# Britannia 47 (2016)

# BROOCHES AND BRITANNIA: SUPPLEMENTARY MATERIAL

By H. E. M. Cool and M. J. Baxter

# 1 Introduction

The supplementary material provided here includes tabular information on the data used in the study and additional analyses that support some of the assertions made in the main text. Where appropriate we have discussed additional aspects of interpretation.

Sections, for the most part, have titles the same as, or similar to, section headings in the main text that they refer to. The exception is Section 5 which provides a brief guide to the computational procedures used. Use of the term 'text' in this supplement refers to the main text unless otherwise qualified. References to figures in the text and this supplement are distinguished by the use of the prefix 'S' for the latter.

# 2 Data

Table S1: Concordance between the Mackreth families and types and Groups used in the paper. The start date for each Group is shown. The abbreviations in the family field are those used in Mackreth 2011.

| $\mathbf{ID}$ | Mackreth Family | Mackreth Type | Start date |
|---------------|-----------------|---------------|------------|
| 1             | Late La T       | Stead 1       | -70        |
| 2             | Late La T       | Stead 2       | -50        |
| 3             | Late La T       | Stead 3       | -50        |
| 4             | Nauheim         | 1             | -70        |
| 5             | ND              | 1             | -50        |
| 6             | ND              | 2             | 45         |
| 7             | ND              | 3             | 20         |
| 8             | ND              | 4             | 20         |
| 9             | ND              | 5             | 45         |
| 10            | ND              | 6             | 1          |
| 11            | D               | 1             | -70        |
| 12            | DD              | 1             | 10         |
| 13            | Feugere         | 11a           | -30        |
| 14            | ROS             | 1             | 15         |
| 15            | ROS             | 2             | -5         |
| 16            | ROS             | 4             | 10         |
| 17            | ROS             | 8             | 10         |
| 18            | ROS             | 9             | 30         |
| 19            | LEO             | 5             | 30         |
| 20            | LEO             | 6             | 25         |
| 21            | proto LD        | 5.a           | 10         |
| 22            | LD              | 2.a           | 10         |
| 23            | LD              | 3.a           | 10         |
| 24            | LD              | 7             | 50         |

| 25 LD 8            | 50       |
|--------------------|----------|
| 26 C 1             | 10       |
| 27 C 2             | 35       |
| 28 C 3.1           | 10       |
| 29 C 3.2           | 10       |
| 30 C 3.3           | 40       |
| 31 C 4a            | 10       |
| 32 C 4b            | 45       |
| 33 C 4c            | 45       |
| 34 C 4d            | 10       |
| 35 C 5             | 10       |
| 36 C 6.b           | 65       |
| 37 C 6.e           | 30       |
| 38 C 7.a           | 40       |
| 39 AESICA 2        | 80       |
| 40 AESICA 3        | 55       |
| 41 Mil La T II 1.a | 80       |
| 42 CD Ha 1 a1      | 55       |
| $43$ CD Ha $1a^2$  | 55       |
| 44 CD Ha 1 a3      | 45       |
| 45 CD Ha 1 b       | 70       |
| 46 CD Ha 1 c       | 50       |
| 47 CD Ha 1 d       | 75       |
| 48 CD Ha 2 a       | 60<br>60 |
| 49 CD Ha 2.0       | 45       |
| 50 CD Ha 2.0       | 75       |
| 50 CD Ha $2.0$     | 55       |
| 51 CD Ha $2.0$     | 60<br>60 |
| 52 CD Ha 3 a2      | 75       |
| 54 CD Ha 3 b       | 50       |
| 55 CD Ha 4 b       | 60<br>60 |
| 56 CD BH 1         | 55       |
| 57 CD RH 3         | 50       |
| 58 CD RH 4         | 55       |
| 59 CD BH 5         | 45       |
| 60 CD RH 6         | 50       |
| 61 CD RH 7         | 55       |
| 62 CD PH 1         | 60<br>60 |
| 63 CD PH 2         | 50       |
| 64 CD PH 3         | 65       |
| 65 CD PH 4 a       | 75       |
| 66 CD PH 4 b       | 85       |
| 67 CD PH 4 c       | 85       |
| 68 CD PH 4 d       | 85       |
| 69 CD PH 4 e       | 100      |
| 70 CD PH $4.6$     | 85       |
| 71 CD PH 4.1       | 65       |
| 72 CD PH 5.9       | 65       |
| 73 CD PH 5b        | 75       |
| 74 CD PH 5.4       | 70       |
| 75 CD PH 6.        | 50       |
| 76 CD PH 6h        | 50       |
| 77 CD PH 7         | 55<br>60 |
| 78 CD PH 8         | 85       |
| 79 CD H 1          | 85       |

