-1-S	Interior sherd powder	-26.6	-27.7	-1.1	1
Eastern Baltic	Narva Joaorg	Estuarine/ Lagoonal	Narva	NJ13	Interior sherd powder	-31.6	-31.4	0.2	0
Eastern Baltic	Narva Joaorg	Estuarine/ Lagoonal	Narva	NJ21	Interior sherd powder	-31.1	-29.4	1.7	1
Eastern Baltic	Narva Joaorg	Estuarine/ Lagoonal	Narva	NJ25	Interior sherd powder	-29.9	-28.4	1.5	1
Eastern Baltic	Narva Joaorg	Estuarine/ Lagoonal	Narva	NJ34	Interior sherd powder	-32.7	-32.3	0.4	1
Eastern Baltic	Osa	Inland	Narva	OSA 807-W	Whole sherd	-36.8	-35.6	1.2	1
Eastern Baltic	Osa	Inland	Narva	OSA 807-F	Interior foodcrust	-35.0	-35.2	-0.2	1
Eastern Baltic	Osa	Inland	Narva	OSA 821-W	Whole sherd	-34.2	-31.0	3.1	1
Eastern Baltic	Osa	Inland	Narva	OSA 821-F	Interior foodcrust	-33.6	-32.3	1.3	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-1-S	Interior sherd powder	-16.9	-16.4	0.5	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-5-E	Exterior sooted deposit	-16.2	-15.7	0.5	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-6-E	Exterior sooted deposit	-18.6	-18.6	0.0	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-8-S	Interior sherd powder	-19.3	-18.1	1.2	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-9-S	Interior sherd powder	-18.4	-18.1	0.3	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-12-S	Interior sherd powder	-22.3	-23.0	-0.7	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-13-S	Interior sherd powder	-23.6	-23.8	-0.2	1
Western Baltic	Ronæs Skov	Coastal	Ertebølle	RO-14-S	Interior sherd powder	-20.7	-22.6	-1.9	1
Western Baltic	Siggeneben Sud LA 12	Coastal	Ertebølle	SS-1-S	Interior sherd powder	-21.1	-21.0	0.1	1
Western Baltic	Siggeneben Sud LA 12	Coastal	Ertebølle	SS-2-E	Exterior sooted deposit	-22.0	-21.5	0.5	1
Western Baltic	Siggeneben Sud LA 12	Coastal	Ertebølle	SS-3-S	Interior sherd powder	-26.5	-26.1	0.4	0
Eastern Baltic	Šventoji 4	Estuarine/ Lagoonal	Narva	SV-1-E	Exterior sooted deposit	-31.0	-31.5	-0.6	1
Eastern Baltic	Šventoji 6	Estuarine/ Lagoonal	Narva	SV-7-I	Interior foodcrust	-29.5	-29.6	-0.2	1
Eastern Baltic	Szczepanki 8	Inland	Zedmar-Post Zedmar	S_Z_PZ_02_S	Whole sherd	-28.9	-29.5	-0.7	1

Region	Site	Location	Culture/ware	Sample	Sample type	$\delta^{_{13}}C_{^{16}}:0$	$\delta^{_{13}}C_{_{18}:0}$	$\Delta^{13}C$	Aquatic
				code		(‰)	(‰)		biomarkers
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-2-S	Interior sherd powder	-19.7	-22.3	-2.6	0
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-3-E	Exterior sooted deposit	-20.2	-20.8	-0.6	1
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-4-E	Exterior sooted deposit	-21.0	-22.3	-1.4	1
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-12-S	Interior sherd powder	-21.5	-21.7	-0.2	1
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-13-S	Interior sherd powder	-19.9	-23.0	-3.1	1
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-14-S	Interior sherd powder	-21.4	-21.4	0.0	1
Western Baltic	Wangels LA 505	Coastal	Ertebølle	W-15-S	Interior sherd powder	-17.7	-17.9	-0.2	0
Western Baltic	Wełcz Wielki, st. 10B	Inland	Funnel Beaker	N247	Interior sherd powder	-27.2	-27.6	-0.4	0
Eastern Baltic	Zvidze	Inland	Narva	ZVID 765-W	Whole sherd	-28.6	-28.8	-0.1	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 765-F	Interior foodcrust	-32.0	-34.3	-2.3	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 768-W	Whole sherd	-37.3	-35.6	1.7	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 768-F	Interior foodcrust	-32.5	-33.0	-0.5	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 773-W	Whole sherd	-34.2	-34.7	-0.5	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 773-F	Interior foodcrust	-32.6	-33.5	-0.9	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 774-W	Whole sherd	-35.0	-34.4	0.6	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 774-F	Interior foodcrust	-33.9	-34.0	-0.1	1
Eastern Baltic	Zvidze	Inland	Narva	ZVID 796-W	Whole sherd	-35.6	-36.3	-0.7	1
Stone lamps									
North America	Adlavik Harbour	Coastal	Late Aleutian	SL-1	Interior foodcrust	-21.3	-22.9	-1.6	1
North America	Amaknak Island	Coastal	Late Aleutian	ARI-1	Interior foodcrust	-25.1	-24.9	0.2	1
North America	Atka Island	Coastal	Late Aleutian	AI-1	Interior foodcrust	-23.0	-23.9	-0.8	1
North America	Atka Island	Coastal	Late Aleutian	AI-2	Interior foodcrust	-23.0	-23.0	0.0	1
North America	Nunivak Island	Coastal	Late Aleutian	NI-1	Interior foodcrust	-21.7	-22.5	-0.8	1
North America	Nunivak Island	Coastal	Late Aleutian	NI-2	Interior foodcrust	-21.7	-21.6	0.2	1
North America	Uyak Bay	Coastal	Late Aleutian	UB-1	Interior foodcrust	-23.8	-24.0	-0.3	1
North America	Uyak Bay	Coastal	Late Aleutian	UB-2	Interior foodcrust	-25.4	-25.9	-0.5	1

Key: 1. aquatic biomarkers present; 0. aquatic biomarkers absent; n/a, aquatic biomarkers unknown

Region	Site	Location	Culture/ware	Sample code	Sample type	δ ¹³ C16:0 (‰)	δ ¹³ C ₁₈ :0 (‰)	$\Delta^{13}C$	Aquatic biomarkers	Reference
				Ceramic ova	l bowls					
Western Baltic	Åkonge	Inland	Ertebølle	KML 49.5/75.5:20f	Interior foodcrust	-30.7	-34.4	-3.7	0	Craig et al. 2011
Western Baltic	Åkonge	Inland	Ertebølle	KML 49.5/75.5:20i	Interior sherd powder	-30.4	-33.1	-2.7	0	Heron <i>et al.</i> 2013
Western Baltic	Åkonge	Inland	Ertebølle	KML 50.0/78.5·2i	Interior sherd	-29.8	-32.4	-2.6	0	Craig et al. 2011
Eastern Baltic	Kääpa	Inland	Narva	EO34	Interior sherd	-32.9	-33.7	-0.8	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO36	Exterior sooted deposit	-32.4	-31.9	0.5	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO37	Interior sherd powder	-34.2	-34.3	-0.1	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO44	Interior sherd powder	-33.3	-32.3	1.0	0	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO46	Interior sherd	-34.2	-32.2	2.0	1	Oras et al. 2017
Eastern Baltic	Kääpa	Inland	Narva	EO51	Interior foodcrust	-30.1	-31.4	-1.3	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO52	Interior sherd powder	-30.5	-32.2	-1.7	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO53	Interior foodcrust	-32.2	-32.6	-0.4	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO54	Interior sherd powder	-32.5	-32.8	-0.3	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO56	Exterior sooted deposit	-33.7	-32.4	1.3	1	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO57	Interior sherd	-35.1	-34.8	0.3	1	Oras et al. 2017
Eastern Baltic	Kääpa	Inland	Narva	EO58	Interior sherd powder	-32.6	-33.2	-0.6	0	Oras <i>et al</i> . 2017
Eastern Baltic	Kääpa	Inland	Narva	EO06	Interior sherd powder	-29.9	-31.1	-1.2	1	Oras et al. 2017

TABLE S8: PUBLISHED CARBON (δ^{13} C) STABLE ISOTOPE VALUES OF INDIVIDUAL MID-CHAIN FATTY ACIDS (PALMITIC, C16:0 & STEARIC, C18:0) OBTAINED FROM OVAL BOWLS THROUGHOUT THE CIRCUM-BALTIC & STONE LAMPS FROM NORTH AMERICA

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Reference
						(‰)	(‰)		biomarkers	
Eastern Baltic	Narva Joaorg	Estuarine/	Narva	EO11	Interior sherd	-31.3	-31.1	0.2	0	Oras <i>et al</i> . 2017
		Lagoonal			powder					
Eastern Baltic	Narva Joaorg	Estuarine/	Narva	EO69	Interior sherd	-31.7	-31.1	0.6	0	Oras <i>et al</i> . 2017
		Lagoonal			powder					
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N1009i	Interior sherd	-20.3	-21.6	-1.3	0	Heron <i>et al</i> . 2013
					powder					
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N1009s	Exterior sooted	-23.3	-24.5	-1.2	1	Craig <i>et al</i> . 2011;
					deposit					Heron <i>et al</i> . 2013
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N1682i	Interior sherd	-23.6	-23.3	0.3	0	Heron <i>et al</i> . 2013
					powder					
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N2285f	Interior foodcrust	-22.5	-22.2	0.3	0	Craig <i>et al</i> . 2011;
										Heron <i>et al</i> . 2013
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N2285i	Interior sherd	-21.4	-22.2	-0.8	1	Heron <i>et al</i> . 2013
					powder					
Western Baltic	Neustadt LA 156	Coastal	Ertebølle	N338i	Interior sherd	-22.9	-22.9	0.0	0	Heron <i>et al</i> . 2013
					powder					
Eastern Baltic	Nida	Estuarine/	Rzucewo Ware	L12i	Interior sherd	-32.2	-32.3	-0.1	1	Heron <i>et al</i> . 2015
		Lagoonal			powder					
Eastern Baltic	Nida	Estuarine/	Rzucewo Ware	L25i	Interior sherd	-32.1	-33.1	-1.0	0	Heron <i>et al</i> . 2015
		Lagoonal			powder					
Western Baltic	Soldattorpet	Coastal	Ertebølle	SHM08;	Interior sherd	-28.1	-26.9	1.2	0	Papakosta <i>et al</i> .
				11461:622, Ci	powder					2019
Western Baltic	Soldattorpet	Coastal	Ertebølle	SHM28;	Interior sherd	-25.7	-27.4	-1.7	0	Papakosta <i>et al</i> .
				11882:142, Ci	powder					2019
Western Baltic	Teglgård-	Coastal	Ertebølle	TH1f	Interior sherd	-15.7	-15.1	0.6	1	Craig <i>et al</i> . 2011;
	Helligkilde				powder					Heron <i>et al</i> . 2013
Western Baltic	Teglgård-	Coastal	Ertebølle	TH1i	Interior sherd	-18.1	-18.5	-0.4	1	Craig et al. 2011
	Helligkilde				powder					
Western Baltic	Teglgård-	Coastal	Ertebølle	TH1i	Interior sherd	-17.3	-17.2	0.1	1	Heron <i>et al</i> . 2013
	Helligkilde				powder					
Western Baltic	Tybrind Vig	Coastal	Ertebølle	2033 EI	Interior foodcrust	-28.3	-30.2	-1.9	0	Craig et al. 2011
				Stone lan	nps					
North America	Tanaxtaxak (UNL-	Coastal	Margaret Bay	UNL55-42	Interior foodcrust	-23.9	-23.5	0.4	1	Admiraal et al.
	55)		phase							2018

