
MOAC – Module CH923 – Data, Bioinformatics and Statistics 

Relationships Between Variables - Page1 

Module CH923 

Statistics for Data Analysis 
 

Relationships Between Variables 

 
Introduction 

 

A range of techniques are available that can be used to model, or describe, the relationship 

between an observed response variable and one or more explanatory variables.  There are a 

number of reasons why we might wish to do this, but the two principal ones are: 

 

i) To investigate and test hypothetical mathematical models for biological systems, 

 

ii) To predict the values of one variable from another. 

 

Often a particular investigation may stem from both of these motives.  Examples of relationships 

that may need to be investigated are: 

 

(a) The response of a crop to varying amounts of several fertilisers – the objectives may be to 

establish the form of the relationship, or to predict the optimum combination of fertilisers; 

(b) The relationship between various meteorological measurements and crop yield – the most 

obvious objective would be to try and understand possible causative mechanisms of 

meteorological effects on crop growth; 

(c) The effectiveness of different rates of insecticide in killing a particular insect – here we are 

probably interested in identifying the rate required to kill a certain proportion of the 

insects; 

(d) The relationship between leaf area and leaf weight for several varieties of a plant and 

various ages of leaves for each plant – in this situation we could be interested in predicting 

leaf area, an important variable in photosynthesis, which is difficult to measure, using leaf 

weight, which is relatively simple to measure. 

 

The simplest form of relationship between two variables is a straight line, and this is known as 

simple linear regression. 

 

Types of model 

 

Before we develop the basic ideas behind regression 

modelling, it is worth spending a few moments 

considering the different types of model that we 

might meet.  Our primary emphasis will be on 

empirical modelling, although probability and 

statistics have a role to play in some of the other 

types. 

 

It should be stressed that the model types that we 

define below are not as clearly defined as they may 

appear.  For example mechanistic models, which 

purport to describe reality using mechanisms will 

always involve empiricism at some stage of their 

Experiment

Data

Empirical Model
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construction.  It is often convenient, however, to classify models using a combination of the 

descriptors below. 

 

 Empirical or Mechanistic 
 

Empirical models set out principally to describe; mechanistic models attempt to give a 

description with understanding (frequently based on differential equations). 

 

More generally, empirical models are developed 

from experimental data – they describe the results 

of experiments, and the process of collecting 

experimental data and improving an empirical 

model may have to be repeated a number of times 

before an entirely satisfactory (or general) model 

can be produced. 

 

By contrast, mechanistic models are developed 

from prior knowledge, but require validation and 

parameter estimation using experimental data. 

 

Examples 

 

i) Empirical model 

 

Crop yield versus weed density – a commonly used relationship to describe the relationship 

between crop weight and changing weed density is the rectangular hyperbola ie. 

 

Density) (Weed * + 1
 = Yield Crop

d

b
 

 

The form of the relationship is not based on any knowledge of the mechanism, but has simply 

been observed to describe the shape of the relationship for similar data collected previously. 

 

ii) Mechanistic Model 

 

An exponential growth model for a bacterial culture.  Denoting the number of bacteria at time t 

by N(t), a simple model can be expressed as 

kN = 
dt

dN
 

 

When solved this leads to the exponential growth model, ie 

 
tkeNtN *0  

 

This model involves a simple mechanistic assumption that each individual reproduces at a 

constant rate.  Experiments are needed to verify that this relationship holds, and to estimate k. 

 

Assumptions &

Prior Knowledge

Mechanistic Model

Experiments & Data
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 Deterministic or Stochastic 
 

A deterministic model makes definite predictions for quantities (such as crop yield, or rainfall); 

in contrast a stochastic model contains random elements so that it will predict, for example, the 

mean yield, but also predicts the potential variability of the yield. 

 

Examples 

 

i) Deterministic 

 

The exponential growth model above is a deterministic model, as it makes definite prediction 

for the number of bacteria at time t.  This is a deterministic model because it deals with very 

large populations, so that the random component is insignificant. 

 

ii) Stochastic 

 

A typical example is insect dispersal, where insects have an initial spatial distribution from which 

they disperse.  In this case the population is small, so it is not possible to predict the exact spatial 

distribution of insects after a given interval of time.  However we can model the expected spatial 

distribution of insects, and the variability of each point estimate. 

 

 Static or Dynamic 
 

A static model does not involve time, so assumes that the processes reach equilibrium fairly 

rapidly; a dynamic model describes the behaviour of a biological system through time. 

 

Examples 

 

i) Static 

 

The forces acting on the structural members of a farm building. 

 

ii) Dynamic 

 

The exponential growth model above predicts the number of bacteria at any time t. 

 

The role of statistics in mechanistic modelling 

 

A mechanistic model is likely to contain parameters whose values are not explicitly known; these 

parameters need to be estimated using experimental data.  For example, for the simple exponential 

model of growth, the growth rate, k, needs to be estimated from experimental results.  Usually the 

models are considerably more complex than this simple model. 

 

Within the development of a mechanistic model, the following activities will use statistical 

analysis:- 

 

 Estimation of model parameters from experimental data. 

 Estimating the precision of the parameter estimates (ie the standard error of the parameter 

estimates, or confidence regions for them). 

 Making inferences using the parameters (ie is a particular parameter different from zero; is 
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a particular variable important in the model?) 

 Estimating the precision of model predictions. 

 Model validation – does the "best-fit" model describe the experimental results adequately?  

Is there evidence that the model "behaves" wrongly? 

 

These activities require the use of regression techniques, both linear, and non-linear, as will be 

described in more detail later. 

 

Approaches in empirical modelling 

 

The aim of an empirical model is to describe experimental results.  An empirical model will 

usually enable large sets of data to be reduced to a parsimonious description consisting of one or 

more biologically sensible equations with biologically meaningful parameters.  Empirical models 

can also describe complex interactions. 

 

In general the procedure followed can be described in three steps: 

 

(a) Model specification 
 

Decide on one or more equations that give a "sensible" description of the experimental 

results.  These are chosen from past experience (both yours, and what appears in the 

literature) and/or by plotting the experimental data and comparing the shape of response to 

a number of standard curves. 

 

(b) Parameter estimation 
 

Fit the equations to estimate the unknown parameters of the equations (eg with the 

rectangular hyperbola the parameters B and d are estimated). 