Table S1 – Continued from previous page

| 80         CD H         3         50           81         CD H         4         50           82         CD H         5         75           83         CD H         6         85           84         CD H         7a         55           85         CD H         7a         55           85         CD H         9         75           86         CD H         9         75           87         CD H         10         45           89         CD H         11         65           90         CD H         12         65           91         CD H         13         85           92         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         1         15           97         Proto HDST         1.6         60           100         Proto HDST         1.6         80           101         Proto HDST         1.6         80           102         Headstud         4         85 <th>ID</th> <th>Mackreth Family</th> <th>Mackreth Type</th> <th>Start date</th>                                                | ID           | Mackreth Family | Mackreth Type | Start date |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------|------------|
| 81 $CD$ H $4$ $50$ $82$ $CD$ H $5$ $75$ $83$ $CD$ H $7b$ $70$ $86$ $CD$ H $7b$ $70$ $86$ $CD$ H $9$ $75$ $87$ $CD$ H $9$ $75$ $88$ $CD$ H $10$ $45$ $89$ $CD$ H $12$ $65$ $91$ $CD$ H $13$ $85$ $92$ $CD$ H $15$ $85$ $93$ $CD$ H $17$ $85$ $95$ $CD$ H/PH $1$ $115$ $96$ $CD$ H/PH $2$ $125$ $97$ $Proto$ HDST $1.6$ $60$ $100$ $Proto$ HDST $1.6$ $80$ $101$ $Proto$ HDST $1.6$ $80$ $102$ Headstud $4$ $85$ $105$ Headstud $4$ $85$ $106$ Headstud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80           | CD H            | 3             | 50         |
| 82         CD H         5 $75$ $83$ CD H $7a$ $55$ $84$ CD H $7a$ $55$ $85$ CD H $7b$ $70$ $86$ CD H $9$ $75$ $88$ CD H $10$ $45$ $89$ CD H $12$ $65$ $90$ CD H $12$ $65$ $91$ CD H $13$ $85$ $92$ CD H $15$ $85$ $93$ CD H $16$ $55$ $94$ CD H $1$ $115$ $96$ CD H/PH $2$ $255$ $97$ Proto HDST $1.d$ $70$ $98$ Proto HDST $1.d$ $80$ $100$ Proto HDST $1.g$ $80$ $101$ Proto HDST $1.g$ $80$ $102$ Headstud $4$ $85$ $105$ Headstud $4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81           | CD H            | 4             | 50         |
| 83         CD H         6         85           84         CD H         7a         55           85         CD H         7b         70           86         CD H         9         75           87         CD H         9         75           88         CD H         10         45           89         CD H         11         65           90         CD H         12         65           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H/PH         115         90           95         CD H/PH         2         125           97         Proto HDST         1.d         70           98         Proto HDST         1.e         60           100         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           106         Headstud         10         80           107         Headstud         11         <                                                                                                               | 82           | CD H            | 5             | 75         |
| 84         CD H         7a         55           85         CD H         7b         70           86         CD H         8         85           87         CD H         10         45           89         CD H         11         65           90         CD H         12         65           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.d         70           98         Proto HDST         1.d         70           99         Proto HDST         1.f         80           101         Proto HDST         1.g         80           102         Headstud         3         55           104         Headstud         4         85           105         Headstud         10         80           108         Headstud         10                                                                                                                 | 83           | CD H            | 6             | 85         |
| 85 $CD H$ $7b$ $70$ $86$ $CD H$ $9$ $75$ $88$ $CD H$ $10$ $45$ $89$ $CD H$ $11$ $65$ $90$ $CD H$ $12$ $65$ $91$ $CD H$ $13$ $85$ $92$ $CD H$ $15$ $85$ $93$ $CD H$ $16$ $55$ $94$ $CD H$ $1$ $15$ $95$ $CD H/PH$ $2$ $16$ $97$ $Proto HDST$ $1.6$ $60$ $100$ $Proto HDST$ $1.6$ $80$ $101$ $Proto HDST$ $1.6$ $80$ $102$ Headstud $2$ $65$ $103$ Headstud $4$ $85$ $106$ Headstud $6$ $80$ $107$ Headstud $11$ $75$ $109$ Headstud $11$ $75$ $109$ He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84           | CD H            | 7a            | 55         |
| 86 $CD H$ $9$ $75$ $87$ $CD H$ $10$ $45$ $89$ $CD H$ $11$ $65$ $90$ $CD H$ $12$ $65$ $91$ $CD H$ $13$ $85$ $92$ $CD H$ $15$ $85$ $93$ $CD H$ $16$ $55$ $94$ $CD H$ $17$ $85$ $95$ $CD H/PH$ $2$ $125$ $97$ $Proto HDST$ $1.6$ $60$ $100$ $Proto HDST$ $1.6$ $60$ $100$ $Proto HDST$ $1.6$ $80$ $101$ $Proto HDST$ $1.6$ $80$ $102$ $Headstud$ $4$ $85$ $103$ $Headstud$ $4$ $85$ $104$ $Headstud$ $6$ $80$ $107$ $Headstud$ $10$ $80$ $107$ $Headstud$ $10$ $80$ $108$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85           | CD H            | $7\mathrm{b}$ | 70         |
| 87         CD H         9         75           88         CD H         10         45           89         CD H         11         65           90         CD H         13         85           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.d         70           99         Proto HDST         1.e         60           100         Proto HDST         1.g         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           105         Headstud         9         75           109         Headstud         9         75           109         Headstud         10         80           110         Headstud                                                                                                                   | 86           | CD H            | 8             | 85         |
| 88         CD H         10         45           89         CD H         11         65           90         CD H         12         65           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.6         60           100         Proto HDST         1.6         80           101         Proto HDST         1.6         80           102         Headstud         2         65           103         Headstud         4         85           105         Headstud         4         85           106         Headstud         9         75           109         Headstud         10         80           104         Headstud         10         80           110         Headstud         10         80           111         WROX                                                                                                                   | 87           | CD H            | 9             | 75         |
| 89         CD H         11         65           90         CD H         12         65           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.d         70           99         Proto HDST         1.d         70           99         Proto HDST         1.g         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           105         Headstud         6         80           107         Headstud         10         80           108         Headstud         10         80           109         Headstud         10         80           110         Headstud         10         80           111         WROX                                                                                                            | 88           | CD H            | 10            | 45         |
| 90         CD H         12         65           91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.b         50           98         Proto HDST         1.e         60           100         Proto HDST         1.g         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           105         Headstud         4         85           106         Headstud         80         10           107         Headstud         10         80           108         Headstud         10         80           100         Headstud         11         75           111         WROX         1.a         115           112         WROX                                                                                                        | 89           | CD H            | 11            | 65         |
| 91         CD H         13         85           92         CD H         15         85           93         CD H         16         55           94         CD H         17         85           95         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.d         70           98         Proto HDST         1.d         70           99         Proto HDST         1.f         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         5         85           106         Headstud         4         85           106         Headstud         10         80           107         Headstud         10         80           108         Headstud         10         80           109         Headstud         10         80           110         Headstud         11         75           111         WROX         1.a         115           112         WROX <td>90</td> <td>CD H</td> <td>12</td> <td>65</td>                                                  | 90           | CD H            | 12            | 65         |
| 92CD H158593CD H165594CD H178595CD H/PH111596CD H/PH212597Proto HDST1.b5098Proto HDST1.d7099Proto HDST1.e60100Proto HDST1.f80101Proto HDST1.g80102Headstud355103Headstud485105Headstud680107Headstud880108Headstud975109Headstud1080110Headstud1175111WROX1.a116112WROX1.c110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2b75118TR1.2b75119TR1.2c110120TR1.3a85121TR3.1a95125TR3.1a95126TR3.1a95126TR3.1a95126TR3.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0 <tr< td=""><td>91</td><td>CD H</td><td>13</td><td>85</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91           | CD H            | 13            | 85         |
| 93CD H165594CD H178595CD H/PH111596CD H/PH212597Proto HDST1.b5098Proto HDST1.d7099Proto HDST1.e60100Proto HDST1.f80101Proto HDST1.g80102Headstud265103Headstud485104Headstud585106Headstud680107Headstud1080108Headstud1080110Headstud1175111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1a95126TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135 </td <td>92</td> <td>CD H</td> <td>15</td> <td>85</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92           | CD H            | 15            | 85         |
| 03 $CD H$ $17$ $85$ $95$ $CD H/PH$ 1 $115$ $96$ $CD H/PH$ 2 $125$ $97$ Proto HDST         1.b $50$ $98$ Proto HDST         1.d $70$ $99$ Proto HDST         1.f $80$ $100$ Proto HDST         1.f $80$ $101$ Proto HDST         1.g $80$ $102$ Headstud         2 $65$ $103$ Headstud         4 $85$ $106$ Headstud         4 $85$ $106$ Headstud $10$ $80$ $107$ Headstud $10$ $80$ $107$ Headstud $11$ $75$ $109$ Headstud $11$ $75$ $110$ Headstud $11$ $75$ $112$ WROX $1.a$ $115$ $113$ WROX $1.c$ $110$ $114$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93           | CD H            |               | 55         |
| bit         CD H/PH         1         115           96         CD H/PH         2         125           97         Proto HDST         1.b         50           98         Proto HDST         1.d         70           99         Proto HDST         1.e         60           100         Proto HDST         1.f         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           105         Headstud         6         80           107         Headstud         6         80           106         Headstud         9         75           109         Headstud         10         80           110         Headstud         11         75           111         WROX         1.a         115           112         WROX         1.a         115           112         WROX         1.b         110           114         CD H/PH 1         1         75           115         TR         1.a         85           116                                                                                                    | 94           | CD H            | 17            | 85         |
| 36 $CD H/PH$ $2$ $125$ $97$ Proto HDST $1.b$ $50$ $98$ Proto HDST $1.d$ $70$ $99$ Proto HDST $1.d$ $70$ $99$ Proto HDST $1.g$ $80$ $101$ Proto HDST $1.g$ $80$ $102$ Headstud $2$ $65$ $103$ Headstud $3$ $55$ $104$ Headstud $4$ $85$ $105$ Headstud $6$ $80$ $107$ Headstud $9$ $75$ $109$ Headstud $9$ $75$ $109$ Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.c$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $119$ </td <td>95</td> <td>CD H/PH</td> <td>1</td> <td>115</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95           | CD H/PH         | 1             | 115        |
| 37         Proto HDST         1.b $50$ 98         Proto HDST         1.d         70           99         Proto HDST         1.e         60           100         Proto HDST         1.f         80           101         Proto HDST         1.g         80           102         Headstud         2         65           103         Headstud         4         85           104         Headstud         4         85           105         Headstud         5         85           106         Headstud         6         80           107         Headstud         8         80           108         Headstud         10         80           110         Headstud         11         75           111         WROX         1.a         115           112         WROX         1.b         110           113         WROX         1.c         110           114         CD H/PH 1         1         75           115         TR         1.a         85           116         TR         1.b         80           117                                                                                                                       | 96           | CD H/PH         | 2             | 125        |
| 31       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100 | 97           | Proto HDST      | 1 b           | 50         |
| 351 Note HDST1.41099Proto HDST1.660100Proto HDST1.f80101Proto HDST1.g80102Headstud265103Headstud355104Headstud485105Headstud680107Headstud880108Headstud975109Headstud1080110Headstud1175111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR3.1a95124TR2.2g100125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98           | Proto HDST      | 1.5<br>1 d    | 70         |
| 351100 HDST1.f. $80$ 100Proto HDST1.g $80$ 101Proto HDST1.g $80$ 102Headstud2 $65$ 103Headstud3 $55$ 104Headstud4 $85$ 105Headstud6 $80$ 107Headstud8 $80$ 108Headstud9 $75$ 109Headstud10 $80$ 110Headstud11 $75$ 111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 11 $75$ 115TR1.a $85$ 116TR1.b $80$ 117TR1.2a115118TR1.2b $75$ 119TR1.3a $85$ 121TR1.3b $80$ 122TR1.5115123TR2.1120124TR2.2g150125TR3.1a $95$ 126TR3.1b110127TR3.2110128TR4.1a $80$ 130Alesia-Auc1 $-30$ 131AVCISSAall0132HOD HILL1 $35$ 134HOD HILL3 $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90           | Proto HDST      | 1.0           | 70<br>60   |
| 100       Proto HDST       1.g       80         101       Proto HDST       1.g       80         102       Headstud       2       65         103       Headstud       3       55         104       Headstud       4       85         105       Headstud       6       80         107       Headstud       6       80         107       Headstud       9       75         109       Headstud       10       80         110       Headstud       11       75         111       WROX       1.a       115         112       WROX       1.b       110         113       WROX       1.c       110         114       CD H/PH 1       1       75         115       TR       1.a       85         116       TR       1.b       80         117       TR       1.2a       115         118       TR       1.2b       75         119       TR       1.3a       85         120       TR       1.3b       80         122       TR       1.5       110                                                                                                                                                                                                          | 100          | Proto HDST      | 1.c<br>1 f    | 80         |
| 101 $1100$ $1100$ $120$ $120$ $120$ $120$ $100$ $102$ Headstud2 $65$ $103$ Headstud3 $55$ $104$ Headstud4 $85$ $105$ Headstud6 $80$ $107$ Headstud6 $80$ $107$ Headstud9 $75$ $109$ Headstud10 $80$ $110$ Headstud11 $75$ $111$ WROX1.a $115$ $112$ WROX1.b $110$ $113$ WROX1.c $110$ $114$ CD H/PH 11 $75$ $115$ TR1.a $85$ $116$ TR1.b $80$ $117$ TR1.2a $115$ $118$ TR1.2b $75$ $119$ TR1.2c $110$ $120$ TR1.3a $85$ $121$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100          | Proto HDST      | 1.1<br>1 m    | 80         |
| 102       Headstud $3$ $55$ $104$ Headstud $4$ $85$ $105$ Headstud $5$ $85$ $106$ Headstud $6$ $80$ $107$ Headstud $8$ $80$ $108$ Headstud $9$ $75$ $109$ Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.b$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $115$ TR $1.a$ $85$ $116$ TR $1.b$ $80$ $117$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.2g$ $150$ $124$ TR $2.2g$ $150$ </td <td>101</td> <td>Headstud</td> <td>1.g<br/>9</td> <td>65</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101          | Headstud        | 1.g<br>9      | 65         |
| 103Interstult550104Headstud485105Headstud585106Headstud680107Headstud975109Headstud1080110Headstud1175111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1a95126TR3.1a80129TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102          | Headstud        | 2 3           | 55         |
| 105Headstud $4$ $5$ $85$ $106$ Headstud $6$ $80$ $107$ Headstud $8$ $80$ $108$ Headstud $9$ $75$ $109$ Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.b$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $115$ TR $1.a$ $85$ $116$ TR $1.b$ $80$ $117$ TR $1.2a$ $115$ $118$ TR $1.2b$ $75$ $119$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1a$ $95$ $126$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSA $all$ $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103          | Headstud        |               | 85         |
| 106Headstud $6$ $80$ $107$ Headstud $8$ $80$ $108$ Headstud $9$ $75$ $109$ Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.b$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $115$ TR $1.a$ $85$ $116$ TR $1.b$ $80$ $117$ TR $1.2a$ $115$ $118$ TR $1.2b$ $75$ $119$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104          | Headstud        | т<br>5        | 85         |
| 107Headstud $8$ $80$ $108$ Headstud $9$ $75$ $109$ Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.b$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $115$ TR $1.a$ $85$ $116$ TR $1.b$ $80$ $117$ TR $1.2a$ $115$ $118$ TR $1.2b$ $75$ $119$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $2$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106          | Headstud        | 6             | 80         |
| 101Headstud975108Headstud1080110Headstud1175111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107          | Headstud        | 8             | 80         |
| 100Headstud $10$ $80$ $110$ Headstud $11$ $75$ $111$ WROX $1.a$ $115$ $112$ WROX $1.b$ $110$ $113$ WROX $1.c$ $110$ $114$ CD H/PH 1 $1$ $75$ $115$ TR $1.a$ $85$ $116$ TR $1.b$ $80$ $117$ TR $1.2a$ $115$ $118$ TR $1.2a$ $115$ $119$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $2$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108          | Headstud        | 9             | 75         |
| 110Headstud1175111WROX1.a115112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109          | Headstud        | 10            | 80         |
| 110WROX1.a115111WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR4.1a80129TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110          | Headstud        | 11            | 75         |
| 112WROX1.b110113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR4.1a80129TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111          | WROX            | 1.a           | 115        |
| 112INST113INST115113WROX1.c110114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112          | WBOX            | 1 h           | 110        |
| 113114CD H/PH 1175115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112          | WROX            | 1.c           | 110        |
| 111 $CD H/TR T$ 111115TR1.a85116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135133HOD HILL235134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114          | CD H/PH 1       | 1.0           | 75         |
| 110110110110110116TR1.b80117TR1.2a115118TR1.2b75119TR1.2c110120TR1.3a85121TR1.3b80122TR1.5115123TR2.1120124TR2.2g150125TR3.1a95126TR3.1b110127TR3.2110128TR4.1a80129TR4.1b80130Alesia-Auc1-30131AVCISSAall0132HOD HILL135133HOD HILL235134HOD HILL335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115          | TB              | 1<br>1 a      | 85         |
| 117TR $1.2a$ $115$ $117$ TR $1.2a$ $115$ $118$ TR $1.2b$ $75$ $119$ TR $1.2c$ $110$ $120$ TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $2$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116          | TB              | 1.a<br>1 b    | 80         |
| 111 $111$ $112$ $112$ $113$ $118$ $TR$ $1.2b$ $75$ $119$ $TR$ $1.2c$ $110$ $120$ $TR$ $1.3a$ $85$ $121$ $TR$ $1.3b$ $80$ $122$ $TR$ $1.5$ $115$ $123$ $TR$ $2.1$ $120$ $124$ $TR$ $2.2g$ $150$ $125$ $TR$ $3.1a$ $95$ $126$ $TR$ $3.1b$ $110$ $127$ $TR$ $3.2$ $110$ $128$ $TR$ $4.1a$ $80$ $129$ $TR$ $4.1b$ $80$ $130$ $Alesia-Auc$ $1$ $-30$ $131$ $AVCISSA$ $all$ $0$ $132$ $HOD$ HILL $1$ $35$ $134$ $HOD$ HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117          | TR              | 1.5           | 115        |
| 110 $110$ $110$ $120$ $110$ $110$ $TR$ $1.2c$ $110$ $120$ $TR$ $1.3a$ $85$ $121$ $TR$ $1.3b$ $80$ $122$ $TR$ $1.5$ $115$ $123$ $TR$ $2.1$ $120$ $124$ $TR$ $2.2g$ $150$ $125$ $TR$ $3.1a$ $95$ $126$ $TR$ $3.1b$ $110$ $127$ $TR$ $3.2$ $110$ $128$ $TR$ $4.1a$ $80$ $129$ $TR$ $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $2$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118          | TR              | 1.2a<br>1.2b  | 75         |
| 120TR $1.3a$ $85$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSA $all$ $0$ $132$ HOD HILL $1$ $35$ $134$ HOD HILL $2$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119          | TB              | 1.20<br>1.2c  | 110        |
| 120TR $1.0t$ $1.0t$ $3.0t$ $121$ TR $1.3b$ $80$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSAall $0$ $132$ HOD HILL $1$ $35$ $133$ HOD HILL $2$ $35$ $134$ HOD HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120          | TB              | 1.20<br>1.3a  | 85         |
| 122TR $1.05$ $100$ $122$ TR $1.5$ $115$ $123$ TR $2.1$ $120$ $124$ TR $2.2g$ $150$ $125$ TR $3.1a$ $95$ $126$ TR $3.1b$ $110$ $127$ TR $3.2$ $110$ $128$ TR $4.1a$ $80$ $129$ TR $4.1b$ $80$ $130$ Alesia-Auc $1$ $-30$ $131$ AVCISSA $all$ $0$ $132$ HOD HILL $1$ $35$ $133$ HOD HILL $2$ $35$ $134$ HOD HILL $3$ $35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121          | TB              | 1.3a<br>1.3b  | 80         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122          | TR              | 1.55          | 115        |
| 126     110     111     125       124     TR     2.2g     150       125     TR     3.1a     95       126     TR     3.1b     110       127     TR     3.2     110       128     TR     4.1a     80       129     TR     4.1b     80       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122          | TR              | 2.1           | 120        |
| 124     111     2.2g     130       125     TR     3.1a     95       126     TR     3.1b     110       127     TR     3.2     110       128     TR     4.1a     80       129     TR     4.1b     80       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $120 \\ 124$ | TR              | 2.1<br>2.2    | 150        |
| 126     TR     3.1b     110       126     TR     3.1b     110       127     TR     3.2     110       128     TR     4.1a     80       129     TR     4.1b     80       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125          | TR              | 2.2g<br>3.1a  | 95         |
| 120     TR     3.2     110       127     TR     3.2     110       128     TR     4.1a     80       129     TR     4.1b     80       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126          | TR              | 3.1a<br>3.1b  | 110        |
| 12.     11.     3.2     110       128     TR     4.1a     80       129     TR     4.1b     80       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $120 \\ 127$ | TR              | 3.1D<br>3.9   | 110        |
| 120         TR         4.1a         30           129         TR         4.1b         80           130         Alesia-Auc         1         -30           131         AVCISSA         all         0           132         HOD HILL         1         35           133         HOD HILL         2         35           134         HOD HILL         3         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121          | TR              | 0.2<br>/ 1a   | 110<br>80  |
| 120     110     4.10     30       130     Alesia-Auc     1     -30       131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120          | TR              | 4.1a<br>1 1b  | 80<br>80   |
| 131     AVCISSA     all     0       132     HOD HILL     1     35       133     HOD HILL     2     35       134     HOD HILL     3     35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130          | Alesia-Auc      | 4.10          | -30        |
| 131         AVOIDSA         all         0           132         HOD HILL         1         35           133         HOD HILL         2         35           134         HOD HILL         3         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121          | AVCISS A        | 1             | -50        |
| 132         HOD HILL         1         35           133         HOD HILL         2         35           134         HOD HILL         3         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 131<br>139   |                 | all<br>1      | 0<br>25    |
| 134 HOD HILL 3 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132          | HOD HILL        | 1             | 35<br>25   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134          | HOD HILL        | 23            | 35         |