Key: 1. aquatic biomarkers present; 0. aquatic biomarkers absent; n/a, aquatic biomarkers unknown

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C_{^{16}}:0$	$\delta^{13}C_{18}:0$	$\Delta^{_{13}}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Narva	EO59	Interior sherd powder	-31.2	-31.3	-0.2	0	1
			Narva	EO61	Interior sherd powder	-30.2	-29.1	1.1	1	1
E. Baltic	Akali	Inland	Narva	EO63	Interior foodcrust	-33.3	-33.6	-0.3	1	1
			Narva	EO64	Interior sherd powder	-33.3	-33.3	0.1	1	1
			Narva	EO66	Interior sherd powder	-30.8	-30.6	0.2	0	1
			Ertebølle	KML 50.0/75.5:8i	Interior sherd powder	-30.4	-33.7	-3.3	n/a	2
			Ertebølle	KML 49.5/77.0:113i	Interior sherd powder	-29.8	-32.5	-2.7	n/a	2
			Ertebølle	KML 49.5/77.0:113f	Interior foodcrust	-31.0	-32.3	-1.3	n/a	3
	8 •		Ertebølle	KML 49.5/78.0:49i	Interior sherd powder	-29.5	-33.3	-3.8	1	2
W. Baltic	Akonge	Inland	Ertebølle	KML 49.5/78.0:49f1+2	Interior foodcrust	-29.3	-32.4	-3.1	n/a	3
			Ertebølle	KML 50.0/75.5:84i	Interior sherd powder	-30.9	-33.0	-2.1	0	2
			Ertebølle	KML 50.0/75.5:84f	Interior foodcrust	-30.5	-34.3	-3.8	n/a	3
			Ertebølle	KML 50.0/77.0:155i	Interior sherd powder	-29.9	-33.6	-3.7	n/a	3
			Narva	BEL 480-W	Whole sherd	-27.1	-27.9	-0.8	0	4
E. Baltic	Asaviec IV	Inland	Narva	BEL 481-W	Whole sherd	-27.4	-28.5	-1.1	0	4
			Narva	BEL 482-W	Whole sherd	-27.5	-29.7	-2.3	0	4
			Narva	BEL 476-W	Whole sherd	-21.3	-26.6	-5.2	0	4
	D 1 (Narva	BEL 477-W	Whole sherd	-28.1	-27.7	0.4	0	4
E. Baltic	Berescha 4	Inland	Narva	BEL 478-W	Whole sherd	-28.2	-29.0	-0.7	0	4
			Narva	BEL 479-W	Whole sherd	-27.0	-27.9	-0.9	0	4
			Late Mesolithic	Dą.1i	Interior foodcrust	-28.5	-31.9	-3.4	0	4
			Late Mesolithic	D9_EBK_03a_I	Interior foodcrust	-31.2	-34.3	-3.1	1	4
			Late Mesolithic	D9_EBK_04_I	Interior foodcrust	-30.7	-31.1	-0.4	1	4
			Late Mesolithic	D9_EBK_05_I	Interior foodcrust	-30.9	-34.0	-3.0	1	4
M Daltia	D_{2}	In land	Late Mesolithic	D9_EBK_06_I	Interior foodcrust	-32.8	-32.2	0.6	1	4
w. Dalue	Dąbki 9	mana	Late Mesolithic	D9_EBK_07_I	Interior foodcrust	-33.5	-31.9	1.6	0	4
			Late Mesolithic	D9_EBK_08_I	Interior foodcrust	-30.0	-32.8	-2.9	1	4
			Late Mesolithic	D9_EBK_09_I	Interior foodcrust	-33.7	-32.4	1.3	0	4
			Late Mesolithic	D9_EBK_10_I	Interior foodcrust	-30.6	-29.8	0.8	1	4
			Late Mesolithic	D9_EBK_12_S	Whole sherd	-30.4	-29.9	0.5	1	4

TABLE S9: PUBLISHED CARBON (δ^{13} C) STABLE ISOTOPE VALUES OF INDIVIDUAL MID-CHAIN FATTY ACIDS (PALMITIC, C16:0 & STEARIC, C18:0) OBTAINED FROM CONTEMPORANEOUS COOKING VESSELS THROUGHOUT THE CIRCUM-BALTIC