Statistical technique: Regression (linear & non-linear) 

 

(c) Model simplification 
 

There may be other factors affecting what is going on (eg in studies of crop yield versus 

weed density another experimental factor may be included such as different herbicide 

doses).  Are some of the model parameters unaffected by treatment?  (ie is the weed 

competitivity affected by dose?). 

 

Statistical technique: Parallel curves/lines – discriminating between nested models. 

 

Fitting models - parameter estimation 

 

Model fitting is an essential requirement for any of the techniques outlined above – the parameter 

estimation and inference needed for mechanistic modelling, and the data summarising, parameter 

estimation and model simplification required for empirical modelling. 

 

There are three steps to the model fitting process: 
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i) Choosing the correct distribution of the predicted variable 
 

Empirical models are looking for relationships between a predicted, or dependent, variable (eg 

crop yield) and explanatory, or independent, variables (eg weed density).  The distribution of the 

dependent variable needs to be taken account of in any fitting process so that the "best" parameter 

estimates are obtained, and that valid inferences are drawn when investigating model 

simplification.  Some common distributions are: 

 

 The Normal distribution - the most widely appropriate distribution. 

 

 The Poisson distribution - used for data consisting of counts, ie insects caught in a field 

trap. 

 

 The binomial distribution - used when data consists of proportion of individuals in a small 

group responding to a stimulus, eg insect mortality in probit analysis. 

 

 The multinomial distribution - used when each individual in a small group can be 

classified into one of several groups. 

 

ii) Choosing an appropriate equation 
 

This has been covered in the previous section (Model specification). 

 

iii) Fitting the equation 
 

Model fitting generally uses a technique called maximum likelihood, which estimates the model 

parameters to be those which are most likely given the observed data.  When the predicted 

variable being modelled is Normally distributed this reduces to a technique called least squares, 

which will be presented in more detail later.  Combinations of certain probability distributions for 

the predicted variable with certain predictive equations allow model parameters to be estimated 

using a special case of maximum likelihood, and are called generalised linear models, more 

details of which will be presented later. 

 

Simple linear regression 
 

The method of simple linear regression is concerned with linear relationships between just two 

variables.  The word simple here does not mean easy, but is used to contrast with multiple linear 

regression which involves three or more variables.  The term linear in the name refers to the 

relationship between the response variable and the parameters, but in this simplest case we are 

also only interested in fitting a straight-line relationship between the two variables. 

 

Finding the best line 

 

In the simplest situation we will have a series of pairs of observations of y and x, where y, the 

dependent variable, is assumed to depend on x, the independent variable.  As in designed 

experiments, we must assume that the units on which observations are made are variable.  So, if 

we plot the values of y against the corresponding values of x, we do not get a series of points 

exactly on a straight line, but a scatter of points about an apparently straight line. 

 

An artificial example of the kind of data we should expect to find is given in the Excel plot below, 
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where the x-variable might be an applied level of nutrient, and the y-variable might be the increase 

in plant weight over a given period of time. 

 

In order to choose a best line we must define a criterion for judging the adequacy of the fit of any 

particular line.  The standard criterion used is that of minimising the sum of squared vertical 

deviations of the observed points about the line.  This criterion is known as the principle of least 

squares (the same idea behind the analysis of variance of designed experiments).  The use of 

squared deviations should not be entirely surprising, since this is the basis for variances – what we 

are doing is minimising the variance of the observations about the line. 

 

The criterion is illustrated in the plot below for an arbitrary line fitted by eye to the data.  The 

measure of adequacy of the line A to F in fitting the points A1, B1, …, F1, is given by the sum 

 

Sr = (A1 – A)
2
 + (B1 – B)

2
 +(C1 – C)

2
 +(D1 – D)

2
 +(E1 – E)

2
 +(F1 – F)

2
 

 

where Sr is referred to as the residual sum of squares, since it measures the residual variation of 

the y observations about the line, i.e. that part of the original variation between the y observations 

which is not attributable to the estimated linear dependence of y on x.  The line which gives the 

smallest residual sum of squares, Sr, is defined to be the best fitting line. 

 

We can calculate this criterion for any given line by calculating for each value of x for which there 

is an observation, the value of y on our given line, obtaining the difference between the observed 
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and fitted line values of y, and summing the squares of these differences.   

 

Using the least squares principle of choosing the line to minimise the sum of squared deviations, 

we can express this sum algebraically as follows 

 

i

ir xbayS
2

 

 

where a and b are the intercept (value when x = 0) and slope of the fitted line respectively.  It can 

be shown mathematically that the best fitting line has parameters a and b given by 

 

xby
n

xby

a
xx

yyxx

b i

i

i

i

i

i

i

ii

2
 

 

where n is the number of observations of y.  This line is the regression line of y on x.  The 

numerator in the calculation of b is referred to as the corrected sum of products of x and y (written 

Sxy), and the denominator in this calculation is referred to as the corrected sum of squares of x 

(written Sxx).  As in the calculation of the sample variance, these sums can be written in alternative 

forms for ease of calculation: 

 
22 xnxSyxnyxS

i

ixx

i

iixy  

 

So, using these formulae, we can calculate the regression line for the artificial data on increase in 

plant weight against applied nutrient level plotted above (the Excel formulae are shown below).  

 

Thus the fitted equation is  xxbay 114.26.4  
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and, by setting x equal to 1, 2, 3, 4, 5 and 6 in this equation, we can obtain the fitted values of y . 

 

Assessing the regression line 

 

The first question we would expect to ask about the regression line we have just fitted is whether 

it represents a real relationship, i.e. is the slope of the assumed linear relationship genuinely 

different from zero?  One way of answering this question is by considering the analysis of 

variance for fitting a regression line.  We divide the total variation in the sample of y values into 

the residual variation about the fitted line (the sum we were minimising above to find the best 

line) and the variation between the fitted y values along the line.  The latter variation can be 

thought of as the variation explained by, or attributable to, the regression of y on x, and is referred 

to as the regression sum of squares. 

 

In practice the analysis of variance is obtained by calculating the total sum of squares 

 
222

ynyyyS
i

i

i

iyy  

 

and the regression sum of squares 

 

i

i

i

ii

xx

xy

xx

yyxx

S

S
2

2

2

 

 

and then obtain the residual sum of squares by subtraction. 