Table S1 – Continued from previous page

| ID  | Mackreth Family | Mackreth Type  | Start date |
|-----|-----------------|----------------|------------|
| 135 | HOD HILL        | 4              | 35         |
| 136 | HOD HILL        | 5              | 35         |
| 137 | HOD HILL        | 6              | 35         |
| 138 | HOD HILL        | 7              | 35         |
| 139 | HOD HILL        | 8              | 35         |
| 140 | HOD HILL        | 9              | 35         |
| 141 | HOD HILL        | 10             | 35         |
| 142 | HOD HILL        | 12             | 35         |
| 143 | HOD HILL        | 13             | 105        |
| 144 | DURO            | 1              | 45         |
| 145 | DURO            | 3              | -20        |
| 146 | DURO            | 5              | 45         |
| 147 | DURO            | 6              | 35         |
| 148 | DURO            | 7              | 5          |
| 149 | DURO            | 8              | 55         |
| 150 | AUGEN           | 1              | 55         |
| 151 | PAN             | all            | 65         |
| 152 | Plate           | 1              | 145        |
| 153 | Plate           | 2.a            | 140        |
| 154 | Plate           | 2.b            | 175        |
| 155 | Plate           | 2.c            | 160        |
| 156 | Plate           | 2.d            | 150        |
| 157 | Plate           | 2.e            | 125        |
| 158 | Plate           | $2.\mathrm{f}$ | 150        |
| 159 | Plate           | $2.\mathrm{g}$ | 160        |
| 160 | Plate           | 3.a            | 200        |
| 161 | Plate           | $3.\mathrm{b}$ | 190        |
| 162 | Plate           | 4              | 175        |
| 163 | Plate           | 5              | 120        |
| 164 | Plate           | 6              | 95         |
| 165 | Plate           | 7              | 125        |
| 166 | Plate           | 8              | 125        |
| 167 | PL CONT         | 1              | 65         |
| 168 | PL CONT         | 2.a            | 85         |
| 169 | PL CONT         | 2.b            | 70         |
| 170 | PL CONT         | 2.c            | 125        |
| 171 | PL CONT         | 2.d            | 65         |
| 172 | PL CONT         | 2.e            | 75         |
| 173 | PL CONT         | 4              | 135        |
| 174 | PL CONT         | 5              | 175        |
| 175 | PL CONT         | 6              | 185        |
| 176 | PL CONT         | 7              | 170        |
| 177 | PL CONT         | 8              | 110        |
| 178 | PL CONT         | 9              | 80         |
| 179 | PL CONT         | 10             | 150        |
| 180 | PL CONT         | 11             | 150        |
| 181 | PL CONT         | 12             | 150        |
| 182 | PL CONT         | 13             | 100        |
| 183 | PL CONT         | 14             | 80         |
| 184 | PL CONT         | 15             | 60         |
| 185 | PL CONT         | 16             | 85         |
| 186 | PL CONT         | 17             | 80         |
| 187 | PL CONT         | 18             | 105        |
| 189 | PL CONT         | 20             | 35         |
| 190 | PL CONT         | 21             | 30         |