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C_{^{16}}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Late Mesolithic	D9_EBK_13_I	Interior foodcrust	-32.5	-32.7	-0.2	1	4
			Late Mesolithic	D9_EBK_14_I	Interior foodcrust	-31.7	-32.8	-1.1	1	4
			Late Mesolithic	D9_EBK_15_I	Interior foodcrust	-29.6	-31.7	-2.0	1	4
			Late Mesolithic	D9_EBK_16_I	Interior foodcrust	-31.1	-31.4	-0.2	1	4
			Late Mesolithic	D9_EBK_17_I	Interior foodcrust	-30.9	-30.3	0.6	1	4
			Late Mesolithic	D9_EBK_18_S	Whole sherd	-29.3	-30.8	-1.5	0	4
			Late Mesolithic	D9_EBK_19_S	Whole sherd	-28.9	-32.3	-3.4	1	4
			Late Mesolithic	D9_EBK_20_I	Interior foodcrust	-29.2	-29.9	-0.7	0	4
			Late Mesolithic	D9_EBK_21_I	Interior foodcrust	-30.4	-32.7	-2.3	1	4
			Late Mesolithic	D9_EBK_22_I	Interior foodcrust	-31.1	-28.4	2.7	1	4
			Late Mesolithic	D9_EBK_23_I	Interior foodcrust	-32.3	-29.1	3.2	0	4
			Late Mesolithic	D9_EBK_24_Ia	Interior foodcrust	-31.4	-33.0	-1.6	1	4
			Late Mesolithic	D9_EBK_25_I	Interior foodcrust	-32.5	-34.1	-1.5	1	4
			Late Mesolithic	D9_EBK_26_S	Whole sherd	-32.2	-30.7	1.5	1	4
			Late Mesolithic	D9_EBK_27_I	Interior foodcrust	-33.7	-31.9	1.8	1	4
			Late Mesolithic	D9_EBK_28_I	Interior foodcrust	-31.9	-32.2	-0.3	1	4
			Late Mesolithic	D9_EBK_29_I	Interior foodcrust	-30.0	-29.5	0.4	1	4
W. Baltic	Dąbki 9	Inland	Late Mesolithic	D9_EBK_30_I	Interior foodcrust	-30.0	-30.0	0.0	1	4
			Late Mesolithic	D9_EBK_32_I	Interior foodcrust	-32.0	-31.9	0.1	1	4
			Late Mesolithic	D9_EBK_33_I	Interior foodcrust	-31.1	-30.5	0.6	1	4
			Late Mesolithic	D9_EBK_34_I	Interior foodcrust	-28.2	-28.3	-0.1	0	4
			Late Mesolithic	D9_EBK_35_I	Interior foodcrust	-29.4	-32.3	-3.0	1	4
			Late Mesolithic	D9_EBK_36_I	Interior foodcrust	-31.4	-31.2	0.2	0	4
			Late Mesolithic	D9_EBK_37_I	Interior foodcrust	-28.9	-28.9	0.0	0	4
			Late Mesolithic	D9_02_I	Interior foodcrust	-32.5	-35.1	-2.6	0	4
			Late Mesolithic	D9_03_I	Interior foodcrust	-33.2	-32.5	0.8	1	4
			Late Mesolithic	D9_04_I	Interior foodcrust	-31.8	-31.4	0.4	1	4
			Late Mesolithic	D9_05_I	Interior foodcrust	-31.7	-31.0	0.8	1	4
			Late Mesolithic	D9_06_I	Interior foodcrust	-30.8	-32.9	-2.1	1	4
			Late Mesolithic	D9_12_S	Whole sherd	-28.0	-28.8	-0.8	1	4
			Late Mesolithic	D9_13_S	Whole sherd	-29.9	-29.7	0.2	1	4
			Late Mesolithic	D9_18_S	Whole sherd	-30.0	-28.9	1.1	1	4
			Late Mesolithic	D9_19_S	Whole sherd	-28.6	-28.4	0.2	1	4
			Late Mesolithic	D9_31_S	Whole sherd	-31.5	-31.6	-0.1	1	4
			Late Mesolithic	D9_33_S	Whole sherd	-31.8	-31.8	0.0	1	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C_{^{16}}$:0	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Late Mesolithic	D9_45_S	Whole sherd	-30.5	-31.1	-0.5	0	4
W. Baltic	Dąbki 9	Inland	Late Mesolithic	D9_54_S	Whole sherd	-27.3	-27.4	0.0	1	4
	·		Late Mesolithic	D9_56_S	Whole sherd	-32.2	-33.1	-0.9	1	4
			Narva	DAK 945.F	Interior foodcrust	-31.7	-31.5	0.2	1	4
			Narva	DAK 946.F	Interior foodcrust	-32.5	-33.8	-1.3	1	4
E. Baltic	Daktariškė 5	Inland	Narva	DAK 947.F	Interior foodcrust	-32.5	-32.6	-0.1	1	4
			Narva	DAK 948.F	Interior foodcrust	-30.2	-29.7	0.5	0	4
			Narva	DAK 949.F	Interior foodcrust	-30.7	-31.0	-0.3	0	4
W. Baltic	Frederiksodde	Coastal	Ertebølle	1734 NJN	Interior sherd powder	-20.7	-23.6	-2.9	n/a	2
			Ertebølle	GR_EBK_I (Rosenhof 1970; II/90)	Interior foodcrust	-21.5	-20.4	1.0	1	4
			Ertebølle	ROS8.42A-F	Interior foodcrust	-26.6	-26.6	0.0	1	4
			Ertebølle	ROS8.42A-I	Interior sherd powder	-25.0	-28.2	-3.2	1	4
			Ertebølle	ROS8.42B-S	Exterior sooted deposit	-25.6	-28.6	-3.0	1	4
			Ertebølle	ROS8.42B-I	Interior sherd powder	-25.0	-28.0	-3.1	1	4
			Ertebølle	ROS 836-I	Interior sherd powder	-28.8	-29.6	-0.8	0	4
			Ertebølle	ROS 837-I	Interior sherd powder	-22.2	-24.4	-2.2	1	4
W Baltic	Grube-Rosenhof	Coastal	Ertebølle	ROS 838-I	Interior sherd powder	-28.7	-31.7	-3.0	0	4
vv. Danic	LA 58	Coastal	Ertebølle	ROS 839-I	Interior sherd powder	-28.8	-32.9	-4.0	0	4
			Ertebølle	ROS 841-I	Interior sherd powder	-26.0	-25.0	1.1	1	4
			Ertebølle	ROS 841-S	Exterior sooted deposit	-26.1	-26.3	-0.2	1	4
			Ertebølle	ROS 842-I	Interior sherd powder	-27.7	-30.0	-2.3	0	4
			Ertebølle	ROS 842-S	Exterior sooted deposit	-24.8	-27.2	-2.4	1	4
			Ertebølle	ROS 843-I	Interior sherd powder	-24.8	-25.8	-1.0	1	4
			Ertebølle	ROS 844-I	Interior sherd powder	-28.2	-32.0	-3.7	0	4
			Ertebølle	ROS 844-F	Interior foodcrust	-26.3	-29.9	-3.6	0	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic hiomarkers	Ref.
			Ertebølle	ROS 844-S	Exterior sooted deposit	-29.0	-33.3	-4.3	0	4
			Ertebølle	ROS 845-I	Interior sherd powder	-26.3	-28.1	-1.8	0	4
			Ertebølle	ROS 846-I	Interior sherd powder	-24.0	-23.1	0.9	0	4
			Ertebølle	ROS 847-I	Interior sherd powder	-28.4	-32.9	-4.5	0	4
			Ertebølle	ROS 849-I	Interior sherd powder	-26.2	-30.2	-3.9	0	4
			Ertebølle	ROS 849-F	Interior foodcrust	-27.4	-30.5	-3.0	0	4
			Ertebølle	ROS 850-I	Interior sherd powder	-22.8	-22.5	0.3	1	4
			Ertebølle	ROS 851-I	Interior sherd powder	-23.1	-25.7	-2.6	1	4
			Ertebølle	ROS 853-I	Interior sherd powder	-26.9	-27.1	-0.1	0	4
			Ertebølle	ROS 854-F	Interior foodcrust	-26.1	-27.9	-1.8	1	4
			Ertebølle	ROS 855-I	Interior sherd powder	-24.1	-21.0	3.1	1	4
			Ertebølle	ROS 855-F	Interior foodcrust	-24.6	-22.4	2.2	1	4
			Ertebølle	ROS 856-I	Interior sherd powder	-27.5	-30.1	-2.6	0	4
			Ertebølle	ROS 858-I	Interior sherd powder	-21.4	-22.6	-1.2	0	4
			Ertebølle	ROS 859-I	Interior sherd powder	-21.9	-21.4	0.5	1	4
			Ertebølle	ROS 860-I	Interior sherd powder	-20.5	-19.2	1.3	1	4
W Paltia	Grube-Rosenhof	Coastal	Ertebølle	ROS 860-F	Interior foodcrust	-22.5	-25.2	-2.7	1	4
W. Dalue	LA 58	Coastai	Ertebølle	ROS 861-I	Interior sherd powder	-26.9	-29.2	-2.3	0	4
			Ertebølle	ROS 862-I	Interior sherd powder	-27.1	-27.7	-0.6	0	4
			Ertebølle	ROS 863-I	Interior sherd powder	-26.8	-27.8	-1.0	0	4
			Ertebølle	ROS 864-I	Interior sherd powder	-26.8	-28.3	-1.5	1	4
			Ertebølle	ROS 864-F	Interior foodcrust	-22.6	-22.2	0.4	1	4
			Ertebølle	ROS 865-I	Interior sherd powder	-27.3	-28.7	-1.3	n/a	4
			Ertebølle	ROS 865a-I	Interior sherd powder	-29.6	-30.3	-0.6	0	4
			Ertebølle	ROS 866-I	Interior sherd powder	-28.1	-28.9	-0.8	0	4
			Ertebølle	ROS 867-I	Interior sherd powder	-26.9	-27.3	-0.4	0	4
			Ertebølle	ROS 868-I	Interior sherd powder	-27.3	-29.0	-1.6	0	4
			Ertebølle	ROS 869-I	Interior sherd powder	-26.4	-25.9	0.4	0	4
			Ertebølle	ROS 870-I	Interior sherd powder	-30.4	-33.9	-3.6	0	4
			Ertebølle	ROS 872-I	Interior sherd powder	-21.3	-23.6	-2.3	0	4
			Ertebølle	ROS 870-F	Interior foodcrust	-28.8	-33.0	-4.2	0	4
			Ertebølle	ROS8.15-F	Interior foodcrust	-23.0	-23.4	-0.5	1	4
			Ertebølle	ROS8.15-I	Interior sherd powder	-22.9	-22.5	0.4	1	4
			Ertebølle	ROS8.17-F	Interior foodcrust	-29.7	-33.0	-3.3	0	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16:0}$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic biomarkers	Ref.
			Ertebølle	ROS8.17-I	Interior sherd powder	-30.2	-33.6	-3.4	0	4
			Ertebølle	ROS8.18-I	Interior sherd powder	-26.6	-27.4	-0.8	0	4
			Ertebølle	ROS8.19-F	Interior foodcrust	-29.9	-30.3	-0.4	1	4
			Ertebølle	ROS8.19-I	Interior sherd powder	-24.1	-24.8	-0.8	0	4
			Ertebølle	ROS8.25-F	Interior foodcrust	-24.6	-24.0	0.7	1	4
			Ertebølle	ROS8.25-I	Interior sherd powder	-23.8	-22.2	1.5	1	4
			Ertebølle	ROS8.26-F	Interior foodcrust	-30.1	-33.1	-3.0	0	4
			Ertebølle	ROS8.26-I	Interior sherd powder	-26.2	-28.2	-2.1	0	4
			Ertebølle	ROS8.27-I	Interior sherd powder	-27.8	-28.4	-0.6	0	4
			Ertebølle	ROS8.28-F	Interior sherd powder	-25.2	-24.7	0.4	1	4
			Ertebølle	ROS8.28-I	Interior foodcrust	-25.0	-23.7	1.3	1	4
			Ertebølle	ROS8.29-S	Exterior sooted deposit	-25.8	-27.2	-1.4	0	4
			Ertebølle	ROS8.29-I	Interior sherd powder	-27.7	-30.6	-2.9	0	4
			Ertebølle	ROS8.30-I	Interior sherd powder	-26.1	-24.8	1.4	0	4
			Ertebølle	ROS8.31A-F	Interior foodcrust	-26.1	-27.1	-1.0	1	4
			Ertebølle	ROS8.31B-F	Interior foodcrust	-22.2	-21.3	1.0	1	4
W. Baltic	Grube-Rosenhof	Coastal	Ertebølle	ROS8.31C-F	Interior foodcrust	-26.9	-28.0	-1.1	1	4
	LA 58		Ertebølle	ROS8.31-I	Interior sherd powder	-29.2	-27.2	2.1	1	4
			Ertebølle	ROS8.32-I	Interior sherd powder	-21.5	-22.4	-0.9	1	4
			Ertebølle	ROS8.33-F	Interior foodcrust	-25.9	-27.3	-1.4	1	4
			Ertebølle	ROS8.33-S	Exterior sooted deposit	-25.5	-26.7	-1.2	1	4
			Ertebølle	ROS8.33-I	Interior sherd powder	-24.1	-24.9	-0.8	1	4
			Ertebølle	ROS8.34-F	Interior foodcrust	-26.5	-25.7	0.8	1	4
			Ertebølle	ROS8.34-I	Interior sherd powder	-26.4	-26.3	0.1	1	4
			Ertebølle	ROS8.35-F	Interior foodcrust	-25.4	-25.1	0.3	1	4
			Ertebølle	ROS8.35-I	Interior sherd powder	-24.6	-24.8	-0.2	1	4
			Ertebølle	ROS8.36-F	Interior foodcrust	-22.0	-23.5	-1.5	1	4
			Ertebølle	ROS8.36-I	Interior sherd powder	-23.6	-24.3	-0.7	1	4
			Ertebølle	ROS8.37-F	Interior foodcrust	-26.6	-27.5	-0.9	1	4
			Ertebølle	ROS8.37-I	Interior sherd powder	-25.1	-27.0	-1.9	1	4
			Ertebølle	ROS8.38-F	Interior foodcrust	-24.0	-23.8	0.2	1	4
			Ertebølle	ROS8.38-I	Interior sherd powder	-26.4	-26.5	-0.1	1	4
			Ertebølle	ROS8.39A-F	Interior foodcrust	-23.2	-22.8	0.5	1	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16:0}$	$\delta^{13}C_{18}:0$ (%)	$\Delta^{13}C$	Aquatic biomarkers	Ref.
			Ertebølle	ROS8.39A-I	Interior sherd powder	-28.0	-28.8	-0.8	1	4
			Ertebølle	ROS8.40A-F	Interior foodcrust	-30.0	-33.6	-3.6	1	4
			Ertebølle	ROS8.40B-F	Interior foodcrust	-30.4	-34.1	-3.7	1	4
			Ertebølle	ROS8.40B-I	Interior sherd powder	-29.3	-32.0	-2.7	1	4
W. Baltic	Grube-Rosenhof	Coastal	Ertebølle	ROS8.41C-F	Interior foodcrust	-26.6	-24.4	2.1	1	4
iii bulue	LA 58	coustai	Ertebølle	ROS8.41C-I	Interior sherd powder	-22.0	-21.8	0.2	1	4
			Ertebølle	ROS8.43-I	Interior sherd powder	-20.1	-20.8	-0.7	0	4
			Ertebølle	ROS8.45-I	Interior sherd powder	-23.2	-24.1	-0.9	1	4
			Ertebølle	ROS8.46-I	Interior sherd powder	-26.8	-30.5	-3.7	0	4
			Ertebølle	4014_DAO	Interior sherd powder	-24.4	-28.0	-3.6	1	3; 4
			Ertebølle	4014_DGX	Interior sherd powder	-24.7	-25.7	-1.0	1	3;4
			Ertebølle	4014_FAJ	Interior sherd powder	-26.2	-28.2	-2.0	0	3;4
			Ertebølle	4014_HXZ	Interior sherd powder	-27.0	-29.6	-2.6	0	3;4
W. Baltic	Havnø	Coastal	Ertebølle	4014_TEW	Interior sherd powder	-30.0	-28.5	1.5	0	3;4
			Ertebølle	4014_PCE	Interior sherd powder	-22.6	-27.3	-4.7	1	3;4
			Ertebølle	H-1-I (196)	Interior foodcrust	-19.9	-22.8	-2.8	1	4
			Ertebølle	H-2-I (399)	Interior foodcrust	-19.3	-19.0	0.4	1	4
			Ertebølle	H-3-I (402)	Interior foodcrust	-20.2	-17.7	2.5	1	4
			Narva	ICA 800-W	Whole sherd	-35.6	-34.5	1.0	1	4
			Narva	ICA 800-F	Interior foodcrust	-32.1	-31.6	0.5	1	4
E. Baltic	Iča	Inland	Narva	ICA 801-W	Whole sherd	-30.9	-31.6	-0.7	0	4
			Narva	ICA 802-W	Whole sherd	-34.9	-35.4	-0.5	1	4
			Narva	ICA 803-W	Whole sherd	-34.2	-30.7	3.5	1	4
			Narva	EO01	Interior sherd powder	-33.4	-32.0	1.3	0	1
			Narva	EO27	Exterior sooted deposit	-33.5	-33.9	-0.4	1	1
			Narva	EO28	Interior sherd powder	-34.1	-33.4	0.7	0	1
			Narva	EO29	Interior sherd powder	-35.0	-33.5	1.5	1	1
E. Baltic	Kääpa	Inland	Narva	EO32	Interior sherd powder	-33.6	-32.1	1.6	0	1
			Narva	EO38	Interior foodcrust	-36.2	-34.6	1.6	1	1
			Narva	EO40	Interior foodcrust	-35.5	-35.3	0.1	1	1
			Narva	EO41	Interior sherd powder	-34.3	-32.9	1.4	1	1
			Narva	EO42	Interior foodcrust	-35.1	-35.2	0.0	1	1