 

The division of the (n – 1) degrees of freedom for the total variation is 1 for the regression sum of 

squares and (n – 2) for the residual sum of squares.  To understand why the residual degrees of 

freedom is (n – 2), remember that the degrees of freedom for a sample variance is (n – 1) because 

we are considering n deviations from a single value estimated from the data, the grand mean.  For 

a regression line we a reconsidering n deviations from a set of values on a line, where the line is 

defined by two parameters, a and b, estimated from the data.  As in the analysis of variance for 

designed experiments, the residual mean square is denoted by s
2
 and provides an estimate of the 

variance of the observations having corrected for the effect of differences in the x-values, 

assuming that the relationship between y and x is linear.  For the data on plant weight gains, 

the analysis of variance is constructed as shown below: 
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The significance of the regression is tested by comparing the ratio of the regression and residual 

mean squares with the F-distribution having 1 and (n-2) degrees of freedom.  The hypothesis 

being tested is that there is no dependence of y on x, or, in other words, that the slope of the linear 

relationship is zero.  In this case the variance ratio is very significant, so that there is clearly a 

trend of y increasing with x. 

 

A simple summary statistic is the „percentage variance accounted for‟, which expresses the 

reduction in variance due to the regression, and is given by the formula 

 

m.s. Total

m.s.Residualm.s.Total
*100v.a.f.%  

 

It is closely related to the correlation coefficient, r, which is equal to the coefficient of 

determination, R, when used in a simple linear regression context.  R is given by the formula 

 

s.s. Total

s.s. Residuals.s. Total2R  

 

Both of these statistics measure the linear association between the response and explanatory 

variables.  As a summary of regression, the percentage variance accounted for (also called the 

adjusted R
2
 if divide by 100) is better because it measures variance rather than sums of squares, 

and because it is more useful in multiple linear regression.  Both statistics are relative not 

absolute: their size is meaningful only in relation to the set of data being analysed.  Very good 

regression models can have a small percentage variance accounted for if the range of the x-values 
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is small; very bad regression models can have a large percentage variance accounted for if the 

fitted slope is steep. 

 

Inferences about the slope of a line 

 

The value we have calculated for b is our estimate of the rate at which y increases for a unit 

increase in the value of x.  In some situations we may be directly interested in this rate – in our 

example we might be interested in whether the weight gain from increasing the level of applied 

nutrient is economically justifiable.  We clearly need to know the precision of the estimate of the 

rate of increase, or slope.  Since b is a linear combination of the y observations, we can show that 

the variance of b is 

xxS
b

2

)var(  

 

where σ
2
 is the variance of the observations about the linear relationship between y and x.  We 

estimate σ
2
 by the residual mean square, s

2
, and hence have a standard error for b given by 

 

xxS

s
bes

2

).(.  

 

The general form of this standard is sensible.  Smaller standard errors are obtained when Sxx is 

larger, or in other words, when the spread of x values is large.  The greater the spread of x values, 

the better the line is defined. 

 

Given our estimate of the slope, b, and its standard error, we can calculate a confidence interval 

for the slope of the population relationship between y and x in the same way that we can calculate 

a confidence interval for the population mean, μ, from a sample mean and its standard error.  The 

95% confidence interval for the slope of the true relationship of y on x is given by 

 

xx

n
S

s
tb

2

2,05.0 *  

 

where the t-value is the 5% point for the t-distribution with (n – 2) degrees of freedom. 

 

For our example of weight gains and nutrient levels, the standard error of b is 

 

333.01108.0
5.17

94.1
).(.

2

xxS

s
bes  

 

and the 95% confidence limit for the slope is 2.114 ± 2.78 * 0.333, which is from 1.19 to 3.04. 

 

We can also use the standard error of b to test the strength of the relationship between y and x.  To 

test the hypothesis that there is no dependence of y and x, we calculate 

 

).(.

0

bes

b
t  
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and compare this with the t-distribution on (n – 2) degrees of freedom.  This t-test is exactly 

equivalent to the F-test calculated from the analysis of variance, the value of t (6.34) being the 

square root of the previously calculated variance ratio. 

 

Predicting using a regression line 

 

Consideration of the standard error of b leads to the idea of predicting the value of y for a given 

value of x and the precision of such a prediction. The predicted value of y for a specific x, say x0, 

is obviously 

00 xbay  

 

So, from our example, the predicted weight gain for an applied nutrient level of 2 is 

 

828.82*114.26.400 xbay  

 

and we could calculated predictions for other x-values in a similar way.  We should, however, be 

wary of predicting values of y for x-values much outside the observed range (extrapolation), 

since the precision of such predictions is likely to be poor. 

 

Any error in the predicted value, a + b x0, arises entirely from the errors in the estimates of the 

constant term, a, and the slope of the line, b.  The standard error of the predicted value can be 

obtained, algebraically, as 

 

xxS

xx

n
sxbaes

2

02

0

1
).(.  

 

where x is the mean of the x values used in the estimation of a and b.  We must be careful to 

differentiate between this standard error and the standard error of the predicted weight gain of a 

single plant receiving x0 units of applied nutrient.  The expected weight gain of a single plant is 

still a + b x0 but, in addition to the variation arising from the fact that this predicted value is only 

an estimate, we must take into account the variation of individual plants in the population about 

the true, or average, weight gain for the particular value of x0.  The standard error for the predicted 

value of a single plant is 

 

xxS

xx

n
sxbaes

2

02

0

1
1).(.  

 

So, in predicting from our relationship between weight gain and applied nutrient level, the 

predicted mean weight gain for a large population of plants all being given an applied nutrient 

level of 2 units is 8.828, and the standard error of this predicted mean value is 

 

757.0
5.17

5.32

6

1
*94.1

1
).(.

22

02

0

xxS

xx

n
sxbaes  

 

However, the predicted weight gain for a single plant given an applied nutrient level of 2 units is 

also 8.828, but the standard error of this prediction is now 
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585.1
5.17

5.32

6

1
1*94.1

1
1).(.

22

02

0

xxS

xx

n
sxbaes  

 

From the formulae above, we can see that the standard error of a predicted value obviously 

depends on the value of x and is least when x0 is equal to the mean of the observed x-values.  As x0 

moves towards the extremes of the range of observed x-values, the standard error of a predicted 

value increases.  Having calculated the standard error associated with any predicted value, we can 

obviously calculate a 95% confidence interval for the predicted value. 

 

All the errors and standard errors of prediction mentioned so far arise from uncertainty about the 

values of a and b in the equation of the line, y = a + b x, and from the variation of individual 

values about the line.  We have assumed throughout that the relationship is linear, but in practice 

we should always check this.  There are methods available to check this but it always sensible to 

plot a graph of the data alongside any formal regression analysis. 