Table S1 – Continued from previous page

| ID  | Mackreth Family      | Mackreth Type     | Start date |
|-----|----------------------|-------------------|------------|
| 191 | PL CONT              | 22                | 10         |
| 192 | PL CONT              | 23                | 45         |
| 195 | Object               | 1.1               | 110        |
| 196 | Object               | 1.2               | 115        |
| 197 | Object               | 2.1               | 275        |
| 198 | Object               | 4.a               | 155        |
| 199 | Object               | 4.b               | 150        |
| 200 | Object               | 6.a               | 150        |
| 201 | DRAG                 | 3                 | 95         |
| 202 | KNEE Br              | 1.a               | 180        |
| 203 | KNEE Br              | 1.b               | 140        |
| 204 | KNEE Br              | 2.a               | 140        |
| 205 | KNEE Br              | 2.b               | 150        |
| 206 | KNEE Cont            | 3                 | 150        |
| 207 | Almgren 101          | a-c               | 110        |
| 208 | Proto CR             | 1                 | 200        |
| 209 | Proto CR             | 2                 | 170        |
| 210 | Proto CR             | 3                 | 210        |
| 211 | $\operatorname{CR}$  | 2.ad              | 215        |
| 212 | $\operatorname{CR}$  | 3.1 K1            | 290        |
| 213 | $\operatorname{CR}$  | 3.2  K2           | 310        |
| 214 | $\operatorname{CR}$  | 3.3 K3            | 340        |
| 215 | $\operatorname{CR}$  | $3.4 \mathrm{K4}$ | 350        |
| 216 | $\operatorname{CR}$  | $3.5~\mathrm{K5}$ | 370        |
| 217 | $\operatorname{CR}$  | 3.6 K3            | 400        |
| 219 | PEN                  | c1a               | 50         |
| 220 | $\operatorname{PEN}$ | c2a               | 0          |
| 221 | PEN                  | c2c               | undated    |
| 222 | PEN                  | c2d               | undated    |
| 223 | PEN                  | f1                | undated    |
| 224 | PEN                  | f2                | undated    |
| 225 | PEN                  | k1b               | 75         |
| 226 | PEN                  | k2                | undated    |
| 227 | PEN                  | k3                | undated    |
| 228 | PEN                  | k4                | 45         |
| 229 | PEN                  | k5                | 45         |
| 230 | PEN                  | 6                 | undated    |
| 231 | PEN                  | 7                 | undated    |

Table S1 – Continued from previous page

Table S2: The data arranged by Group and Region. The regions are EA = East Anglia, N = North, S = South, EM = East Midlands, WM = West Midlands, SW = South-West.

| Group | $\mathbf{S}$ | $\mathbf{SW}$ | $\mathbf{E}\mathbf{A}$ | $\mathbf{E}\mathbf{M}$ | WM       | Ν     | Total    |
|-------|--------------|---------------|------------------------|------------------------|----------|-------|----------|
| 1     | 35           | 8             | 7                      | 6                      | 0        | 0     | 56       |
| 2     | 14           | 0             | 2                      | 5                      | 0        | 0     | 21       |
| 3     | 40           | 18            | 7                      | 13                     | 1        | 1     | 80       |
| 4     | 31           | 8             | 10                     | 12                     | 3        | 0     | 64       |
| 5     | 53           | 8             | 16                     | 11                     | 2        | 0     | 90       |
| 6     | 53           | 17            | 3                      | 2                      | 2        | 0     | 77       |
| 7     | 218          | 37            | 30                     | 43                     | 11       | 4     | 343      |
| 8     | 59           | 44            | 8                      | 8                      | 4        | 0     | 123      |
| 9     | 7            | 16            | 3                      | 1                      | 1        | 0     | 28       |
| 10    | 32           | 11            | 2                      | 4                      | 2        | 0     | 51       |
| 11    | 22           | 8             | 8                      | 2                      | 0        | 0     | 40       |
|       |              |               |                        | Co                     | ontinued | on ne | ext page |

|       | Table        | 52 - 00       | onunue                 | a from                 | previous               | s puge |                 |
|-------|--------------|---------------|------------------------|------------------------|------------------------|--------|-----------------|
| Group | $\mathbf{S}$ | $\mathbf{SW}$ | $\mathbf{E}\mathbf{A}$ | $\mathbf{E}\mathbf{M}$ | $\mathbf{W}\mathbf{M}$ | Ν      | Total           |
| 12    | 98           | 55            | 16                     | 43                     | 17                     | 8      | 237             |
| 13    | 7            | 11            | 4                      | 3                      | 0                      | 0      | 25              |
| 14    | 26           | 3             | 9                      | 7                      | 3                      | 0      | 48              |
| 15    | 24           | 1             | 6                      | 3                      | 0                      | 0      | 34              |
| 16    | 57           | 5             | 11                     | 3                      | 0                      | 1      | 77              |
| 17    | 40           | 4             | 6                      | 9                      | 1                      | 0      | 60              |
| 18    | 14           | 6             | 5                      | 6                      | 0                      | 0      | 31              |
| 19    | 28           | 4             | 25                     | 11                     | 1                      | 0      | 69              |
| 20    | 13           | 1             | 3                      | 0                      | 0                      | 0      | 17              |
| 22    | 84           | 13            | 60                     | 25                     | 2                      | 3      | 187             |
| 23    | 35           | 3             | 14                     | 15                     | 4                      | 0      | 71              |
| 24    | 12           | 3             | 6                      | 2                      | 1                      | 0      | 24              |
| 25    | 12           | 6             | 5                      | 0                      | 0                      | 0      | 23              |
| 26    | 29           | 2             | 13                     | 5                      | 4                      | 0      | 53              |
| 27    | 108          | 24            | 38                     | 30                     | 4                      | 4      | 208             |
| 28    | 47           | 8             | 21                     | 19                     | 2                      | 0      | 97              |
| 29    | 12           | 5             | 8                      | 14                     | 2                      | 0      | 41              |
| 30    | 20           | 4             | 20                     | 21                     | 2                      | 2      | 69              |
| 31    | 13           | 6             | 6                      | 4                      | 1                      | 0      | 30              |
| 32    | 21           | 10            | 2                      | 11                     | 0                      | 0      | 44              |
| 33    | 12           | 9             | 3                      | 3                      | 0                      | 0      | 27              |
| 34    | 73           | 10            | 11                     | 16                     | 0                      | 2      | 112             |
| 35    | 41           | 8             | 7                      | 4                      | 4                      | 0      | 64              |
| 36    | 27           | 1             | 1                      | 1                      | 0                      | 0      | 30              |
| 37    | 13           | 3             | 2                      | 3                      | 0                      | 0      | 21              |
| 38    | 52           | 4             | 11                     | 20                     | 3                      | 0      | 90              |
| 39    | 2            | 0             | 49                     | 1                      | 1                      | 1      | 54              |
| 40    | 12           | 13            | 1                      | 8                      | 8                      | 3      | 51              |
| 41    | 9            | 3             | 4                      | 0                      | 5                      | 2      | 23              |
| 42    | 47           | 3             | 40                     | 9                      | 2                      | 1      | 102             |
| 43    | 34           | 4             | 19                     | 14                     | 1                      | 0      | 72              |
| 44    | 32           | 5             | 13                     | 4                      | 0                      | 0      | 54<br>97        |
| 40    | 10           | 1             | 0                      | 4                      | 1                      | 0      | 27<br>49        |
| 40    | 20           | 1             | 11                     | 4                      | 1                      | 0      | 42              |
| 41    | 1            | 1             | 15                     | 0<br>E                 | 1                      | 1      | 21              |
| 40    | 42<br>99     | 0             | 49                     | 3                      | 0                      | 1      | 97<br>50        |
| 49    | აა<br>16     | 0<br>6        | 14                     | 49                     | 0                      | 1      | 02<br>97        |
| 50    | 10           | 0<br>9        | 12                     | ა<br>10                | 0<br>9                 | 0      | 95<br>95        |
| 52    | 10           | 10            | 4<br>5                 | 12                     | 0                      | 0      |                 |
| 52    | 6            | 10            | 3<br>2                 | 1                      | 0                      | 0      | $\frac{20}{27}$ |
| 54    | 12           | 20            | 0                      | 1                      | 0                      | 0      | 41              |
| 55    | 14           | 20            | 10                     | 6                      | 1                      | 1      | 34              |
| 56    | 0            | 23            | 03                     | 6                      | 3                      | 0      | 11/             |
| 57    | 12           | 7             | 51                     | 5                      | 0                      | 0      | 75              |
| 58    | 11           | 8             | 46                     | 6                      | 2                      | 1      | 74              |
| 59    | 2            | 2             | 36                     | 6                      | 0                      | 0      | 46              |
| 60    | 0            | 2             | 25                     | 0                      | 0                      | 0      | 27              |
| 61    | 3            | 0             | 35                     | 1                      | 0                      | 0      | 39              |
| 62    | 1            | 15            | 1                      | 4                      | 8                      | 1      | 30              |
| 63    | 8            | 30            | n<br>1                 | 2                      | 18                     | 1      | 59              |
| 64    | 4            | 19            | 1                      | 3                      | 21                     | 1      | 49              |
| 65    | 1            | 4             | 0                      | 4                      | 11                     | 3      | 23              |
| 66    | 3            | 4             | 0                      | 8                      | 15                     | 1      | 31              |
| 67    | 3            | 4             | 0                      | $\overset{\circ}{2}$   | 11                     | 1      | 21              |