Region	Site	Location	Culture/ware	Sample code	Sample type	δ ¹³ C16:0 (‰)	δ ¹³ C18:0 (‰)	$\Delta^{13}C$	Aquatic biomarkers	Ref.
			Narva	EO43	Interior sherd powder	-33.8	-33.0	0.8	1	1
			Narva	EO47	Interior foodcrust	-34.4	-33.5	1.0	1	1
E. Baltic	Kääpa	Inland	Narva	EO48	Interior sherd powder	-28.5	-26.8	1.7	1	1
			Narva	EO100	Exterior sooted deposit	-33.8	-31.9	1.9	1	1
W. Baltic	Kaldus 3	Inland	Narva	POL-267	Whole sherd	-30.4	-35.5	-5.1	0	4
	17		Ertebølle	SHM23	Interior sherd powder	-25.3	-25.6	-0.3	0	5
W. Baltic	Kesemolla	Coastal	Ertebølle	SHM24	Interior sherd powder	-24.6	-26.2	-1.6	0	5
			Narva	EO18	Interior sherd powder	-25.6	-23.3	2.3	0	1
5 5 1.1			Narva	EO88	Interior sherd powder	-26.0	-25.1	0.9	0	1
E. Baltic	Konnu	Coastal	Narva	EO89	Interior sherd powder	-24.8	-23.7	1.1	0	1
			Narva	EO90	Interior sherd powder	-25.4	-24.3	1.1	1	1
-			Narva	KRET-958.W	Whole sherd	-33.0	-34.5	-1.5	0	4
E. Baltic	Kretuonas 1	Inland	Narva	KRET-959.W	Whole sherd	-27.9	-28.8	-0.9	0	4
			Narva	KRET-965.I	Interior sherd powder	-29.5	-30.9	-1.4	0	4
E. Baltic	Kroodi	Coastal	Narva	EO87	Interior sherd powder	-25.0	-26.0	-1.0	0	1
			Ertebølle	LB04	Interior sherd powder	-28.4	-29.2	-0.8	0	5
			Ertebølle	LB08	Interior sherd powder	-27.4	-27.9	-0.5	0	5
			Ertebølle	LB10	Interior sherd powder	-25.2	-25.1	0.1	0	5
			Ertebølle	LB13	Interior sherd powder	-26.6	-27.7	-1.1	0	5
W. Baltic	Löddesborg	Coastal	Ertebølle	LB16	Interior sherd powder	-28.1	-29.2	-1.1	0	5
			Ertebølle	LB17	Interior sherd powder	-26.8	-27.1	-0.3	0	5
			Ertebølle	LB23	Interior sherd powder	-27.2	-27.9	-0.7	0	5
			Ertebølle	LB27	Interior sherd powder	-27.0	-28.0	-1.0	1	5
E D W	III		Narva	EO08	Interior sherd powder	-27.9	-29.7	-1.8	0	1
E. Baltic	Lommi III	Estuary	Narva	EO81	Interior sherd powder	-27.1	-25.6	1.6	0	1
			Narva	EO67	Interior sherd powder	-30.7	-29.7	1.0	0	1
			Narva	EO68	Interior sherd powder	-30.8	-29.5	1.4	0	1
E. Baltic	Narva Joaorg	Estuary	Narva	EO70	Interior sherd powder	-31.9	-31.7	0.2	1	1
	. 0	2	Narva	EO72	Interior sherd powder	-29.5	-27.2	2.3	0	1
			Narva	EO74	Interior sherd powder	-28.3	-28.7	-0.3	0	1

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Ertebølle	N1193f	Interior foodcrust	-19.9	-20.1	-0.2	1	2
			Ertebølle	N1193i	Interior sherd powder	-19.3	-19.8	-0.5	0	2
			Ertebølle	N1317f	Interior foodcrust	-28.4	-27.3	1.1	1	2;3
			Ertebølle	N16i	Interior sherd powder	-26.5	-27.2	-0.7	0	2
			Ertebølle	N1919i	Interior sherd powder	-28.0	-28.1	-0.1	0	2
			Ertebølle	N2367i	Interior sherd powder	-29.2	-30.4	-1.2	0	2
			Ertebølle	N2756s	Exterior sooted deposit	-25.8	-26.5	-0.7	0	2
			Ertebølle	N2772i	Interior sherd powder	-29.2	-31.7	-2.5	1	2
			Ertebølle	N3020i	Interior sherd powder	-28.3	-30.7	-2.4	0	2
			Ertebølle	N3020s	Exterior sooted deposit	-24.4	-27.4	-3.0	0	2;3
W. Baltic	Neustadt LA 156	Coastal	Ertebølle	N3148i	Interior sherd powder	-28.2	-27.9	0.3	0	2
			Ertebølle	N3305i	Interior sherd powder	-27.5	-27.8	-0.3	0	2
			Ertebølle	N629i	Interior sherd powder	-22.9	-22.7	0.2	0	2;6
			Ertebølle	N1446i	Interior sherd powder	-29.8	-32.3	-2.5	0	2
			Ertebølle	N2648i	Interior sherd powder	-25.1	-25.2	-0.1	0	2
			Ertebølle	N2648f	Interior foodcrust	-30.5	-34.4	-3.9	n/a	3
			Ertebølle	N1910i	Interior sherd powder	-28.8	-33.6	-4.8	0	3
			Ertebølle	N262i	Interior sherd powder	-31.7	-35.9	-4.2	0	3
			Ertebølle	N2756i	Interior sherd powder	-31.9	-36.0	-4.1	0	3
			Ertebølle	N173i	Interior sherd powder	-29.6	-33.2	-3.6	0	3
			Ertebølle	N1191i	Interior foodcrust	-28.1	-33.1	-5.0	0	3
			Rzucewo Ware	L2i	Interior sherd powder	-32.0	-32.5	-0.5	0	7
			Rzucewo Ware	L3i	Interior sherd powder	-28.5	-32.6	-4.1	0	7
			Rzucewo Ware	L4i	Interior sherd powder	-31.4	-31.3	0.1	1	7
			Rzucewo Ware	L5i	Interior sherd powder	-31.2	-31.3	-0.1	1	7
			Rzucewo Ware	L6i	Interior sherd powder	-30.9	-31.7	-0.8	0	7
E D.IC.	NT L	Estuarine/	Rzucewo Ware	L7i	Interior sherd powder	-30.1	-30.8	-0.7	1	7
E. Baltic	INIda	Lagoonal	Rzucewo Ware	L8iA	Interior sherd powder	-32.2	-32.6	-0.4	0	7
		0	Rzucewo Ware	L8iB	Interior sherd powder	-31.1	-31.3	-0.2	1	7
			Rzucewo Ware	L9i	Interior sherd powder	-31.9	-32.6	-0.7	1	7
			Rzucewo Ware	L10i	Interior sherd powder	-29.9	-30.6	-0.7	1	7
			Rzucewo Ware	L11i	Interior sherd powder	-25.8	-28.3	-2.5	1	7
			Rzucewo Ware	L12i	Interior sherd powder	-32.2	-32.3	-0.1	1	7