 

The dangers of extrapolating a relationship beyond its known range of validity are hopefully well-

known, and we have already seen how the standard error of a prediction increases as the value of 

x0 moves away from the mean observed value.  Doubts about the validity of the relationship at the 

extremes of the range of the data and beyond are additional reasons for caution in predicting value 

of y in these areas.  Predictions for other populations will, of course, only be valid if the same 

values of a and b apply to these populations – this needs justification or, better still, verification. 

 

Finally, in regression calculations, the independent variable, x, is generally assumed to be 

measured without observational error and, in some sense, to influence the values taken by the 

dependent variable, y.  The values of x may be chosen by the experimenter or may, like the y-

values, be a random sample.  As an example of the latter situation, the pairs of x and y values 

might be the weights of the roots and shoots of a number of plants.  If the values of x and y can 

both be treated as random samples representative of some larger population of values, then 

questions can arise about which, if either, should be treated as the dependent variable and which 

as the independent variable.  The lines representing the regression of y on x and the regression of x 

on y are not the same – they minimize the sums of squares of the deviations about the line in two 

different directions, the y-direction and the x-direction respectively.  Regression methods, known 

as functional regression, have been developed for coping with this type of problem. 

 

Regression through the origin 

 

A special case of the use of a simple linear regression model is in a calibration experiment.  Here a 

machine is being set up to measure some attribute of a sample, with reference to standard 

measurements which are known to be correct.  In such cases, it can be appealing to force the fitted 

regression line to pass through the origin, because the underlying science may make it clear that 

the two measured variables must be zero together.  The model may indeed be fitted in this form, 

with the following equation: 

xby *  

with the parameter, a, fixed to be zero. 

 

However, if we do fit models with no constant term, we should be aware of potential problems.  

The most important is that a model of this kind is based on the assumption that the relationship 

between the two variables is linear not only in the range of the observations, but also right down to 
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the origin.  If we have taken measurements only for a range of explanatory values some distance 

from the origin, we may have no evidence to check the validity of the assumption.  There are 

many scientific processes that may look linear in a restricted range of values, but which behave 

very differently elsewhere and particularly for small measurements. 

 

A second problem is that the need for a model with no constant inevitably suggests that the 

variance of small measurements may be much smaller than that of large measurements.  This is 

something that need to be checked carefully before deciding to constrain the regression line in this 

way. 

 

Lack-of-fit and Pure error 
 

If we have replicated observations at each value of the explanatory variable, remember that we 

are then able to divide the residual variation into the lack-of-fit of the mean response at each 

value of the explanatory variable about the fitted line, and the pure error of the replicate 

observations about the mean response at each value of the explanatory variable.  Then the 

regression mean square can be compared with the lack-of-fit term to assess whether there is a 

real relationship, and the lack-of-fit can be compared with the pure error to assess the goodness 

of fit.  Note that in many packages it is not particularly straightforward to extract these separate 

components except by hand from two separate analyses. 

 

Linear Regression with Groups (analysis of parallelism) 
 

So far we have introduced the method of simple linear regression for modelling the relationship 

between one continuous response variable and one continuous explanatory variable. However, we 

may have two or more independent data sets involving the same variables, for each of which we 

have obtained a simple linear regression model, and be interested in comparing the regression 

models for the different data sets.  Equivalently, in addition to observations on two continuous 

variables we may have observations on a third, usually discrete, variable.  For example we might 

have sets of observations made in different years, on different sites, for different varieties, or 

under different treatment regimes.  Again, one goal of the investigation may be to discover 

whether the relationship between the two continuous variables varies between groups.  Our 

interest when analysing such data sets is therefore to test whether or not the same parameter 

values can be used for each group of observations, and to find the model that gives the simplest 

yet adequate description of the observed relationships.  The method used to achieve this is usually 

referred to as linear regression with groups or analysis of parallelism.   

 

Possible Models 
 

The simplest situation for which linear regression with groups is required is where we have one 

grouping factor with just two levels.  In this case four different models are possible, which we can 

write as fairly simple extensions of the model for simple linear regression given earlier.  

Descriptions of the four possible models, including their algebraic form, are given below, and the 

four models are also shown graphically.  
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(a) Coincident lines 

 

The intercept and slope 

parameters both take the 

same values for both 

groups.  Selection of this 

model to describe the 

observed data suggests 

that there is no effect of 

the grouping factor on the 

linear relationship 

between the two 

continuous variables.  

The equation for this 

model looks almost 

identical to that for 

simple linear regression, 

the only changes being 

the additional j subscripts 

for both the x and y 

variables:  

 

ijij xbay  

 

where j = 1 or 2 (denoting which group each observation is from, and i = 1...nj, where nj is the 

number of observations in group j. 

 

(b) Parallel lines 

 

The slope parameter takes the same value for both groups, but the intercept parameter is 

different.  The interpretation of the parallel lines model is that there is a difference in response 

due to the grouping factor, but that this difference is unaffected by changes in the explanatory 

variable.  In the equation for this model the parameter a gains a j subscript denoting that it is 

different for the two groups, with i and j defined as for the single line model: 

 

ijjij xbay  

 

(c) Concurrent lines 

 

The intercept parameter takes the same value for both groups, but the slope parameter is 

different.  Selection of the concurrent lines model suggests that there is no effect of the 

grouping factor at the zero level of the explanatory variable, but that the effect of the grouping 

factor increases as the explanatory variable increases.  In the equation for this model the 

parameter b gains a j subscript denoting that it is different for the two groups, with i and j 

defined as for the single line model: 

 

ijjij xbay  
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(d) General separate lines 

 

Both the intercept and slope parameters take different values for the two groups.  If this model 

is necessary to describe the observed data, then there is both an effect of the grouping factor at 

the zero level of the explanatory variable and a change in the size of this effect as the 

explanatory variable changes.  In the equation for this model both parameters gain a j 

subscript, with i and j defined as for the single line model. 

 

ijjjij xbay  

 

These four models form two sequences of nested models. The single line model is a special case 

of the parallel line model (the intercepts are constrained to be the same) which is, in turn, a special 

case of the general separate lines model (the slopes are constrained to be the same).  The single 

line model is also a special case of the concurrent lines model (the slopes are constrained to be the 

same), which is, again, a special case of the general separate lines model (the intercepts are 

constrained to be the same). 