Table S2 – Continued from previous page

|          | Table  | 52 00         | munue   | ա յոսու  | prettous               | puye         |            |
|----------|--------|---------------|---------|----------|------------------------|--------------|------------|
| Group    | S      | $\mathbf{SW}$ | EA      | EM       | $\mathbf{W}\mathbf{M}$ | $\mathbf{N}$ | Total      |
| 68       | 2      | 1             | 0       | 3        | 13                     | 1            | 20         |
| 69       | 3      | 1             | 2       | 3        | 12                     | 1            | 22         |
| 70       | 2      | 6             | 2       | 4        | 4                      | 3            | 21         |
| 71       | 1      | 7             | 1       | 1        | 10                     | 1            | 21         |
| 72       | 4      | 31            | 3       | 6        | 17                     | 1            | 62         |
| 73       | 11     | 42            | 2       | 4        | 6                      | 1            | 66         |
| 74       | 2      | 4             | 2       | 4        | 8                      | 1            | 21         |
| 75       | 4      | 4             | 25      | 11       | 0                      | 0            | 44         |
| 76       | 3      | 7             | 24      | 25       | 7                      | 2            | 68         |
| 77       | 3      | 8             | 1       | 1        | 8                      | 1            | 22         |
| 78       | 13     | 21            | 1       | 1        | 2                      | 1            | 39         |
| 79       | 6      | 2             | 37      | 13       | 2                      | 0            | 60         |
| 80       | 8      | 25            | 38      | 8        | 2                      | 1            | 82         |
| 81       | 5      | 15            | 28      | 41       | 2                      | 3            | 95         |
| 82       | 7      | 16            | 15      | 26       | 8                      | 0            | 50<br>72   |
| 82       | 7      | 10            | 21      | 20<br>45 | 5                      | 0            | 78         |
| 00<br>84 | (<br>1 | 4             | 21<br>6 | 40       | 0                      | 1            | 70<br>91   |
| 04       | 1      | 4             | 11      | 9<br>14  | 1                      | 10           | 21         |
| 00       | 3      | 0             | 11      | 14       | 1                      | 10           |            |
| 00       | 0      | 1             | 20<br>C | 12       | 0                      | 1            | -09<br>-00 |
| 81       | 0      | 1             | 0       | 13       | 1                      | 0            | 20         |
| 88       | 4      | 80            | 3       | 2        | 1                      | 0            | 95         |
| 89       | 19     | 12            | 0       | 1        | 0                      | 0            | 14         |
| 90       | 13     | 01            | 1       | 1        | 0                      | 1            | /0<br>00   |
| 91       | 2      | 20            | 0       | 3        | 0                      | 1            | 20         |
| 92       | 4      | 41            | 0       | 0        | 2                      | 1            | 48         |
| 93       | 2      | 35            | 1       | 0        | 0                      | 0            | 38         |
| 94       | 1      | 6             | 3       | 9        | 1                      | 11           | 31         |
| 95       | 4      | 23            | 1       | 2        | 2                      | 1            | 33         |
| 96       | 9      | 37            | 2       | 4        | 6                      | 0            | 58         |
| 97       | 2      | 9             | 0       | 0        | 0                      | 0            | 11         |
| 98       | 2      | 11            | 0       | 0        | 0                      | 0            | 13         |
| 99       | 0      | 13            | 2       | 0        | 0                      | 0            | 15         |
| 100      | 3      | 18            | 0       | 0        | 0                      | 0            | 21         |
| 101      | 1      | 7             | 0       | 0        | 0                      | 0            | 8          |
| 102      | 11     | 4             | 11      | 27       | 11                     | 3            | 67         |
| 103      | 9      | 3             | 6       | 9        | 5                      | 11           | 43         |
| 104      | 3      | 1             | 11      | 9        | 3                      | 4            | 31         |
| 105      | 7      | 7             | 17      | 12       | 6                      | 13           | 62         |
| 106      | 5      | 7             | 13      | 12       | 2                      | 9            | 48         |
| 107      | 5      | 3             | 7       | 7        | 4                      | 8            | 34         |
| 108      | 3      | 7             | 4       | 4        | 2                      | 13           | 33         |
| 109      | 4      | 2             | 5       | 9        | 1                      | 10           | 31         |
| 110      | 3      | 3             | 0       | 7        | 4                      | 12           | 29         |
| 111      | 2      | 1             | 1       | 2        | 5                      | 5            | 16         |
| 112      | 2      | 6             | 2       | 8        | 6                      | 9            | 33         |
| 113      | 8      | 8             | 2       | 4        | 5                      | 3            | 30         |
| 114      | 1      | 25            | 4       | 4        | 1                      | 1            | 36         |
| 115      | 5      | 4             | 29      | 11       | 6                      | 54           | 109        |
| 116      | 7      | 6             | 17      | 12       | 2                      | 14           | 58         |
| 117      | 0      | 1             | 2       | 0        | 6                      | 6            | 15         |
| 118      | 10     | 8             | 18      | 9        | 5                      | 18           | 68         |
| 119      | 0      | 11            | 0       | 8        | 13                     | 6            | 38         |
| 120      | 7      | 33            | 1       | 8        | 9                      | 0            | 58         |
| 121      | 1      | 22            | 2       | 6        | 7                      | 6            | 44         |
| 122      | 2      | 0             | 1       | 7        | 0                      | 8            | 18         |

Table S2 – Continued from previous page

| Crown | rabic i |         | <b>F</b> A | EN/    |        | N      | Total    |
|-------|---------|---------|------------|--------|--------|--------|----------|
| Group | 6       | 3 1     |            |        | VV 1V1 | 1      | 101a1    |
| 123   | 0       | 10      | 1          | 8      | (      | 4      | 21       |
| 124   | 4       | 10      | 1          | 1      | ა<br>- | 0      | 19       |
| 125   | 5       | 9       | 5          | 3      | 5      | 2      | 29       |
| 120   | (       | 2       | 8          | 2      | 1      | 2      | 22       |
| 127   | 6       | 2       | 7          | 2      | 2      | 3      | 22       |
| 128   | 1       | 2       | 4          | 9      | 1      | 5      | 22       |
| 129   | 4       | 3       | 11         | 13     | 3      | 6      | 40       |
| 130   | 42      | 14      | 9          | 8      | 1      | 2      | 76       |
| 131   | 78      | 72      | 27         | 27     | 28     | 8      | 240      |
| 132   | 83      | 43      | 43         | 39     | 10     | 4      | 222      |
| 133   | 23      | 12      | 7          | 11     | 2      | 1      | 56       |
| 134   | 47      | 27      | 15         | 11     | 4      | 2      | 106      |
| 135   | 97      | 93      | 72         | 37     | 15     | 5      | 319      |
| 136   | 19      | 11      | 6          | 5      | 1      | 1      | 43       |
| 137   | 14      | 8       | 3          | 3      | 1      | 2      | 31       |
| 138   | 9       | 10      | 9          | 4      | 0      | 0      | 32       |
| 139   | 9       | 8       | 3          | 1      | 2      | 0      | 23       |
| 140   | 5       | 3       | 4          | 4      | 1      | 0      | 17       |
| 141   | 41      | 21      | 7          | 9      | 3      | 1      | 82       |
| 142   | 46      | 22      | 12         | 11     | 5      | 2      | 98       |
| 143   | 9       | 8       | 10         | 1      | 0      | 1      | 29       |
| 144   | 5       | 69      | 0          | 1      | 1      | 0      | 76       |
| 145   | 7       | 20      | 0          | 1      | 0      | 1      | 29       |
| 146   | 6       | 109     | 0          | 0      | 3      | 1      | 119      |
| 147   | 1       | 16      | 0          | 0      | 0      | 0      | 17       |
| 148   | 19      | 82      | 2          | 5      | 0      | 0      | 108      |
| 149   | 12      | 8       | 0          | 5      | 0      | 1      | 26       |
| 150   | 26      | 7       | 16         | 15     | 3      | 4      | 71       |
| 151   | 10      | 2       | 5          | 2      | 4      | 2      | 25       |
| 152   | 11      | 15      | 23         | 4      | 0      | 15     | 68       |
| 153   | 10      | 4       | 10         | 0      | 0      | 5      | 29       |
| 154   | 4       | 11      | 18         | 7      | 0      | 3      | 43       |
| 155   | 4       |         | 8          | 2      | 0      | 2      | 19       |
| 157   | 6       | 1       | 4          | 1      | 0      | 1      | 13       |
| 159   | 11      | 11      | 21         | 8      | 6      | 19     | 76       |
| 160   | 19      | 14      | 30         | 12     | 3      | 10     | 88       |
| 161   | 40      | 18      | 68         | 16     | 11     | 16     | 169      |
| 162   | 7       | 2       | 2          | 2      | 0      | 0      | 13       |
| 163   | 7       | 16      | 9          | 9      | 2      | 2      | 45       |
| 164   | 14      | 8       | 53         | 8      | 3      | 12     | 98       |
| 165   | 6       | 5       | 18         | 4      | 3      | 7      | 43       |
| 166   | 6       | 3       | 4          | 4      | 2      | 2      | 21       |
| 167   | 24      | 7       | 21         | 3      | 1      | 2      | 58       |
| 168   | 8       | 1       | 0          | 4      | 1      | 0      | 23       |
| 160   | 5       | 1       | 10         | 0      | 0      | 0      | 16       |
| 100   | 11      | 7       | 8          | 2      | 0      | 0      | 28       |
| 170   | 6       | י<br>ז  | 12         | 1      | 0      | 0      | 20       |
| 179   | 0       | २<br>२  | 10         | 1      | 0      | 0      | 22<br>93 |
| 172   | 9<br>6  | 5<br>6  | 2010       | 1 9    | 2<br>0 | 7      | 20<br>20 |
| 174   | 1       | 0       | 0<br>9     | 2<br>1 | 0<br>0 | 0      | 52<br>1  |
| 175   | 10<br>1 | 6       | 16         | 1      | 0      | 2<br>2 | 4<br>27  |
| 170   | 12      | 11      | 10         | 1      | 0      | ა<br>7 | 57<br>57 |
| 177   | 21      | 11      | 9          | 4 9    | 2      | l<br>G | 04<br>40 |
| 170   | 9<br>6  | 0<br>10 | 0          | ა<br>ე | ა<br>ე | U<br>C | 40<br>96 |
| 170   | U<br>9  | 10      | 0<br>1     | 3      | 3<br>1 | 0      | 00<br>E  |
| 119   | J       | 1       | 1          | 0      | 1      | 0      | 0        |