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
			Dan como Maro	I 10;	Interior should never der	(%)	(%)	1 5	otomarkers 1	7
			Rzucewo Ware	L 191	Interior shord powder	-30.7	-32.2	-1.5	1	7
E. Baltic	NT: 1	Estuarine/	Rzucewo Ware	L211 L 25i	Interior sherd powder	-20.0	-33.4	-5.4 -1.0	0	7
	Nida	Lagoonal	Rzucewo Ware	N75 1/927	Interior shord powder	-52.1	-55.1	-1.0	0	10
		0	Rzucewo Ware	N75_1/9av	Interior sherd powder	-31.5 -30.5	-31.4 -33.5	_2 9	0	10
			N			00.0	21.6	2.7	0	
			Narva	OSA 804-W	Whole sherd	-35.7	-34.6	1.1	0	4
			Narva	OSA 805-W	Whole sherd	-34.6	-34.8	-0.2	1	4
			Narva	OSA 806-W	Whole sherd	-25.1	-26.6	-1.5	0	4
			Narva	OSA 809-W	Whole sherd	-28.1	-27.1	1.0	0	4
			Narva	OSA 810-W	Whole sherd	-32.6	-32.2	0.4	1	4
			Narva	OSA 811-F	Interior foodcrust	-36.8	-37.1	-0.4	1	4
			Narva	OSA 812-F	Interior foodcrust	-32.9	-33.4	-0.5	1	4
			Narva	OSA 813-F	Interior foodcrust	-33.0	-34.2	-1.2	1	4
			Narva	OSA 814-F	Interior foodcrust	-38.3	-38.6	-0.3	1	4
			Narva	OSA 815-F	Interior foodcrust	-35.0	-34.6	0.4	1	4
			Narva	OSA 816-F	Interior foodcrust	-33.1	-32.9	0.3	0	4
			Narva	OSA 819-W	Whole sherd	-35.3	-34.7	0.6	1	4
			Narva	OSA 819-F	Interior foodcrust	-34.4	-33.9	0.6	1	4
			Narva	OSA 820-W	Whole sherd	-30.2	-28.8	1.3	1	4
E. Baltic	Osa	Inland	Narva	OSA 820-F	Interior foodcrust	-27.3	-27.5	-0.3	1	4
			Narva	OSA 822-W	Whole sherd	-35.9	-33.2	2.7	1	4
			Narva	OSA 822-F	Interior foodcrust	-34.1	-33.7	0.4	0	4
			Narva	OSA 823-W	Whole sherd	-30.6	-31.0	-0.4	0	4
			Narva	OSA 824-W	Whole sherd	-29.7	-32.7	-3.0	0	4
			Narva	OSA 826-F	Interior foodcrust	-31.4	-30.8	0.6	1	4
			Narva	OSA 828-W	Whole sherd	-29.6	-31.2	-1.6	0	4
			Narva	OSA 828-F	Interior foodcrust	-34.8	-34.7	0.1	1	4
			Narva	OSA 829-W	Whole sherd	-31.6	-31.1	0.5	1	4
			Narva	OSA 829-F	Interior foodcrust	-29.7	-29.6	0.2	1	4
			Narva	OSA 830-W	Whole sherd	-34.9	-34.1	0.8	1	4
			Narva	OSA 830-F	Interior foodcrust	-35.7	-35.3	0.4	1	4
			Narva	OSA 831-W	Whole sherd	-34.6	-31.4	3.2	0	4
			Narva	OSA 831-F	Interior foodcrust	-31.7	-30.8	1.0	1	4
			Narva	OSA 832-W	Whole sherd	-36.4	-33.9	2.5	1	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic biomarkara	Ref.
			Narva	OSA 832-F	Interior foodcrust	_33.8	_33.6	0.2	1	
			Narva	OSA 833-W	Whole sherd	-33.0 -34.9	-33.4	1.5	1	+ 4
E Poltic	Oca	Inland	Narva	OSA 833-F	Interior foodcrust	-31.5	-31.9	-0.4	0	4
E. Dallic	Osa	manu	Narva	OSA 834-W	Whole sherd	-35.2	-33.3	19	1	4
			Narva	OSA 834-F	Interior foodcrust	-36.3	-35.4	0.9	1	4
			Ertebølle	1592 ARSBW	Interior sherd powder	-27.1	-26.4	0.8	n/a	4
			Ertebølle	1592 ACETIM	Interior sherd powder	-31.7	-31.7	0.0	n/a	4
			Ertebølle	1592 CJBIM	Interior sherd powder	-29.5	-30.1	-0.6	n/a	4
			Ertebølle	1592 VGIM	Interior sherd powder	-27.4	-29.2	-1.8	n/a	4
			Ertebølle	1592 ACFEIM	Interior sherd powder	-26.1	-28.8	-2.7	n/a	4
			Ertebølle	1592 ACCSIM	Interior sherd powder	-25.5	-25.3	0.2	n/a	4
			Ertebølle	1592_AAALA	Interior sherd powder	-29.2	-31.5	-2.3	0	4
W. Baltic	Ringkloster	Inland	Ertebølle	1592_AACAV	Interior sherd powder	-29.4	-29.7	-0.3	1	4
			Ertebølle	1592_AADNV	Interior sherd powder	-30.1	-29.3	0.8	1	4
			Ertebølle	1592_AADRY	Interior sherd powder	-27.5	-27.2	0.3	1	4
			Ertebølle	1592_AADSY	Interior sherd powder	-28.0	-28.6	-0.7	1	4
			Ertebølle	1592_AADYS	Interior sherd powder	-22.9	-23.2	-0.2	1	4
			Ertebølle	1592_AAEEV	Interior sherd powder	-30.7	-33.7	-3.0	0	4
			Ertebølle	1592_AAOYQ	Interior sherd powder	-30.6	-31.3	-0.7	1	4
		- ·	Ertebølle	3705_ABE_A	Interior foodcrust	-26.9	-22.9	3.9	1	4
W. Baltic	Ronæs Skov	Coastal	Ertebølle	3705_AWJ_2	Interior foodcrust	-24.8	-21.7	3.1	0	4
E. Baltic	Ruhnu II	Coastal	Narva	EO91	Interior sherd powder	-25.3	-24.6	0.7	1	1
			Rzucewo Ware	RZ-1 002366	Interior sherd powder	-28.4	-28.7	-0.3	1	9
			Rzucewo Ware	RZ-3 002364	Interior sherd powder	-25.2	-26.9	-1.7	1	9
			Rzucewo Ware	RZ-4 002365	Interior sherd powder	-27.8	-28.3	-0.5	1	9
			Rzucewo Ware	RZ-6 002361	Interior sherd powder	-26.9	-27.1	-0.2	1	9
	D		Rzucewo Ware	RZ-9 002362	Interior sherd powder	-30.0	-30.5	-0.5	0	9
W. Baltic	Rzucewo	Coastal	Rzucewo Ware	RZ-10 002363	Interior sherd powder	-28.1	-28.5	-0.4	1	9
			Rzucewo Ware	RZ-11 002360	Interior sherd powder	-27.7	-28.3	-0.6	1	9
			Rzucewo Ware	RZ-12B 002359	Interior sherd powder	-29.8	-30.1	-0.3	1	9
			Rzucewo Ware	RZ-13 002354	Interior sherd powder	-28.2	-28.9	-0.7	0	9
			Rzucewo Ware	RZ-14 002357	Interior sherd powder	-26.1	-25.1	1.0	1	9

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{_{13}}C_{^{16}}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Ertebølle	SHM01	Interior sherd powder	-28.9	-28.4	0.3	0	5
			Ertebølle	SHM02	Interior sherd powder	-25.9	-25.4	0.5	0	5
147 D.11	Califations	Control	Ertebølle	SHM09	Interior sherd powder	-28.5	-30.4	-2.0	0	5
W. Baltic	Soldattorpet	Coastal	Ertebølle	SHM10	Interior sherd powder	-27.7	-28.8	-1.1	0	5
			Ertebølle	SHM11	Interior sherd powder	-28.8	-29.5	-0.7	0	5
			Ertebølle	SHM27	Interior sherd powder	-26.3	-25.3	1.0	0	5
	<u></u>	T 1 1	Ertebølle	ST_X087_007i	Interior sherd powder	-28.3	-28.5	-0.2	n/a	3
W. Baltic	Stenø	Inland	Ertebølle	ST_X095_039i	Interior sherd powder	-26.6	-31.3	-4.7	n/a	3
W. Baltic	Syltholm II	Coastal	Ertebølle	MLF906-1X8352 P253	Interior foodcrust	-19.6	-23.3	-3.7	0	4
			Ertebølle	X1318	Interior sherd powder	-22.4	-28.1	-5.7	1	5
			Ertebølle	X1659	Interior sherd powder	-28.6	-29.3	-0.7	0	5
			Ertebølle	X2315	Interior sherd powder	-24.6	-26.5	1.3	0	5
			Ertebølle	X3311	Interior sherd powder	-18.5	-19.6	-1.1	0	5
W. Baltic	Syltholm'	Coastal	Ertebølle	X4531	Interior sherd powder	-19.2	-19.7	-0.5	1	5
	5		Ertebølle	X4602	Interior sherd powder	-19.1	-21.0	-1.9	1	5
			Ertebølle	X5018	Interior sherd powder	-23.8	-23.4	0.4	0	5
			Ertebølle	X8482	Interior sherd powder	-25.9	-31.2	-5.3	1	5
			Ertebølle	X9877	Interior sherd powder	-20.0	-22.0	-2.0	0	5
			Ertebølle	2033 AAXM	Interior sherd powder	-25.0	-28.6	-3.6	n/a	3
			Ertebølle	2033 BOFa	Interior foodcrust	-24.2	-27.7	-3.5	n/a	8; 2011; 3
			Ertebølle	2033 CAD	Interior sherd powder	-25.4	-25.9	-0.5	1	8; 2011
			Ertebølle	2033 FJL	Interior sherd powder	-23.1	-23.5	-0.4	n/a	2
			Ertebølle	2033 LGKM	Interior sherd powder	-24.0	-29.4	-5.4	0	2
			Ertebølle	2033 OB	Interior sherd powder	-27.4	-30.9	-3.5	n/a	2
			Ertebølle	2033 PHBM	Interior sherd powder	-19.9	-23.9	-4.0	n/a	2
W. Baltic	Tybrind Vig	Coastal	Ertebølle	2033 PST	Interior sherd powder	-22.4	-24.2	-1.8	n/a	8; 2011
	, 0		Ertebølle	2033 QME	Interior foodcrust	-21.5	-24.1	-2.6	n/a	2;3
			Ertebølle	2033 RAG	Interior foodcrust	-26.9	-30.4	-3.5	1	8; 2011; 3
			Ertebølle	2033 RBD	Interior foodcrust	-23.9	-24.3	-0.4	1	8; 2011; 3
			Ertebølle	2033 RCF	Interior foodcrust	-25.1	-24.9	0.2	n/a	2; 3
			Ertebølle	2033 SCJ	Interior sherd powder	-17.6	-18.9	-1.3	n/a	2
			Ertebølle	2033 SGB	Interior foodcrust	-24.4	-26.2	-1.8	1	8; 2011; 3
			Ertebølle	2033 BQYIM	Interior sherd powder	-17.2	-16.2	1.0	n/a	2