 

By fitting all four models to a data set and then considering the change in the residual sum of 

squares when moving from a more complex model (e.g. the parallel lines model) to a simpler 

model (e.g. the single line model) within each of the above sequences, we can determine which is 

the least complex model that provides an adequate description of the observed relationship.   

 

For all four models the process of model fitting is as for simple linear regression, the 'best' values 

of the parameters being chosen using least squares, and the least squares fit being the best fit under 

the same assumptions as for simple linear regression. 

 

The comparison of the different models within each sequence can be conveniently summarised 

within an accumulated analysis of variance, showing the variation explained by the simplest, 

single line, model, and the additional variation explained for each increase in model complexity 

(separate intercepts and then separate slopes, or vice versa). 

 

Extensions 

 

Whilst we have used a fairly simple example to develop this approach to linear regression with 

grouped data, the principles can easily be extended.  For example, we may have a grouping factor 

with more than two levels, in which case the sequences of models remain the same but the 

numbers of parameters per model term increases.  Alternatively we may have more than one 

grouping factor.  In this case the number and complexity of model sequences increases, but we 

may still be able to select a single appropriate sequence to consider.  If necessary, however, we 

can look at all possible sequences, and, starting from the most complex model (usually referred to 

as the full model), drop unnecessary terms until we find the least complex model which still 

provides an adequate description of the observed data. 

 

Multiple Linear Regression 
 

We looked at one possible extension of simple linear regression, where we had observations on 

both the response and explanatory variables for two or more levels of some grouping factor.  In 

our example this grouping factor was related to the presence or absence of Tridemorph.  However, 

if this factor had three or more quantitative levels, such as a range of doses at which a chemical 

was applied, we might also be interested in the relationship between our response variable and this 
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second possible explanatory variable.  One possible approach would be to use the linear 

regression with groups approach described earlier, and then regress the fitted parameters for the 

different groups against the values of the grouping factor.  An alternative, and more preferable, 

approach is to turn the grouping factor into a continuous explanatory variable, and regress the 

response variable against both explanatory variables.  This approach can obviously be generalised 

to the case where we have two genuinely continuous explanatory variables.  Linear models like 

this, with more than one explanatory variable are called multiple linear regression models. 

 

The model described above in which we regress the response variable on two explanatory 

variables can be thought of as being equivalent to the parallel lines model described in earlier.  To 

produce a model that is similarly equivalent to the general separate lines model described earlier 

we need to include a term for the interaction between the two explanatory variables. This provides 

a term which allows the response to one of the explanatory variables to depend on the value of the 

other explanatory variable.  This can be achieved by multiplying the two explanatory variables 

together to produce a third explanatory variable (in the following the interaction term produced by 

multiplying together variables x1 and x2 will be denoted x12).  We now have a multiple regression 

model with three possible explanatory variables. 

 

Model Selection 

 

As with the linear regression with groups example we can set up sequences of possible models 

each starting with the simplest model, usual the null model in which we only fit the Constant 

term, and finishing with the most complex model, the full model.  To select the best model we 

could then consider the accumulated analysis of variance for each of the possible sequences.  With 

only two possible explanatory variables this is relatively straightforward since there are only two 

possible sequences: 

 

Sequence 1 

Fit Null Model 

Fit x1 

Fit x1 + x2 (Full Model) 

Sequence 2 

Fit Null Model 

Fit x2 

Fit x1 + x2 (Full Model) 

 

However, increasing the number of explanatory variables to three (as would be the case by 

including the interaction between the first two explanatory variables) increases the number of 

possible model sequences to six.  Once the problem gets this big, we need to develop a more 

efficient approach to finding the best model. 

 

With relatively few explanatory variables we can show the relationships between all the possible 

models diagrammatically, with model complexity (and the number of parameters) increasing from 

top to bottom, and with each model linked to those which are more complex than it, and of which 

it is a special case.  For example, with three variables, x1, x2 and x12 as described above, we would 

get the diagram shown below. 
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Number of

parameters

Null Model

x1 x2 x12

x1 + x12x1 + x2 x2 + x12

Full Model

x1 + x2 + x12

1

2

3

4

 
With relatively few possible models, as in this example, it is practical to fit all possible models 

and calculate the change in the residual sums of squares associated with each link in the diagram.  

Comparing these differences with the estimate of the random variance obtained as the residual 

mean square for the full model allows us to test the effect of the additional term associated with 

each link.  For example, the difference for the link between the null model and the model 

including just x1 tests the effect of variable x1 assuming no effect of either x2 or x12. Similarly, the 

difference for the link between the model including only x1 and that including both x1 and x2 tests 

the effect of variable x2 assuming an effect of x1 but no effect of x12. 
 

Stepwise Regression Techniques 

 

As the number of possible explanatory variables increases the number of possible models quickly 

becomes too large for it to be practical to fit them all.  For example, with six possible explanatory 

variables there are 64 possible models, and with seven there are 128.  For some problems we will 

have sufficient prior knowledge to be able to select a sub-set of the possible models which it is 

sensible to consider, in which case we can take a similar approach to that just described.  For other 

problems, usually those for which we are after a predictive model rather than one which provides 

an understanding of the processes behind the observed relationships, we simply want to find the 

model which best summarises the observed data.  A number of formalised techniques, generally 

described as stepwise regression techniques, have been developed to tackle this problem. 

 

Forward selection techniques start from the null model and, at each step, add to the current model 

the variable which has the largest F-value, as long as this value is significant.  The process stops 

once there are no variables that are not in the model which have significant F-values.  Similarly, 

backward elimination techniques start from the full model and, at each step, drop from the current 

model the variable with the smallest F-value as long as this value is not significant.  Again, the 

process stops once there are no more variable in the model which have non-significant F-values.  

Combining these two approaches we get a third stepwise regression technique.  At each step of the 

combined technique, the variable not in the model with the largest F-value is added if the value is 

significant, and the variable in the model with the smallest F-value is dropped if the value is not 

significant.  The process stops when there are no more variables with significant F-values to be 
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added to the model. 

 

In using stepwise regression techniques we should always be aware of the possible dangers 

associated with using them.  Using these techniques is not a substitute for thinking about whether 

it is sensible for the response variable to be dependant on each of the potential explanatory 

variables, and the techniques should not be used as a model generating process.  However, where 

we have a large set of related explanatory variables which we believe to have a combined effect 

on the response variable, as in the example above, stepwise regression techniques provide a useful 

tool for selecting a subset of the explanatory variables to be used in predicting the response 

variable. 