Table S2 – Continued from previous page

| Group | S I ADIC I | $\frac{52}{SW}$ | EA | EM     | <b>WM</b> | N               | Total  |
|-------|------------|-----------------|----|--------|-----------|-----------------|--------|
| 180   | 2          | 0               | 0  | 0      | 1         | 0               | 3      |
| 181   | 2          | 0               | 0  | 1      | 1         | 0               | ु<br>२ |
| 182   | 2          | 3               | 2  | 2      | 1         | 1               | 14     |
| 183   | 1          | 3               | 3  | 1      | 2         | 0               | 10     |
| 184   | 2          | 0               | 0  | 2      | 2         | 0               | 10     |
| 185   |            | 1               | 6  | 2<br>5 | 2         | 1               | 17     |
| 186   | -<br>6     | 2               | 5  | 2      | 0         | 0               | 15     |
| 187   | 3          | 6               | 0  | 1      | 1         | 0               | 10     |
| 180   | 59         | 21              | 28 | 11     | 2         | 1               | 125    |
| 100   | 1          | 21<br>1         | 20 | 11     | 0         | т<br>0          | 120    |
| 100   | 3          | 1               | 0  | 0      | 0         | 0               | 2      |
| 191   | 16         | 3               | 5  | 11     | 0         | 0               | 35     |
| 192   | 12         | 5               | 10 | 2      | 3         | 3               | 35     |
| 196   | 10         | 7               | 7  | 0      | 0         | 5               | 20     |
| 197   | 3          | 11              | 23 | 2      | 2         | 2               | 43     |
| 198   | 8          | 6               | 10 | 7      | 1         | 2               | 34     |
| 199   | 5          | 3               | 2  | 2      | 1         | 5               | 18     |
| 200   | 4          | 4               | 7  | 0      | 1         | 3               | 10     |
| 200   | 7          | 5               | 12 | 7      | 2         | 59              | 92     |
| 201   | 15         | 6               | 12 | 6      | 4         | 7               | 45     |
| 202   | 6          | 1               | 6  | 7      | 1         | 5               | 26     |
| 200   | 3          | 0               | 5  | 0      | 6         | 7               | 20     |
| 204   | 1          | 15              | 3  | 5      | 2         | 19              | 45     |
| 200   | 16         | 6               | 20 | 9      | 2         | 23              | 76     |
| 200   | 14         | 7               | 12 | 8      | 7         | - 20            | 53     |
| 201   | 9          | 2               | 14 | 2      | 0         | 15              | 42     |
| 209   | 10         | - 3             | 4  | 1      | 0         | 11              | 29     |
| 210   | 9          | 5               | 15 | 3      | 0         | 19              | 51     |
| 210   | 33         | 11              | 19 | 8      | 1         | 33              | 105    |
| 212   | 7          | 0               | 3  | 2      | 1         | 7               | 20     |
| 213   | 6          | 2               | 5  | 1      | - 1       | 3               | 18     |
| 214   | 3          | - 1             | 3  | 1      | 3         | 3               | 14     |
| 215   | 12         | 6               | 8  | 2      | 5         | 5               | 38     |
| 216   | 3          | 5               | 5  | 0      | 2         | Ő               | 15     |
| 217   | 7          | 2               | 4  | 2      | 2         | Õ               | 17     |
| 219   | 5          | 11              | 1  | 4      | 4         | 3               | 28     |
| 220   | 31         | 12              | 33 | 33     | 0         | 3               | 112    |
| 221   | 3          |                 | 5  | 14     | 0         | 0               | 23     |
| 222   | 39         | 11              | 26 | 13     | 2         | 3               | 94     |
| 223   | 21         | 52              | 4  | 17     | 11        | 3               | 108    |
| 224   | 4          | 34              | 6  |        | 10        | 2               | 62     |
| 225   | 3          | 7               | 1  | 5      | 0         | 9               | 25     |
| 226   | 7          | 5               | 2  | 20     | 5         | 29              | 68     |
| 227   | 7          | 11              | 2  | - 3    | 1         | $\frac{-9}{34}$ | 58     |
| 228   | 7          | 10              | 0  | 7      | 9         | 4               | 37     |
| 229   | .5         | - 3             | 0  | 2      | 3         | 2               | 16     |
| 230   | 20         | 34              | 9  | 12     | 3         | 14              | 92     |
| 231   | 6          | 27              | 0  | 7      | 7         | 8               | 55     |

Table S2 – Continued from previous page

Table S3: Regional counts of late Iron Age and Roman brooches by TPQ and period. PEN refers to the undated penannular brooches which cannot be assigned to a period. The regions are EA = East Anglia, N = North, S = South, EM = East Midlands, WM = West Midlands, SW = South-West. The periods are IA = Iron Age, AT = Augusto-Tiberian, CN = Claudio-Neronian, FL = Flavian, TH = Trajanic-Hadrianic, AS = Antonine-Severan, L = Late.

| TPQ | $\mathbf{S}$ | $\mathbf{SW}$ | $\mathbf{E}\mathbf{A}$ | $\mathbf{E}\mathbf{M}$ | WM | Ν  | Period              |
|-----|--------------|---------------|------------------------|------------------------|----|----|---------------------|
| -70 | 88           | 24            | 25                     | 20                     | 3  | 0  | IA                  |
| -50 | 107          | 26            | 25                     | 29                     | 3  | 1  | IA                  |
| -30 | 49           | 25            | 13                     | 11                     | 1  | 2  | IA                  |
| -20 | 7            | 20            | 0                      | 1                      | 0  | 1  | IA                  |
| -5  | 24           | 1             | 6                      | 3                      | 0  | 0  | IA                  |
| 0   | 141          | 95            | 62                     | 64                     | 30 | 11 | AT                  |
| 5   | 19           | 82            | 2                      | 5                      | 0  | 0  | AT                  |
| 10  | 532          | 119           | 173                    | 157                    | 37 | 14 | AT                  |
| 15  | 26           | 3             | 9                      | 7                      | 3  | 0  | AT                  |
| 20  | 277          | 81            | 38                     | 51                     | 15 | 4  | AT                  |
| 25  | 13           | 1             | 3                      | 0                      | 0  | 0  | AT                  |
| 30  | 56           | 14            | 32                     | 20                     | 1  | 0  | AT                  |
| 35  | 561          | 319           | 247                    | 176                    | 50 | 26 | AT                  |
| 40  | 72           | 8             | 31                     | 41                     | 5  | 2  | CN                  |
| 45  | 203          | 339           | 82                     | 54                     | 20 | 8  | CN                  |
| 50  | 106          | 142           | 190                    | 77                     | 28 | 8  | CN                  |
| 55  | 182          | 98            | 297                    | 119                    | 34 | 24 | CN                  |
| 60  | 68           | 48            | 68                     | 22                     | 19 | 4  | CN                  |
| 65  | 74           | 146           | 55                     | 45                     | 64 | 10 | CN                  |
| 70  | 27           | 17            | 29                     | 22                     | 10 | 11 | $\mathrm{FL}$       |
| 75  | 106          | 140           | 89                     | 90                     | 53 | 58 | $\mathrm{FL}$       |
| 80  | 57           | 94            | 130                    | 79                     | 35 | 70 | $\mathrm{FL}$       |
| 85  | 73           | 145           | 161                    | 142                    | 63 | 89 | $\operatorname{FL}$ |
| 95  | 26           | 22            | 70                     | 18                     | 10 | 73 | $\mathrm{FL}$       |
| 100 | 5            | 4             | 4                      | 5                      | 13 | 5  | TH                  |
| 105 | 12           | 14            | 10                     | 2                      | 1  | 1  | TH                  |
| 110 | 58           | 49            | 52                     | 37                     | 40 | 37 | $\mathrm{TH}$       |
| 115 | 18           | 32            | 12                     | 11                     | 13 | 25 | $\mathrm{TH}$       |
| 120 | 7            | 17            | 10                     | 17                     | 9  | 6  | TH                  |
| 125 | 38           | 53            | 36                     | 15                     | 11 | 10 | $\mathrm{TH}$       |
| 135 | 6            | 6             | 8                      | 2                      | 3  | 7  | $\mathrm{TH}$       |
| 140 | 19           | 5             | 21                     | 7                      | 7  | 17 | $\mathrm{TH}$       |
| 145 | 11           | 15            | 23                     | 4                      | 0  | 15 | AS                  |
| 150 | 37           | 39            | 34                     | 18                     | 11 | 50 | AS                  |
| 155 | 8            | 6             | 10                     | 7                      | 1  | 2  | AS                  |
| 160 | 15           | 14            | 29                     | 10                     | 6  | 21 | AS                  |
| 170 | 31           | 14            | 13                     | 5                      | 2  | 18 | AS                  |
| 175 | 12           | 13            | 22                     | 10                     | 0  | 3  | AS                  |
| 180 | 15           | 6             | 7                      | 6                      | 4  | 7  | AS                  |