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
Ū.					, ,,	(‰)	(‰)		biomarkers	
W. Baltic	Tybrind Vig	Coastal	Ertebølle	2033 LGAIM	Interior sherd powder	-22.2	-22.3	-0.1	n/a	2
			Ertebølle	2033_AAX-B	Interior sherd powder	-27.0	-29.0	-2.0	0	4
			Ertebølle	2033_AAX-C	Interior sherd powder	-22.8	-26.9	-4.1	1	4
			Ertebølle	2033_AAX-D	Interior sherd powder	-21.9	-23.4	-1.5	1	4
			Ertebølle	2033_AFK	Interior sherd powder	-25.1	-28.5	-3.4	1	4
			Ertebølle	2033_AKS-B	Interior sherd powder	-25.4	-27.2	-1.8	0	4
			Ertebølle	2033_AYL-B	Interior sherd powder	-24.4	-25.6	-1.2	0	4
			Ertebølle	2033_BGC-C	Interior sherd powder	-27.7	-29.6	-1.9	1	4
			Ertebølle	2033_BQL	Interior sherd powder	-30.1	-31.0	-0.9	1	4
			Ertebølle	2033_INT.I.R	Interior foodcrust	-23.8	-27.0	-3.2	1	4
			Ertebølle	2033_MDB	Interior sherd powder	-21.2	-19.8	1.5	1	4
			Ertebølle	2033_MTC (2033_MTC-A)	Interior sherd powder	-27.3	-29.3	-2.0	0	4
			Narva	EO83	Interior sherd powder	-26.9	-25.6	1.2	0	1
E. Baltic	Vihasoo III	Estuary	Narva	EO84	Interior sherd powder	-27.3	-24.8	2.5	0	1
		5	Narva	EO85	Interior sherd powder	-27.5	-24.5	3.0	0	1
W. Baltic	Vik	Coastal	Ertebølle	SHM26		-15.4	-16.8	-1.4	n/a	5
	— .		Narva	BEL 475-W	Whole sherd	-29.2	-29.6	-0.4	0	4
E. Baltic	Zacennie	Inland	Narva	BEL 475-F	Interior foodcrust	-27.5	-27.9	-0.4	1	4
			Narva	ZVID 761-W	Whole sherd	-37.9	-36.7	1.2	1	4
			Narva	ZVID 761-F	Interior foodcrust	-35.8	-35.5	0.3	1	4
			Narva	ZVID 762-W	Whole sherd	-37.2	-36.3	0.9	0	4
			Narva	ZVID 762-F	Interior foodcrust	-33.8	-34.2	-0.4	1	4
			Narva	ZVID 763-W	Whole sherd	-36.1	-34.6	1.5	1	4
			Narva	ZVID 763-F	Interior foodcrust	-36.6	-36.6	0.0	1	4
E Baltic	Zuidzo	Inland	Narva	ZVID 764-W	Whole sherd	-34.0	-34.7	-0.7	0	4
E. Dattic	Zviuze	manu	Narva	ZVID 764-F	Interior foodcrust	-31.8	-32.4	-0.6	1	4
			Narva	ZVID 766-W	Whole sherd	-34.8	-33.7	1.2	1	4
			Narva	ZVID 766-F	Interior foodcrust	-32.0	-32.1	-0.1	1	4
			Narva	ZVID 767-W	Whole sherd	-36.8	-35.8	1.0	1	4
			Narva	ZVID 769-W	Whole sherd	-30.8	-31.1	-0.2	0	4
			Narva	ZVID 769-F	Interior foodcrust	-33.8	-34.1	-0.3	1	4
			Narva	ZVID 770-W	Whole sherd	-32.9	-32.9	0.0	1	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16}:0$	$\delta^{13}C_{18}:0$	$\Delta^{13}C$	Aquatic	Ref.
						(‰)	(‰)		biomarkers	
			Narva	ZVID 770-F	Interior foodcrust	-29.9	-30.0	-0.1	1	4
			Narva	ZVID 771-W	Whole sherd	-36.7	-35.4	1.3	0	4
			Narva	ZVID 771-F	Interior foodcrust	-35.0	-34.7	0.2	1	4
			Narva	ZVID 772-W	Whole sherd	-36.3	-35.1	1.2	1	4
			Narva	ZVID 772-F	Interior foodcrust	-33.6	-32.7	0.9	1	4
			Narva	ZVID 775-W	Whole sherd	-33.0	-33.1	-0.1	0	4
			Narva	ZVID 775-F	Interior foodcrust	-33.2	-33.6	-0.4	1	4
			Narva	ZVID 776-W	Whole sherd	-34.5	-33.9	0.7	1	4
			Narva	ZVID 776-F	Interior foodcrust	-35.9	-36.0	-0.1	1	4
			Narva	ZVID 777-W	Whole sherd	-34.5	-33.4	1.1	1	4
			Narva	ZVID 777-F	Interior foodcrust	-33.6	-32.8	0.8	1	4
			Narva	ZVID 778-W	Whole sherd	-36.6	-34.5	2.1	1	4
			Narva	ZVID 778-F	Interior foodcrust	-34.6	-34.7	-0.1	1	4
			Narva	ZVID 779-W	Whole sherd	-36.0	-35.7	0.3	1	4
			Narva	ZVID 780-W	Whole sherd	-36.1	-34.9	1.1	1	4
			Narva	ZVID 780-F	Interior foodcrust	-33.1	-33.7	-0.5	1	4
			Narva	ZVID 781-W	Whole sherd	-29.3	-31.2	-1.9	1	4
E. Baltic	Zvidze	Inland	Narva	ZVID 781-F	Interior foodcrust	-28.3	-29.2	-0.9	1	4
			Narva	ZVID 782-W	Whole sherd	-33.5	-33.0	0.5	0	4
			Narva	ZVID 783-W	Whole sherd	-35.3	-34.6	0.7	0	4
			Narva	ZVID 783-F	Interior foodcrust	-35.0	-35.4	-0.4	1	4
			Narva	ZVID 784-W	Whole sherd	-29.8	-28.9	0.9	0	4
			Narva	ZVID 785-W	Whole sherd	-30.1	-28.7	1.3	0	4
			Narva	ZVID 785-F	Interior foodcrust	-27.4	-27.6	-0.2	1	4
			Narva	ZVID 786-W	Whole sherd	-33.7	-34.2	-0.6	0	4
			Narva	ZVID 786-F	Interior foodcrust	-31.3	-31.7	-0.4	1	4
			Narva	ZVID 787-W	Whole sherd	-36.2	-36.3	-0.1	0	4
			Narva	ZVID 787-F	Interior foodcrust	-35.7	-35.1	0.7	1	4
			Narva	ZVID 788-W	Whole sherd	-37.7	-37.5	0.1	0	4
			Narva	ZVID 788-F	Interior foodcrust	-33.9	-34.4	-0.5	0	4
			Narva	ZVID 789-W	Whole sherd	-40.6	-37.0	3.7	0	4
			Narva	ZVID 790-W	Whole sherd	-36.8	-36.2	0.5	1	4
			Narva	ZVID 790-F	Interior foodcrust	-33.9	-34.8	-0.9	1	4
			Narva	ZVID 791-W	Whole sherd	-30.0	-29.6	0.4	0	4
			Narva	ZVID 792-W	Whole sherd	-36.6	-34.9	1.7	1	4

Region	Site	Location	Culture/ware	Sample code	Sample type	$\delta^{13}C_{16:0}$	$\delta^{13}C_{18:0}$	$\Delta^{13}C$	Aquatic biomarkers	Ref.
			Narva	ZVID 792-F	Interior foodcrust	-35.5	-35.4	0.1	1	4
			Narva Narva	ZVID 793-W ZVID 793-F	Interior foodcrust	-34.4 -31.8	-34.4 -31.2	0.0 0.6	0 1	4 4
E. Baltic	Zvidze	Inland	Narva	ZVID 795-W	Whole sherd	-32.5	-32.1	0.5	1	4
			Narva	ZVID 795-F	Interior foodcrust	-33.0	-32.8	0.1	1	4
			Narva	ZVID 797-W	Whole sherd	-32.6	-33.5	-0.9	1	4
			Narva	ZVID 797-F	Interior foodcrust	-33.9	-33.5	0.4	1	4

Key: 1. Aquatic biomarkers present; 0. Aquatic biomarkers absent; n/a, aquatic biomarkers unknown

References: 1 = Oras *et al.* 2017; 2 = Craig *et al.* 2011; 3 = Robson 2015; 4 = Courel *et al.* 2020; 5 = Papakosta *et al.* 2019; 6 = Glykou 2016; 7 = Heron *et al.* 2015;

8 = Craig et al. 2007; 9 = Cramp et al. 2019; 10 = Robson et al. 2019

Sample		Stable i	isotope anal	ysis				Or	ganic resi	due analysis			GC-C-IRI	МS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$, ,
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
	-	(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug/g</i>)			nant)						
								Cera	mic oval b	owls					
									Dąbki 9						
Dą.2r						37.4	Yes				67.9				Aquatic (full suite, SRR%)
Dą.2i		7.8			21.6	110.2	Yes		60.1				Ruminant	0.5	Aquatic (full suite) + ruminant (bulk, SRR%, Δ^{13} C)
Dą.2e	11.0					1.0	Yes		52.9						Aquatic (bulk, full suite) + ruminant (SRR%)
D-1-S						4.5									
D-2-I	11.9			7.4		728.7	Yes		31.7				Non- ruminant	-2.5	Aquatic (bulk, full suite, Δ^{13} C) + ruminant (SRR%)
D-3-S						1.5									
D-3-I		Uni	reliable data	!						Analysis no	ot performed	•			
D-4-S						4.0									
D-4-I	8.0									Analysis no	ot performed				Aquatic (bulk)
D-5-S						3083.1		Yes			70.2		Non- ruminant		Aquatic (partial suite, SRR%, Δ¹³C)
D-6-S						23.8		Yes	30.9				Non- ruminant		Aquatic (partial suite, Δ^{13} C) + ruminant (SRR%)
D-7-I	9.5									Analysis no	ot performed				Aquatic (bulk)
D-8-S						4.1									
D-9-S				9.3+		84.6		Yes	50.5				Non- ruminant	-2.4	Aquatic (partial suite, Δ^{13} C) + ruminant (SRR%)
D-9-I	11.0									Analysis no	ot performed			·	Aquatic (bulk)
D-10-S					28.3+	199.2	Yes				70.1		Non- ruminant	-0.9	Aquatic (full suite, SRR%, Δ^{13} C)
D-10-I		5.8								Analysis no	ot performed				Ruminant (bulk)

TABLE S10: SUMMARY OF COMBINED MOLECULAR & ISOTOPIC DATA & INTERPRETATION (see foot of table for key)

Sample		Stable i	sotope anal	ysis		Organic residue analysis GC-C-IRMS								ЛS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{15}N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$	
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug/g</i>)			nant)						
D-11-S						8.8	Yes		63.7						Aquatic (full suite) +
															ruminant (SRR%)
D-11-I	9.0									Analysis no	ot performed				Aquatic (bulk)
D-12-S						2.0									
D-12-I	10.1									Analysis no	ot performed				Aquatic (bulk)
D-13-S					25.8+	6819.9	Yes					77.0	Non-	-0.7	Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
D-13-I	9.2									Analysis no	ot performed				Aquatic (bulk)
D-14-I	8.3									Analysis no	ot performed				Aquatic (bulk)
D-15-S						¹³ .2	Yes			64.3					Aquatic (full suite,
															SRR%)
D-15-I		7.7								Analysis no	ot performed				Ruminant (bulk)
D-16-S						11.6	Yes					78.8			Aquatic (full suite,
															SRR%)
D-16-I	9.5									Analysis no	ot performed				Aquatic (bulk)
D-17-S						Lipids									
						not									
						detected									
D-18-I	9.9									Analysis no	ot performed				Aquatic (bulk)
D-19-I		7.0								Analysis no	ot performed				Ruminant (bulk)
D9-	9.6									Analysis no	ot performed				Aquatic (bulk)
EBK-															
45-I															
D9-	8.8									Analysis no	ot performed				Aquatic (bulk)
EBK-															
45-E															
	1			1				F	lynderhag	e		1			
FL-1-E			0.9		16.9	3660.1			26.5				Non-	-5.0	Aquatic (Δ^{13} C) +
													ruminant		ruminant (SRR%) +
															plant (bulk)