 

Polynomial Regression 
 

So far we have only concerned ourselves with linear relationships between the response and 

explanatory variables, but most biologically relationships are not linear.  For example, the figure 

below shows the curvilinear relationship between yield of sunflower seed and applied nitrogen 

from an experiment conducted in Nigeria. 

 

 
 

Whilst linear regression models are linear in the parameters, they do not have to be linear in the 

explanatory variables, and we can use the multiple linear regression technique to fit a model such 

as the quadratic relationship 

 

y = a + b x + c x
2 

 

to the yield-nitrogen data simply by calculating an extra explanatory variable equal to the 

square of our first one.  
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As with stepwise regression techniques, there are dangers associated with using polynomial 

regression techniques.  By fitting a polynomial of order one less than the number of discrete 

values of the explanatory variables (i.e. order three in the example below) we will fit the 

observed mean values exactly.  However, the fitted model will not be particularly useful for 

the prediction of responses for values of the explanatory variable between the observed 

values, as it will be too curvilinear.  Polynomial models will also very rarely provide us with 

interpretable parameters, unlike the non-linear models we will meet later.  Finally, there are 

a number of constraints imposed by the polynomial form of the model – for example a 

quadratic is symmetrical about the maximum, and the curvature of a quadratic changes in a 

fixed way.  We should therefore be wary of using the fitted polynomial to predict the 

response outside the range of the observed explanatory variable (known as extrapolating). 

 

Weighted Regression or Transformed Variables? 
 

One of the assumptions underlying regression techniques, as for the analysis of variance of 

designed experiments, is that of constant variance for the dependent or response variable.  This 

can be checked graphically by plotting the residuals against fitted values after fitting a model. 

 

If there was evidence that the variance was not constant in the analysis of variance for a designed 

experiment, we would often consider some form of transformation of the data prior to analysis.  

Common transformations used include the logarithmic transformation when the variance increases 

with the mean, the square root transformation for count data, and the angular transformation for 

proportions based on counts.  Similarly transformed data can be analysed within the regression 

framework, but the analysis of transformed data can introduce additional problems.  One possible 

problem is that whilst the relationship between the response variable and explanatory variable(s) 

might be a simple linear model for the untransformed response, the relationship is much more 

complicated when the response variable is on the transformed scale.  Alternatively, if the 

relationship between the transformed variable and explanatory variables is linear, the 

interpretation of the fitted model can be rather complicated, as we cannot express the original 

response variable as a simple function of the explanatory variable(s). 

 

For some forms of mean-variance relationship an alternative to analysing a transformed response 

variable is to use a generalised linear model, in which the model is transformed rather than the 

response.  We will cover this approach in some detail later in the module. 

 

Another possible method of overcoming the problem is to use weighted regression.  In this 

approach the contribution of each observation to the fitted regression is weighted so that the 

influence of more variable observations is reduced and that of less variable observations is 

increased.  The appropriate weighting variate to use depends on how the variability changes in 

respect of the response variate.  For example, the square root and logarithmic transformations 

correspond to weighting variates of 1/y and 1/y
2
, respectively.  Using this approach it is also 

possible to base the weights on an external estimate of the variance at each value of the 

explanatory variable. 

 

Non-linear Regression 
 

All of the models introduced earlier are in the class of models known as linear models, because 

the parameters in the models occur in a simple linear form.  That is, in the three examples repeated 

below, the response variable, y, is a linear combination of the parameters a, b, c and d. 
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(a) Simple linear regression  xbay  

  

(b) Polynomial regression  2xcxbay  

  

(c) Multiple linear regression 2121 xxdxcxbay  

  

It is important in discussing such models to be clear that, for example, the polynomial regression 

model is a linear model because the parameters occur in a linear fashion, though the relationship 

between y and x is definitely not linear, but quadratic. 

 

Linear models have dominated the statistical methods for investigating relationship, not because 

such models are always the most appropriate, but 

because the theory of fitting such models to data is 

very simple.  The calculations involved in 

obtaining estimates of parameters in linear models 

require only the solution of a set of simple 

simultaneous equations.  These calculations can 

be done without the aid of computers, though they 

can be done quicker with computers. 

 

In contrast other, possibly more realistic, forms of 

model which involve parameters in a non-linear 

fashion can not be so simply fitted without the use of a computer.  Some forms of non-linear 

model were investigated before the development of modern computers, and complicated methods 

of fitting them were devised.  However, these models inevitably had little appeal to statisticians or 

research workers because of their complexity, and they were not widely used, with the exception 

of probit analysis.  With the availability of high speed computers the fitting of non-linear models 

should be no more difficult than that of linear models.  The complicated methods of fitting have 

been replaced by simpler methods, which require a large amount of computation.  It is therefore 

that the research biologist is aware that there should be no difficulties in fitting these models. 

 

To see why non-linear models should be useful, it is necessary to consider why linear models are 

inadequate to model biological situations.  If we are considering a relationship between an 

explanatory variable, x, and a response variable, y, then the three simplest forms of linear model 

are the straight line 

 xbay  

 

the quadratic 

 2xcxbay  

 

and the cubic 

 32 xdxcxbay  

 

These three models are displayed here. 
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The straight line is obviously a very restricted relationship.  Very few biological relationships are 

even approximately straight for a reasonable range of values of the explanatory variable, x, the 

most common form of straight line relationship being, perhaps, the allometric relationship 

between the logarithm of weight of a plant part and the logarithm of the whole plant weight (but 

note that this is not a straight line but a power relationship y=Ax
B
 on the natural scale).. 

 

The quadratic model allows for curvature but is restricted in two critical ways.  First it is 

symmetric, the rise in y with increasing x to a maximum being of exactly the same form as the 

subsequent decline of y with further increase in x.  The second disadvantage is that the value of x 

must become negative when x is either large or small, and this will usually be biologically 

unreasonable. 

 

The cubic polynomial, and polynomials of yet higher degree, overcome the disadvantages of 

symmetry but not those of producing unrealistically negative or very large values of y for large or 

small values of x.  In addition they have a very rigid structure of maximum and minimum values. 