| TPQ | $\mathbf{S}$ | $\mathbf{SW}$ | $\mathbf{E}\mathbf{A}$ | $\mathbf{E}\mathbf{M}$ | $\mathbf{W}\mathbf{M}$ | Ν  | Period       |
|-----|--------------|---------------|------------------------|------------------------|------------------------|----|--------------|
| 185 | 12           | 6             | 16                     | 0                      | 0                      | 3  | AS           |
| 190 | 40           | 18            | 68                     | 16                     | 11                     | 16 | AS           |
| 200 | 28           | 16            | 44                     | 14                     | 3                      | 25 | AS           |
| 210 | 9            | 5             | 15                     | 3                      | 0                      | 19 | AS           |
| 215 | 33           | 11            | 19                     | 8                      | 1                      | 33 | AS           |
| 275 | 3            | 11            | 23                     | 2                      | 2                      | 2  | $\mathbf{L}$ |
| 290 | 7            | 0             | 3                      | 2                      | 1                      | 7  | $\mathbf{L}$ |
| 310 | 6            | 2             | 5                      | 1                      | 1                      | 3  | $\mathbf{L}$ |
| 340 | 3            | 1             | 3                      | 1                      | 3                      | 3  | $\mathbf{L}$ |
| 350 | 12           | 6             | 8                      | 2                      | 5                      | 5  | $\mathbf{L}$ |
| 370 | 3            | 5             | 5                      | 0                      | 2                      | 0  | $\mathbf{L}$ |
| 400 | 7            | 2             | 4                      | 2                      | 2                      | 0  | $\mathbf{L}$ |
| PEN | 107          | 175           | 54                     | 92                     | 39                     | 93 | -            |

Table S3 – Continued from previous page

The data in Table S3, expressed as row percentages, form the basis of Table 1 in the text.

# 3 Regional patterns of use through time

This section provides supporting evidence for assertions made in the text. Additional comment on some aspects of the statistical techniques is provided.

### Correspondence analyses

Correspondence analysis plots, of the kind illustrated in FIG. 4 were used extensively for data exploration, and guided many of the choices made about subsequent methods of analysis and presentation. FIG. S1 shows the results of the initial correspondence analyses undertaken using the data of Table S3. The six regional categories used were determined after undertaking a correspondence analysis based on a finer sub-division of 12 regions, and amalgamating sub-regions whose markers plotted closely together.

The plot based on the first two axes is notable for the three outliers in the lower-left quadrant that pull the South-West away from the other regions; if these are omitted, as in FIG. 4 in the text, the South-West is much less distinctive. As previously, the third axis pulls East Anglia away from other regions. The main interpretation, that the South is 'early' and the North 'later', with other regions intermediate, is unaffected.

It was noted in the text that if the undated penannular Group was added to FIG. 4 it had a distinctly later 'flavour', biased away from the South and East Anglia and more towards the North. The evidence for this is provided in FIG. S2 where the Group is plotted as a solid red circle.

The interpretation outlined in the text need not be repeated here. Unless otherwise stated the density analyses described in the text and below were undertaken omitting the undated penannular Group. Adding this Group, with a range of assumed TPQs and use-lives, only made any visible difference to the patterns observed if a very early



FIG. S1: A correspondence analysis of Table S3. Plots are labelled by period, IA = Iron Age, AT = Augusto-Tiberian, CN = Claudio-Neronian, FL = Flavian, TH = Trajanic-Hadrianic, AS = Antonine-Severan, L = Late.

TPQ and short use-life was assumed. FIG. S2 suggests that such an assumption is quite untenable on statistical as well as archaeological grounds.

### Density analysis

The 'density analysis' discussed in this section refers to the kernel density estimates (KDEs) used to visualise the temporal distribution of brooch loss across regions. In the text FIGs. 5 and 6 are the examples of such analyses. They provide a more nuanced display of regional differences in the temporal distribution of brooch use than correspondence analysis, allowing for a use-life. Assumptions have to be made about the use-life and the pattern of brooch loss; a 100 years use-life with brooch loss peaking at and symmetrically distributed about the half-life of 50 years was assumed (i.e.  $\alpha = \beta = 2$  in the beta distribution used to model random dates). We asserted that results were surprisingly insensitive to these assumptions. This was based on extensive experimentation with different use-life and brooch loss assumptions, at the extreme allowing both to vary between Groups. Some illustrative examples are offered below to support this contention. Baxter and Cool (2016) provides a detailed account of the methodology used.

In FIG. S3 a use-life of 60 years is assumed, with brooch loss modelled using a beta distribution with  $\alpha = 2$  and  $\beta = 4$ . In archaeological terms this models the idea that peak brooch loss occurs a quarter of the way through the use-life, or after 15 years in this example.

The interpretation of these plots is much the same as that of FIG. 5. The main difference is the appearance of two modes for the North after A.D. 150. If Table S3 is examined it can be seen that for the North, relative to the years around them, there



FIG. S2: A correspondence analysis of Table S3 after removing three outliers. This is FIG. 4 in the text with the addition of a supplementary point for the undated penannular brooch Group. Labelling is as in FIG. S1 with X corresponding to the undated penannular brooches, represented by a single solid red circle.

is an increase in brooch loss for Groups with TPQs about A.D. 150 and A.D. 190–215. The modelling assumptions 'smear' these brooches over a period of 60 years from their TPQs but with a strong bias towards loss in the early part of this period. This means there will be very little overlap in the simulated dates for the time periods involved and hence the peaking reflects the rise in brooch loss apparent for the two periods. If, as in FIG. 5, a longer use-life is assumed and dates are not biased towards an early loss then there is far more scope for dates from the earlier Groups to overlap with those from the later Groups, and the peaks coalesce and are undifferentiated.

This is an intra-regional difference not seen in FIG. 5; inter-regional comparisons are not affected. It is interesting to ask what these patterns mean. One possibility suggested by FIG. S3 is that the sharp decline in brooch use in the first half of the second century A.D. is arrested and reversed for a period in the second half of the century before experiencing another decline in the last quarter of the century and then another recovery in the early part of the third century. That is, there is a hiatus in brooch use rather than the simple decline observed in most other regions (the East Anglian 'bump' centered on about A.D. 200 is discussed in the text).

Another possible interpretation is that the modelling assumptions are not plausible; that it is reasonable to expect a smoother, more 'continuous' pattern of brooch use; and that the assumption of a longer use-life, not biased towards early loss, better reflects this, as in FIG. 5. The statistical analysis cannot arbitrate between different interpretations, but has the merit of drawing attention to (intra-regional) phenomena that arise from quite explicit assumptions about brooch lives, that invites what may or may not be a ready archaeological explanation. As noted in the text, currently while the different pattern seen in brooch decline in the north seems a real phenomenon, a simple explanation



FIG. S3: Density plots of brooch use from 99 simulations assuming a use-life of 60 years, modelled using a beta distribution with  $\alpha = 2$  and  $\beta = 4$ . The plot to the right shows an 80% 'envelope' for the simulated distributions in the plot to the left – see the text for details.

that is reflecting different use patterns by the military cannot be sustained.

The plot in FIG. S3b is basically the same as that of FIG. S3a, omitting the more extreme simulated results. It can be thought of as an '80% simulation envelope' where the 20% most extreme simulations have been jettisoned<sup>1</sup>. Transparent colours are used in the plot to allow for the potential of considerable overlap in the envelopes. It's not really needed here since FIG. S3a adequately reveals patterns, but is of greater value when the simulations exhibit more variation.

Another assumption made in the above analyses is that the use-life is constant across brooch Groups, which is unrealistic. Unfortunately what would be 'realistic' is problematic to specify. We avoided this problem by simulating dates allowing each dateassemblage to have a different use-life. If a *maximum* use-life, M, is assumed each date-assemblage is randomly assigned a use-life between 0 and M, from a uniform distribution, retaining the same model of brooch loss (which can, however, also be varied).

FIG. S4a shows the results of allowing use-life to vary up to a maximum of 80 years, assuming brooch loss peaks half way through the use-life. This implies that for a quarter of the date-assemblages brooch loss will peak at 20 years or somewhat less. FIG. S4a shows more variability than previous plots, but stripping out the more extreme, and probably seriously unrealistic simulations, with transparency (FIG. S4b), makes it easier to see the regions of overlap. Interpretation in terms of inter-regional differences is much as before which suggests that conclusions about regional differences are robust, even in the face of what are possibly unrealistic assumptions.