Sample		Stable i	sotope anal	ysis				O	rganic resi	due analysis			GC-C-IRN	МS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$,
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug/g</i>)			nant)	,					
									Friesack 4						
FR-1-I	9.1									Analysis no	ot performed				Aquatic (bulk)
FR-1-E	10.8									Analysis no	ot performed				Aquatic (bulk)
FR-2-I	11.8									Analysis no	ot performed				Aquatic (bulk)
FR-2-E		7.9								Analysis no	ot performed				Ruminant (bulk)
FR-3-S						Lipids				· · · · ·					
						not									
						detected									
FR-4-E	9.2									Analysis no	ot performed				Aquatic (bulk)
excav.	12.2									Analysis no	ot performed				Aquatic (bulk)
1981;															
Trench															
C; H8;															
Layer 4															
	1	1		1	I	r		Grube	-Rosenhof	LA 58	r	•		1	
GR-1-S						36.1						84.8	Non-		Aquatic (SRR%, Δ^{13} C)
													ruminant		
GR-2-S						23.2						82.7	Non-		Aquatic (SRR%, Δ^{13} C)
													ruminant		
GR-3-E		4.9					,			Analysis no	ot performed	1		1	Ruminant (bulk)
GR-4-E		6.2				277.8	Yes		8.4						Aquatic (full suite) +
															ruminant (bulk, SRR%)
GR-5-S					39.4+	51.2						75.1	Non-	-0.5	Aquatic (SRR%, Δ^{13} C)
													ruminant		
GR-5-E		7.0					, r		r	Analysis no	ot performed	1	l	1	Ruminant (bulk)
GR-6-S					26.6+	1020.9	Yes					93.9	Non-	-0.7	Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
GR-6-E		6.9					, r		r	Analysis no	ot performed	1	l	1	Ruminant (bulk)
GR-9-E	9.2				25.3	1574.7	Yes		10.5				Non-	0.5	Aquatic (bulk, full
													ruminant		suite, Δ^{13} C) + ruminant
				1										1	(SRR%)

Sample		Stable i	isotope anal	ysis		Organic residue analysis GC-C-IRMS							ИS	Main lipid source	
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$	
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)	-	<12	>12	(<i>ug/g</i>)			nant)		-	-			
GR-11-		7.2			24.5	1830.4	Yes		15.4				Non-	-0.6	Aquatic (full suite,
Е													ruminant		Δ^{13} C) + ruminant (bulk,
															SRR%)
GR-12-	8.2				17.2	1401.8	Yes		16.3				Non-	4.8	Aquatic (bulk, full
Е													ruminant		suite, Δ^{13} C) + ruminant
															(SRR%)
GR-13-		7.2								Analysis no	ot performed				Ruminant (bulk)
E/I										-					
GR-14-						38.5						83.5	Non-	1.0	Aquatic (SRR%, Δ^{13} C)
S													ruminant		-
GR-14-		4.2			23.9					Analysis no	ot performed				Ruminant (bulk)
E/I															
								Ham	burg Bobe	rg 15					
HB1i						n.d			Analy	sis not perfor	med				
(1960:6															
_140)															
HB-1-S				11.4+		57.8					65.7		Ruminant	0.4	Aquatic (SRR%) +
															ruminant (Δ^{13} C)
HB-1-E			0.5							Analysis no	ot performed				Plant (bulk)
HB-2-S						26.1			62.4				Non-		Aquatic (Δ^{13} C) +
													ruminant		ruminant (SRR%)
HB-3-S						97.0				65.3			Non-		Aquatic (SRR%, Δ^{13} C)
													ruminant		
								Hambu	rg Boberg	15-east					
HB22e						n.d			Analy	sis not perfor	med		Non-		Aquatic (Δ^{13} C)
(1959:3									, i				ruminant		
4_3)															
HB22i						n.d			Analy	sis not perfor	med		Non-		Aquatic (Δ^{13} C)
(1959:3									, i				ruminant		
4_3)															

Sample		Stable i	isotope anal	ysis				Ot	rganic resi	idue analysis			GC-C-IRN	MS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$,
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
	-	(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(ug/g)			nant)						
									Iča						
ICA						352.2	Yes		56.6						Aquatic (full suite) +
798-W															ruminant (SRR%)
ICA	9.8			10.6		3966.9	Yes				74.7		Non-	-1.2	Aquatic (bulk, full
798-F													ruminant		suite, SRR%, Δ^{13} C)
ICA						150.4	Yes				68.4				Aquatic (full suite,
799-W															SRR%)
ICA	9.6				15.0	2067.3	Yes					83.9	Non-	-2.3	Aquatic (bulk, full
799-F													ruminant		suite, SRR%, Δ^{13} C)
ICA						339.4	Yes		56.3						Aquatic (full suite) +
803-W															ruminant (SRR%)
ICA	8.5				15.4	1211.4	Yes				69.8		Non-	-0.9	Aquatic (bulk, full
803-F													ruminant		suite, SRR%, Δ^{13} C)
	1	1	1	1	1	1	1		Kääpa			T		1	1
EO35*	10.1					1121.1	Yes				71.1		Non-		Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)
EO45*	10.5					492.4	Yes		63.3						Aquatic (bulk, full
															suite) + ruminant
															(SRR%)
EO53*	9.5				20.6	688.0	Yes				72.1		Non-	-1.3	Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)
EO55*	9.0					303.8	Yes		63.6						Aquatic (bulk, full
															suite) + ruminant
															(SRR%)
	1	T		1	r		1	Kiel	-Ellerbek l	LA 1	r	1		1	I
EK-1-S						146.8			52.7						Ruminant (SRR%)
EK-1- I/E	8.9									Analysis no	ot performed				Aquatic (bulk)
EK-2-E			0.4		1					Analysis no	ot performed				Plant (bulk)
			1					K	retuonas 1	1B					
KRET-						239.8		Yes	59.4				Ruminant		Aquatic (partial suite) +
961.W															ruminant (SRR%, Δ^{13} C)

Sample		Stable i	isotope anal	ysis				Oı	rganic resi	due analysis			GC-C-IRI	MS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{_{15}}N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{_{13}}C$	
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug</i> / <i>g</i>)			nant)						
KRET-						228.7	Yes				66.2		Non-		Aquatic (full suite,
966.W													ruminant		SRR%, Δ^{13} C)
								-	Meilgaard	!					
ME-1-S						45.4	Yes		50.0				Ruminant		Aquatic (full suite) +
															ruminant (SRR%, Δ^{13} C)
								N	Iarva Joaoi	rg		•			
NJ ¹³						455.5		Yes			66.9		Non-		Aquatic (partial suite,
													ruminant		SRR%, Δ^{13} C)
NJ21						78.8	Yes				71.5		Non-		Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
NJ25						99.0	Yes				70.1		Non-		Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
NJ34						245.6	Yes		62.0				Non-		Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
									Osa						
OSA	9.8			10.4		2783.6	Yes					76.0	Non-	-1.7	Aquatic (bulk, full
807-F													ruminant		suite, SRR%, Δ^{13} C)
OSA						433.1	Yes				71.7				Aquatic (full suite,
807-W															SRR%)
OSA	9.6			11.0		3004.1	Yes					77.3	Non-	-0.7	Aquatic (bulk, full
821-F													ruminant		suite, SRR%, Δ^{13} C)
OSA						3156.2	Yes		49.0						Aquatic (full suite) +
821-W															ruminant (SRR%)
								I	Ringkloste	r					
RI-2-Ei		Un	reliable data	1		204.6	Yes		21.6						Aquatic (full suite) +
															ruminant (SRR%)
RI-2-Eii		6.4								Analysis no	ot performed				Ruminant (bulk)
& RI-2-										-					
Eiii															

Sample		Stable i	isotope anal	ysis				O	rganic resi	due analysis			GC-C-IRI	MS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{15}N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{_{13}}C$,
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug</i> /g)			nant)		,				
								1	Ronæs Sko	v					
RO-1-S					32.7+	187.2	Yes		50.2				Non-	0.6	Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
RO-1-E			0.6							Analysis no	ot performed				Plant (bulk)
RO-2-E		7.4								Analysis no	ot performed				Ruminant (bulk)
RO-3-E		4.4								Analysis no	ot performed				Ruminant (bulk)
RO-4-I		4.9								Analysis no	ot performed				Ruminant (bulk)
RO-5-E		5.1			48.0	1557.1	Yes		11.9				Non-	0.4	Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant (bulk,
															SRR%)
RO-6-I		6.8								Analysis no	ot performed				Ruminant (bulk)
RO-6-E		7.4			17.8	1474.3	Yes		22.1				Non-	1.1	Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant (bulk,
															SRR%)
RO-7-E		Uni	reliable data	1						Analysis no	ot performed				
RO-8-S					22.5+	119.2	Yes		50.0				Non-	1.0	Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
RO-8-E			3.8							Analysis no	ot performed				Plant (bulk)
RO-9-S						93.4	Yes		50.0				Non-		Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
RO-10-E		7.5								Analysis no	ot performed				Ruminant (bulk)
RO-11-S						16.2		Yes		64.7					Aquatic (partial suite,
															SRR%)
RO-12-S						243.5	Yes		43.8				Non-		Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
RO-13-S						254.4	Yes		43.9				Non-		Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)

Sample		Stable i	sotope anal	ysis				O	rganic resi	due analysis			GC-C-IRN	ЛS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$	
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)	,	<12	>12	(ug/g)			nant)	,	,				
RO-14-S						74.5	Yes		50.0				Ruminant		Aquatic (full suite) +
															ruminant (SRR%, Δ^{13} C)
								Sigger	1eben Suïd	LA 12					
SS-1-S					32.7+	391.9	Yes					92.3	Non-	-0.1	Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
SS-1-I			2.7							Analysis no	ot performed				Plant (bulk)
SS-1-E			2.1							Analysis no	ot performed				Plant (bulk)
SS-2-I			3.6							Analysis no	ot performed				Plant (bulk)
SS-2-E		5.9			31.9	1524.9	Yes		11.4				Non-	-1.4	Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant (bulk,
															SRR%)
SS-3-S						76.8			44.8				Non-		Aquatic (Δ^{13} C) +
													ruminant		ruminant (SRR%)
SS-4-S						69.8			58.9						Ruminant (SRR%)
									Šventoji 4						
SV-1-I	9.5									Analysis no	ot performed				Aquatic (bulk)
SV-1-E	9.9				27.9	1000.0	Yes		21.5				Non-	-1.3	Aquatic (bulk, full
													ruminant		suite, Δ^{13} C) + ruminant
															(SRR%)
SV-2-I		6.4								Analysis no	ot performed				Ruminant (bulk)
									Šventoji 6						
SV-3-I	9.0									Analysis no	ot performed				Aquatic (bulk)
SV-4-I	10.2									Analysis no	ot performed				Aquatic (bulk)
SV-5-I	9.5									Analysis no	ot performed				Aquatic (bulk)
SV-6-I		7.8								Analysis no	ot performed				Ruminant (bulk)
SV-7-I	8.3				25.2	10207.0	Yes		62.1	~			Non-	-0.4	Aquatic (bulk, full
													ruminant		suite, Δ^{13} C) + ruminant
															(SRR%)