 

None of the curves in the polynomial family of models allows for a relationship which tends to an 

asymptotic level of y as x becomes large, or for relationships where y is necessarily positive.  In 

contrast, most of the non-linear models in common use do allow such biologically realistic forms 

of behaviour.  In addition, many of the commonly used non-linear models can be derived from 

simple biological concepts which, to the extent that the are appropriate, justify the use of the non-

linear model. 

 

Choosing an appropriate non-linear model 

 

There are two basic approaches to selecting an 

appropriate non-linear model for a particular set of 

data.  The first is to graph the data and compare 

the shape of the response with a range of possible 

models.  The one note of caution here is that, for 

some of the curves that will be presented in this 

section, considerable flexibility in the shape of 

response can be achieved by altering the 

parameter values.  The second approach is to 

consider what models have been used previously 

for similar types of response, or even to develop 

some idea of the mechanism behind the observed 

response. 

 

Both approaches require some knowledge of the 

range of possible models, and in the next few 

pages we consider a number of possible “families” 

of non-linear curves.  As well as being possible 

biologically realistic models for relatively simple 

relationships, these families of curves can also be considered as the “building blocks” for 

developing more complex empirical models.  The curves described here are those that are 

provided as standard non-linear curves within GenStat. 
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The simple exponential curve can 

be useful for a number of different 

types of relationship.  It can be 

written in two alternative forms 

 

)exp( xkbayorrbay x

 

 

with r equal to exp(-k). 

 

One situation in which this curve is appropriate relates to the decay of some variable with time, 

the rate of decay being proportional to the value of the variable at any given time.  The decay may 

eventually reach zero, in which case the parameter a is zero, or may reach some other, positive, 

asymptote which will be estimated by a.  The rate of decay is given by the parameter k, and a + b 

gives an estimate of the value of the variable at time zero.  The half-life (the time for half the 

activity given by b to decay away) is given by k * ln(2).  Exponential decay curves have been used 

to model the decay of pesticides in soil, though often something more complex will be required. 

 

Another area in which exponential models have been extensively used is where the response 

variable either increase with time or as a result of an increasing level of some stimulus variable.   

 

The change in the response is initially fast, but gradually declines until the response reaches an 

asymptotic level, as shown to the right. 

 

If the initial level of the variable is zero, then parameter b is equal to –a, and again the parameter k 

estimates the rate of growth, declining as the response approaches the asymptote.  In both these 

first two cases, the parameter r (= exp(-k)) is less than 1.00. 

 

A final area where the simple 

exponential model is appropriate 

is for unconstrained growth. 

The rate of growth, given by 

parameter k, is proportional to 

the current size of the response, 

and the parameter r will be 

greater than 1.00.  The initial 

response is given by a + b, and 

parameter b estimates that part 

of the initial response 

contributing to the growth. 

 

There are a number of extensions to the simple exponential model, the most general represented 

by the double exponential curve 

 

)exp()exp( tlctkbayorscrbay xx  

 

which can be extended further by including additional terms of the form c s
x
.  This general form 

relates to the decay of a mixture of two (or more) compounds, with each compound decaying at a 
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different rate (parameters r and s) from a different initial level (parameters b and c).  It can 

similarly be used to model the growth of a mixture of components, with different growth rates and 

initial amounts of each component.  Two possible shapes of response are given below, the first 

where the parameters r and s are both less than one, the second where both are greater than one, 

though more flexibility of shape than this is possible depending on the relative sizes of the 

different rate parameters.  

 

The double exponential equation can be simplified in a number of ways to give other members of 

the exponential curve family.  A first common example is the “line plus exponential”, obtained 

when one of the decay or growth rates (r or s) approaches 1.00. 

 

xcxkbayorxcrbay x )exp(  

 

Again, different shapes of response are possible depending on whether parameter r is greater or 

less than 1.00, and depending on the relative sizes of the exponential and linear components.  Two 

examples, the first for r less than one, the second for r greater than one, are shown below. 

 

A second common example of a simplification of the double exponential is the “critical 

exponential, 

 

)exp( xkxcbayorrxcbay x  

 

obtained when the two rates are very similar.  Again, two forms of the curve are possible 

depending on whether r is greater than or less than 1.00, and considerable flexibility of the shape 

of the curve is possible depending on the relative sizes of parameters b and c.  Two example 

curves, the first for r less than one, the second for r greater than one, are shown below. 
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For either of these two simplifications, further simplification to the simple exponential curve is 

possible if parameter c is close to zero, and the simple exponential curve simplifies to a straight 

line if the rate parameter r approaches 1.00.  Note, however, that a value of exactly 1.00 gives a 

constant response. 

 

Sigmoid Growth curves 
 

Many biological investigations are concerned with the growth of organisms with time.  Extensive 

studies have been made of the growth of whole plants or individual plant parts, and the growth can 

usually be described in three phases.  Early growth is fairly rapid, and in this initial phase the rate 

of growth is usually proportional to size (as described by the exponential function introduced 

above).  The second phase tends to be less rapid, being a balance between maintenance and 

growth, and is often almost linear.  In the third phase, the growth rate diminishes with the plant 

size reaching an asymptotic upper limit, as described by the exponential decline or decay type 

models introduced earlier. 

 

A similar shape of curve can also be used for dose-response studies, for example relating plant dry 

weight to the log of the applied herbicide dose.  When considering a discrete response variable in 

such studies (such as the number of insects or plants affected), the same shape of response can be 

considered, but with due account taken of the fact that the data are probably Binomially 

distributed. 

 

The three growth phases can be combined into a single differential equation relating the growth 

rate to both the current size of the plant and the difference between the current size and the 

potential size.  In its simplest form the increasing and declining growth phases will have the same 

rates of change of growth 

 

ycyb
dx

dy
 

 

Solving this equation leads to the logistic function 

 

mxb

c
ay

exp1
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This is a symmetric curve (as 

shown), with parameter a 

estimating the initial size and 

parameter c giving the total growth, 

so that a + c is the final size.  

Parameter m estimates the time 

(value of x) at which the maximum 

growth rate is achieved, which is at 

a size of a + (c/2).  Parameter b is 

related to the maximum growth 

rate.  Obviously, if parameter b has 

the opposite sign, the response will represent a declining rather than growing response 

 

This form of response can be generalised by including an additional parameter, which affects the 

symmetry of the response.  This is known as the generalised logistic function,  

 

tmxbt

c
ay

1

exp1
 

 

which with parameter t set equal to 

1.00 simplifies to the logistic. 