<sup>&</sup>lt;sup>1</sup>More technically, for each region 99 sets of simulated dates are generated and plotted as kernel density estimates (KDEs). The plotted curves are derived from 512 plotting positions on the date axis. At each plotting position the 10th and 90th percentiles are obtained and these form the boundaries of the envelopes in the figure.



FIG. S4: Density plots of brooch use from 99 simulations assuming a variable use-life with a maximum of 80 years, modelled using a beta distribution with  $\alpha = 2$  and  $\beta = 2$ . The plot to the right shows an 80% 'envelope' for the simulated distributions in the plot to the left – see the text for details.

The point to emphasise is that the differences in patterns of inter-regional brooch use that can be seen are surprisingly insensitive to the different beliefs concerning use-life and brooch loss that might reasonably be embodied in the modelling assumptions. This, in retrospect, is not too surprising. If each brooch is simply associated with the TPQ of the date-assemblage to which it belongs the picture obtained is difficult to interpret and suggests regular hiatuses in brooch use. If a use-life of more than minimal duration is assumed this allows the use-life of brooch Groups to overlap with that of others having a different TPQ, resulting in a smoother and more realistic pattern of brooch use/loss.

### 4 Regional patterns in the later first to second centuries

Density maps were used to explore, in more detail, regional patterns within a shorter window of time than covered by the full data set, for reasons explained in the text. FIGS. 8–10, as well as FIG. 2 are examples of density maps based on two-dimensional KDEs. Our applications use functions from the spatstat package for R (Section 5) which map the *intensity* of the point pattern. The intensity of a point-pattern over a region is just the number of points divided by the areal extent; to produce the maps, 'localised' intensities over a unit area are computed at a fine grid of pixels and it is this *intensity function* that the KDE represents.

We have, for the most part, used the defaults in the software; it is possible to vary the bandwidths used for the KDEs and this was experimented with, but one has to depart in a major way from the defaults to get a seriously different picture which either breaks up the pattern observed (under-smoothing) or obscures any pattern there may be (over-smoothing). Similarly, the default colour palette was mostly used; it shows nicely the broad gradation in intensity as one moves about the country. The colour scheme is relative to the individual map (it is based on densities) and in comparing two maps it should be borne in mind that it cannot be used to draw conclusions about absolute densities.

FIG. 2 in the text illustrates this. There are about two and three-quarters as many rural settlement sites as there are brooch sites so, other things being equal (which they are not) the intensity of the settlement sites would be uniformly greater than that for the brooch sites. Exactly the same picture is obtained if the settlement sites are randomly sampled to get the same number as the brooch site. What is going on can be seen readily by inspecting a map of the point scatter, as in FIG. 2a (which is an obligatory starting point in any event). For example, the obviously less dense brooch site distribution in the South-West and West, compared to the settlements, is not reflected in the maps in FIG. 2b. What's really interesting about this figure, when all maps are compared, is that East Anglia in the two maps for FIG. 2b, is quite differently coloured, reflecting, in the case of the brooches, that it is the region most densely populated with brooch sites. What's striking – it is neither inevitable nor to be expected – is that inspection of FIG. 2a shows that the region is more densely populated with brooch sites, in absolute terms, than with rural settlement sites. It was this observation, possibly more than Mackreth's frequent worry about the eastern bias his data might show, that first alerted us to the fact that there might be something rather peculiar about the nature of brooch finds in the region.

We departed from the defaults when it came to looking at trumpet brooch distributions. FIG. 9 is a subset of FIG. S5, based on all 15 trumpet brooch groups for which data were available. We opted for a more 'shouty' rainbow colour palette; it makes it easier to compare a large number of maps than the more nuanced gradations of the default palette allows. A little care is needed in reading these since some of the sample sizes are quite small, so inspection of the actual point patterns (not shown) should be undertaken in conjunction with this; essentially, though, what the shouting's about – it's being trumpeted if you wish – is that trumpet brooch groups are both differently and regionally distributed.

FIG. S5 is particularly interesting because the patterns seen in the Groups not included in FIG. 9 of the main text again point to the problems of bias towards colour in metal-detecting assemblages. Groups 123 and 124 are both plain types and show no major area of density in East Anglia. All of the others are enamelled and do. This leads in the case of Group 125 (Mackreth TR Type 3.1a, also known as the Alcester brooch) to a most peculiar density pattern. These are large, handsome brooches, frequently retaining silver trim as well as enamel. They are a type that is very collectable and provide a very good example of how metal-detecting may disrupt meaningful patterns in the data.

# 5 Computational and related matters

Statistical analyses were undertaken using the open-source software R (R Core Team, 2015). This is an extremely powerful package for statistical analysis, greatly extended by the availability of, literally, thousands of user-contributed packages that implement less standard methodologies or enhance facilities bundled with R. The packages need to



FIG. S5: Density maps showing the distribution of trumpet brooch-groups with a start date between A.D. 70 and A.D. 125 (inclusive).

be imported into R before they can be used. Baxter (2015b) is an introductory guide to the use of R for archaeological data analysis and describes how this is done. For a more detailed account of some of the methods to be described, intended for an archaeological readership, see Baxter (1994, 2003, 2015a) and Shennan (1997).

### Correspondence analysis

Several packages in R are available for carrying out correspondence analysis; the ca function from the package with the same name was used. Create an R object, X, which is the 51 table of counts (Table S3), with row names given by the TPQ, and an analysis can be undertaken using plot(ca(X)) which is more than adequate for exploratory purposes. For presentational purposes FIGs. 4, S1 and S2 were produced using the enhanced graphical facilities of the ggplot2 package (Wickham 2009), using information

derived from the initial correspondence analysis.

### Density analysis

The plots contrasting the regional patterns over time of brooch loss (FIGs. 5, 6, S3, S4) were based on kernel density estimates (KDEs) of simulated dates. The building block is the simulation model

$$D = TPQ + L \times E$$

where E is randomly sampled from a beta distribution. In R this is easily accomplished using the rbeta function. Thus, for the Group of 88 brooches from the South with a TPQ of 70 B.C., and an assumed use-life, L of 100 years,  $\alpha = 2$  and  $\beta = 5$ , 88 random dates are generated using

$$D < -70 + 88 * rbeta(88, 2, 5)$$

A KDE for the dates can be plotted using plot(density(D, bw = 8)) where bw = 8 is the bandwidth which controls the level of smoothing; there is a sensible default if bw is not specified. The value 8 was used in our analyses, chosen after some experimentation, but the choice is not that important unless one goes to extremes.

For a single simulation for the South, 3349 dates need to be generated as the TPQ varies, with assumptions about L,  $\alpha$  and  $\beta$  also varied if wished. This then needs to be repeated 99 times (in our analyses) and the resultant KDEs overlaid. The process is repeated for other regions with the KDEs overlaid on the same plot. A little programming effort is needed to achieve this, which we shall not go into but which is not particularly onerous.

#### Cluster analysis

The hierarchical cluster analysis of FIG. 7 used the chclust function from the rioja package, based on the data as given in Table 3. The following code does this

```
D <- dist(X, method = "manhattan")
plot(chclust(D), labels = date, xvar = date, cex = .75)</pre>
```

Here X is the table of percentages and date a column containing the TPQs. The first line calculates the distances between rows X using Manhattan distance; the second line executes the analysis and plots the resultant dendrogram, with leaves labelled according to the the values held in date. The xvar = date argument is optional, but spaces the leaves according to their actual TPQs (the default is equal spacing); cex is similarly optional, but controls, in the interests of readability, the size of the labels.

### Density maps

The density maps in FIGs. 2, 8–10 and S5 were produced using the spatstat package (Baddeley *et al.*, 2015). The time-consuming aspect of an analysis is setting up the necessary data structures. These consist, in effect, of three columns of data – the coordinates of the brooch/site locations and a set of *marks* defining, for example, the brooch group or other classifying variable of interest, and a window that delineates the region within which points lie. See the references or the spatstat documentation for details.

We used a map of England derived, with a little effort, from David Lucy's blighty package. With this done things become a lot easier

Call the resultant structure X.ppp. If this consists of the combined brooch and rural settlement sites with the marks distinguishing between the two, plot(split(X.ppp)) produces the upper plot in FIG. 2; plot(split(density((X.ppp))) produces the lower plot. For FIG. S5 the coordinates corresponded to trumpet brooch locations, marks to brooch Groups, and the additional argument col = rainbow was used to change the default palette.

### References

- Baddeley, A., Rubak, E. and Turner, R. 2015: Spatial Point Patterns: Methodology and Applications with R, Boca Raton: Chapman & Hall/CRC Press
- Baxter, M. J. 1994: Exploratory Multivariate Analysis in Archaeology, Edinburgh University Press, Edinburgh
- Baxter, M. J. 2003: Statistics in Archaeology, Arnold, London
- Baxter, M. J. 2015a: *Exploratory Multivariate Analysis in Archaeology*, Percheron Press, New York (this is a reprint of Baxter 1994 with a new introduction)
- Baxter, M. J. 2015b: Notes on Quantitative Archaeology and R. https://www.academia.edu/12545743/Notes\_on\_Quantitative\_Archaeology\_and\_R
- Baxter, M. J. and Cool, H. E. M. 2016: 'Reinventing the wheel? Modelling temporal uncertainty with applications to brooch distributions in Roman Britain', *Journal* of Archaeological Science 66, 120–127
- R Core Team 2015: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.Rproject.org
- Shennan, S. J. 1997: *Quantifying Archaeology, second edition*, Edinburgh University Press, Edinburgh

Wickham, H. 2009: ggplot2. New York: Springer

Barbican Research Associates hilary@coolarchaeology.com

Nottingham Trent University (Emeritus) michaelj.baxter@btconnect.com