Sample	le Stable isotope analysis Organic residue analysis GC-C-IRMS								ЛS	Main lipid source					
code	$\delta^{15}N > 8\%$	$\delta^{15}N$	$\delta^{15}N$	C:N	C:N	Linid	Full	Partial	SRR	SRR	SRR	SRR	$\Lambda^{13}C(C_{18};0-$	$\delta^{13}C$	1
	(aquatic)	<8%	<4%	atomic	atomic	г.т. сопсеп-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C_{16}	offset	
	(uquutte)	(torros	(nlant)	ratio	ratio	tration	Suite	Suite	(rumi_	(aquatic)	(aquatic)	(aquatic)	C10.07	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		(lerres	(piuni)	-12	×12	$(u_2 _2)$			(Tunti-	(uquutic)	(uquutic)	(uquutic)			
		triut)		<1Z	>12	(ug/g)			nuni) Sultholm I	7					
MI E006	10.6								59111101111 1	1	1 (1				
1X11033	10.6									Analysis no	ot performed				Aquatic (bulk)
MLF906-		Uni	reliable data	ı						Analysis no	ot performed				
1X11841										-					
In															
MLF906-		Uni	reliable data	1						Analysis no	ot performed				
1X11841															
Out															
MLF906-		Uni	reliable data	ı						Analysis no	ot performed				
1X4 ¹³ 2															
MLF906-		Uni	reliable data	1						Analysis no	ot performed				
1X5340															
P234															
MLF906-		Uni	reliable data	ı						Analysis no	ot performed				
1X11837															
P235		17	1.11.1.1							A 1 '	1				
MLF900-		Uni	reliable data	l						Analysis no	ot performed				
D226															
1 230 MI E006	0.2									A					
11X/726	9.2									Anaiysis ne	ot performea				Aquatic (bulk)
MI E906-		1.1.4	valiabla data	,						Analysis	t narformad				
11X9044		un	renuore uuri	l						Analysis ne	n perjormeu				
11,0011	1					I		Sı	yltholm X	III					
MLF93		11m	reliable data	1				- č	,	Analysis no	ot performed				
9_1X37		Carri		•						1 1 111119010 110	n perjermen				
MI E02		E 7								Anglusian	t in out our od				Burningent (bulls)
NILF93		5.7								Anuiysis ne	n perjormed				Kullillalli (Dulk)
9-1X37															
P144										-					
								S	zczepanki	8		1		I I	
S_Z_PZ						11.9	Yes		11.3				Non-		Aquatic (full suite,
_02_S													ruminant		Δ^{13} C) + ruminant (SRR%)

Sample		Stable i	isotope anal	ysis				Ot	rganic resi	idue analysis			GC-C-IRI	MS	Main lipid source
code	$\delta^{15}N > 8\%$	$\delta^{_{15}}N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$,
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)	-	<12	>12	(<i>ug</i> /g)			nant)	-	-	-			
								7	Sybrind Vi	8					
2033_EI						40.4						76.1	Ruminant		Aquatic (SRR%) +
_2*															ruminant (Δ^{13} C)
								Wa	ngels LA	505					
W-2-S						127.9						76.9	Ruminant		Aquatic (SRR%) +
															ruminant (Δ^{13} C)
W-3-E		Uni	reliable data	ı		¹³ 27.3	Yes		14.0				Non-		Aquatic (full suite,
													ruminant		Δ^{13} C) + ruminant
															(SRR%)
W-4-E			0.6		42.9	1513.6	Yes		13.1				Ruminant	-0.1	Aquatic (full suite) +
															ruminant (SRR%, Δ^{13} C)
															+ plant (bulk)
W-8-I		Un	reliable data	ı						Analysis no	ot performed				
W-8-E		Un	reliable data	1						Analysis no	ot performed				
W-9-I		6.4								Analysis no	ot performed				Ruminant (bulk)
W-9-E		4.3								Analysis no	ot performed				Ruminant (bulk)
W-10-I		Un	reliable data	ı						Analysis no	ot performed				
W-10-E		Un	reliable data	ı						Analysis no	ot performed				
W-11-E			3.2							Analysis no	ot performed				Plant (bulk)
W-12-S					20.9+	353.2		Yes			71.6		Non-	-0.9	Aquatic (partial suite,
													ruminant		SRR%, Δ^{13} C)
W-12-E			3.0							Analysis no	ot performed				Plant (bulk)
W-13-S					17.5+	881.9	Yes					78.3	Ruminant	-0.6	Aquatic (full suite,
															SRR%) + ruminant
															$(\Delta^{13}C)$
W-13-E		4.9								Analysis no	ot performed				Ruminant (bulk)
W-14-S						542.1	Yes					77.7	Non-		Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
W-14-I		Un	reliable data	ı						Analysis no	ot performed				
W-14-E		Un	reliable data	ı					1	Analysis no	ot performed				
W-15-S						¹³ .8						86.6	Non-		Aquatic (SRR%, Δ^{13} C)
													ruminant		
W-16-S						9.5			40.8						Ruminant (SRR%)
Sample		Stable i	isotope anal	lysis				0	rganic resi	idue analysis	GC-C-IRMS		Main lipid source		
---------------	----------------------	------------------------------------	----------------	--------	--------	---------	-----------	---------	----------------	---------------	-----------	-----------	--------------------------	----------------	---
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$	·
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(ug/g)			nant)						
				-			,,	Welc	z Wielki, s	t. 10B		•		·	
N247						57.0			59.6				Non-		Aquatic (Δ^{13} C) +
													ruminant		ruminant (SRR%)
	1	1	T	1	1	r	· · · · ·		Zvidze	r	1	1		· · · · ·	
ZVID	8.4				14.0	1437.0	Yes				69.7		Ruminant	-0.5	Aquatic (bulk, full
765-F															suite, SRR%) +
															ruminant (Δ^{13} C)
ZVID						12.2	Yes		51.1						Aquatic (full suite) +
765-W				-											ruminant (SRR%)
ZVID	8.1			9.8		475.5	Yes				66.7		Non-	-1.3	Aquatic (bulk, full
768-F													ruminant		suite, SRR%, Δ^{13} C)
ZVID						490.8	Yes		63.4						Aquatic (full suite) +
768-W															ruminant (SRR%)
ZVID	8.5			7.9		819.8	Yes					75.9	Non-	-2.8	Aquatic (bulk, full
773-F							24						ruminant		suite, SRR%, Δ^{13} C)
ZVID						361.8	Yes		56.8						Aquatic (full suite) +
773-W	0.4			-	10 (=1 (0.0	Ň						N.T.	0.0	ruminant (SRR%)
ZVID	9.4				12.6	5168.9	Yes					75.7	Non-	-0.8	Aquatic (bulk, full
//4-F						100.4	N				72.0		ruminant		suite, SKK%, Δ^{13} C)
						177.4	res				72.8				Aquatic (full suite,
7/4-10	0.2			85		0772 1	Vac					76.9	Non	12	SKK%)
ZVID 706 E	9.5			0.5		2775.1	res					70.0	non-	-4.3	Aquatic (buik, full
790-F						673 5	Voc				71.5		Tummani		$\Delta $ suite, SKK /6, Δ^{-1} C)
ZVID 796_W						075.5	165				71.5				SRR%)
790-77								(Stone lamr	10					51(17/0)
								Ad	lavik Hark	nour					
SI -1						2325.1	Yes	214	110 IN 1 111 U	.011	67.9		Ruminant		Aquatic (full suite
5L-1						2020.1	103				07.5		Rumman		SRR%) + ruminant
															$(\Lambda^{13}C)$
	1	1	1	1	1	1	1 1	Ar	naknak Isli	and	1	1	L	1	()
ARI-1	17.3				25.8	5420.5	Yes	110	104			90.0	Non-	0.9	Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)

Sample				Oı	rganic resi	due analysis	GC-C-IRMS		Main lipid source						
code	$\delta^{15}N > 8\%$	$\delta^{\scriptscriptstyle 15} N$	$\delta^{15}N$	C:N	C:N	Lipid	Full	Partial	SRR	SRR	SRR	SRR	$\Delta^{13}C(C_{18}:0-$	$\delta^{13}C$	
	(aquatic)	<8‰	<4‰	atomic	atomic	concen-	suite	suite	<64%	>64.1%	>65.5%	>75.0%	C16:0)	offset	
		(terres	(plant)	ratio	ratio	tration			(rumi-	(aquatic)	(aquatic)	(aquatic)			
		trial)		<12	>12	(<i>ug/g</i>)			nant)						
Atka Island															
AI-1	14.9				¹³ .6	8203.5	Yes					82.3	Non-	0.4	Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)
AI-2	Unreliable data					299.1	Yes					93.9	Non-		Aquatic (full suite,
												ruminant		SRR%, Δ^{13} C)	
Nunivak Island															
NI-1						4986.4	Yes					85.6	Non-		Aquatic (full suite,
													ruminant		SRR%, Δ^{13} C)
NI-2						10709.3		Yes				87.5	Non-		Aquatic (partial suite,
													ruminant		SRR%, Δ^{13} C)
Uyak Bay															
UB-1	16.2				34.1	7391.2	Yes					93.6	Non-	0.7	Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)
UB-2	¹³ .5				36.6	11897.7	Yes					82.1	Non-	-0.9	Aquatic (bulk, full
													ruminant		suite, SRR%, Δ^{13} C)

Key: blank cell, analysis not performed and/or no data; unreliable data (stable isotope analysis column), %C <10 and/or %N <1; +, data obtained from the corresponding carbonised surface residue; strike-through (organic residue analysis column), >5 µg g-1 for ceramic powder and >100 µg g-1 for carbonised surface deposits (Evershed *et al.* 2008); *, some data from Craig *et al.* (2011) and Oras *et al.* (2017); full suite, C₁₈ and C₂₀ APAAs alongside an isoprenoid fatty acid; partial suite, C₁₈ APAAs alongside an isoprenoid fatty acid; SRR%, (area SRR/area SRR + area RRR)*100; δ^{13} C, difference in the δ^{13} C isotope values of the individual mid-chain length fatty acids (C₁₆:0 and C₁₈:0). when the full suite of APAAs were identified, other lipid sources were not taken into consideration in the main lipid source column unless δ^{13} C₁₆:0 and δ^{13} C₁₈:0 data were present. Although plant has been listed as a potential contribution to the lipid source based on the bulk data, it is also likely contamination from the burial environment