 

Values of t greater than 1.00 lead to 

the maximum growth/decay rate 

being closer to the maximum size, 

those less than 1.00 to it being closer 

to the minimum size. 

 

 

 

Another special case of the generalised logistic is obtained as parameter t tends toward zero.  This 

is the Gompertz curve. 

 

mxbcay expexp*  

 

As for the other sigmoid growth curves, the maximum growth rate occurs at time m, which occurs 

at a response that is a proportion (1/e) of the distance between the lower asymptote (a) and upper 
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asymptote (a + c).  Whether this is nearer to the upper or lower asymptote depends on the values 

of the other parameters, and different combinations can produce a range of different shaped 

curves, as shown below.  

 

Rational functions 
 

These are ratios of polynomials, though from the formulae this may not be immediately obvious.  

The linear-divided-by-linear curve is a rectangular hyperbola, which occurs for example as the 

Michaelis-Menten law of chemical kinetics. 

 

xd

b
ay

1
 

 

When x is zero the response is equal to a + b, and as x increases the response tends towards a.  An 

example curve is shown below. 

 

This curve has been used to 

describe the relationship between, 

for example, crop yield (y) and 

weed density (x).  In this case the 

parameters are interpretable as 

follows: a is the crop yield at large 

weed densities, b is the potential 

crop loss, and d is the weed 

competitivity (1/d is the weed 

density that will reduce the crop 

yield by 50% of its potential loss). 

 

Two extensions of the linear-divided-by-linear curve are the quadratic-divided-by-linear 

 

xc
xd

b
ay

1
 

 

And quadratic-divided-by-quadratic 

 

21 xexd

xcb
ay  
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Examples of the shapes of these curves are shown below. 

 

The advantage of these curves is that they are extremely flexible, though they have the 

disadvantage that the parameters are not always easy to interpret.  All of these rational functions 

have been used to model the relationship between crop yield and applied nutrient levels, and they 

are related to the inverse polynomial models develop by Nelder for such relationships. 

 

Fourier curves 
 

Fourier curves are trigonometric functions, using either the sine or cosine function to model 

periodic behaviour.  Two such curves are a single Fourier curve 

 

w

ex
bay

2
sin  

 

and a double Fourier curve 

 

w

fx
c

w

ex
bay

4
sin

2
sin  

 

Parameter w defines the wavelength or period of the response, with parameters e and f defining 

how the response is shifted along the x-axis.  Parameters b and c define the amplitude of the 

(components of the) response, with parameter a defining the mean response (the response at x = 0 

if parameters e and f are zero).  Example curves are shown below. 
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Gaussian curves 
 

The Gaussian curve is bell-shaped curve like the Normal probability density function.  Two such 

curves are a single Gaussian curve 
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and a double Gaussian curve 
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The double Gaussian curve is simply a sum of two overlapping Gaussian curves, and occurs, for 

example, in spectography.  Parameter a is usually referred to as the background and parameters b 

and c defining the strength of each component in the mixture.  Parameters m1 and m2 define the 

positions of the peaks, with parameter s defining the spread of both components.  Note that this 

form constrains the spread to be the same for both components 

 

Example curves are shown below. 

 

 

Parallel non-linear curve analysis 

 

Following the approach developed in the linear regression framework for determining whether or 

not separate regression lines were needed for the responses at different levels of some classifying 

factor, we can develop the idea of parallel curve analysis.  Of course, since we have more 

parameters involved, and in a more complicated manner, such an analysis for a non-linear curve is 

more complicated than that for any simple linear regression model.   

 

Other modelling approaches 
 

“Broken stick” regression (also referred to as “Split-line regression”) 

 

Sometimes we will have a response that consists of two distinct phases, both of which can be 

modelled using a straight line relationship.  Our interest here might be to estimate the slopes of the 
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responses in each phase, together with the value of the explanatory variable at which the transition 

occurs.  A simplistic approach to fitting such a model is to divide the dataset into two groups, fit 

linear regressions to each group separately and combine the residual sum of squares and degrees 

of freedom.  Repeating this division for each possible division of the data into two contiguous 

groups, we can then identify the division which leads to the minimum residual sum of squares, 

and the parameters from the fitted lines for this analysis will give us the required information.  

Alternatively we can treat the “break-point” as a non-linear parameter, and fit the combined model 

using a general non-linear regression approach. 

 

Cubic smoothing splines 
 

Rather than initially choose a particular parametric model (straight line, quadratic, exponential, 

logistic, etc.) to describe our response, a recently developed and generally exploratory approach is 

to fit what might be thought of as a non-parametric curve to the data.  This is usually referred to as 

a smoothing spline and consists of a number of separate segments of cubic polynomials fitted 

between the distinct values of the explanatory variate, and constrained to be “smooth” at the joins.  

These smoothing splines have a rather complicated parameterization and so are of relatively little 

value for interpretation or predictions.  Finding the best fitting model is a question of balancing 

how well the fitted response agrees with the data and the smoothness of the fitted response.  At 

one extreme is a simple straight line relationship, and at the other is a curve which goes through 

every data point. 

 

Locally weighted regression 
 

This is another approach which avoids selecting a particular parametric model, fitting linear or 

quadratic polynomials locally around each data point, with the regression weighted so that 

observations further away from the point of interest make less of a contribution to the fit.  You 

may see this approach referred to as LOESS regression. 

 

General non-linear regression and function minimization 
 

Whilst the collection of standard non-linear response curves described above will include a 

suitable model form for many biological responses, you may find that your particular observed 

response has a shape that cannot be described by any of them.  However, if you can write down an 

algebraic equation to describe the shape of response, preferably based on knowledge of the 

biological mechanisms driving the observed response, then, probably working with a friendly 

consultant statistician, it should be possible to estimate the parameters of the response function 

using a maximum likelihood modelling approach.  With such non-linear models it will often be 

necessary to try different parameterisations of the same model to find one which is easy to fit, and, 

as the fitting methodology uses an iterative approach, it will usually be essential to be able to 

provide good initial estimates for each of the parameters.  Minimising the number of parameters 

fitted in the model is also sensible. 

 

General non-linear regression also provides a way of generalising models where, for example, a 

standard curve has been fitted to the response at each level of a second explanatory variable, and 

interest is in modelling the parameters of the standard non-linear curve as functions of the second 

explanatory variable.  Here we should be able to use the standard non-linear model 

parameterisation, and then include extra models, possibly linear, to describe how the parameters 

change with the second explanatory variable. 


