Supplementary Material for:

Prehistoric Bronze Age Radiocarbon Chronology at Politiko-Troullia, Cyprus

Steven E. Falconer, Elizabeth Ridder, Suzanne E. Pilaar Birch & Patricia L. Fall

Supplementary Tables 1-6 and Supplementary Figures 1-3.

Supplementary Table 1. (2 pages) OxCal output for Model 1: Bayesian sequencing of calibrated radiocarbon ages for 25 seed and charcoal samples from Politiko-*Troullia*, Cyprus based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two ages (AA-94185, AA-104835) are excluded as statistical voit liers based on A \leq 60.

Name																Indices	3			Select	
Show all		Unmo	dellec	I (BC	/AD)				Mode	lled (B	C/AE))				A _{model} A _{overall}	=153.7 =153.	7 3		All	Page break
structure		from	to	%	from	to	%	m	from	to	%	from	to	%	m	A _{comb}	A	LΡ	с	Visible	
Boundary End Phase 1a									-1882	-1800	68.3	-1923	-1718	95.4	-1839				96.9	40	
R_Date UGAMS-55320		-1876	-1749	68.3	-1884	-1700	95.4	-1808	-1889	-1841	68.3	-1928	-1773	95.4	-1866		91.2		99.4	<mark>- 2</mark> 39	
R_Date AA-109808		-1894	-1774	68.3	-1931	-1751	95.4	-1833	-1922	-1832	68.3	-1935	-1786	95.4	-1880		95.7		99.8	38	
A Phase 1a																				37	
Boundary Transition Phase 1b to 1a	≣								-1956	-1909	68.3	-1965	-1879	95.4	-1931				99.4	36	
R_Date AA-101939		-2008	-1781	68.3	-2031	-1751	95.4	-1909	-1963	-1930	68.3	-1976	-1901	95.4	-1945		116.5		99.7	35	
R_Date AA-109807		-2008	-1899	68.3	-2026	-1884	95.4	-1944	-1963	-1932	68.3	-1976	-1906	95.4	-1946		121.6		99.8	34	
R_Date AA-94182		-2019	-1900	68.3	-2125	-1785	95.4	-1958	-1965	-1932	68.3	-1977	-1907	95.4	-1947		127.2		99.8	33 🖌	
R_Date UGAMS-51988		-2016	-1925	68.3	-2026	-1891	95.4	-1955	-1963	-1934	68.3	-1977	-1911	95.4	-1948		122.3		99.8	32	
R_Date UGAMS-55317		-2018	-1905	68.3	-2027	-1890	95.4	-1956	-1964	-1933	68.3	-1977	-1909	95.4	-1948		122.4		99.8	31	
R_Date AA-106612		-2021	-1932	68.3	-2033	-1891	95.4	-1967	-1964	-1935	68.3	-1978	-1910	95.4	-1949		116		99.8	30	
R_Date UGAMS-55316		-2026	-1943	68.3	-2113	-1896	95.4	-1979	-1966	-1936	68.3	-1980	-1911	95.4	-1950		101.6		99.7	29	
R_Date AA-101940		-2133	-1961	68.3	-2195	-1901	95.4	-2039	-1967	-1937	68.3	-1982	-1911	95.4	-1951		65.9		99.8	28	
A Phase 1b																				27	
Boundary Transition Phase 2 to 1b									-1975	-1949	68.3	-1996	-1936	95.4	-1962				99.7	26	
R_Date AA-106613		-2123	-1971	68.3	-2136	-1942	95.4	-2022	-1986	-1956	68.3	-2004	-1947	95.4	-1973		98.7		99.7	25	
R_Date AA-94183		-2134	-1973	68.3	-2194	-1936	95.4	-2045	-1986	-1956	68.3	-2005	-1947	95.4	-1973		87.3		99.8	24	
R_Date AA-109809		-1959	-1891	68.3	-2024	-1831	95.4	-1934	-1981	-1954	68.3	-2007	-1946	95.4	-1970		65.3		99.8	23	
R_Date AA-101943		-2109	-1902	68.3	-2136	-1883	95.4	-1986	-1984	-1956	68.3	-2006	-1946	95.4	-1972		135.2		99.8	22	
R_Date AA-94184		-2112	-1936	68.3	-2134	-1891	95.4	-1995	-1984	-1956	68.3	-2006	-1946	95.4	-1972		132.5		99.8	21	
R_Date AA-101942		-2120	-1932	68.3	-2137	-1889	95.4	-1999	-1984	-1956	68.3	-2006	-1946	95.4	-1972		134.2		99.7	20	
R_Date AA-94185		-2139	-2027	68.3	-2199	-1955	95.4	-2080	-2139	-2026	68.3	-2198	-1956	95.4	-2080			4	98.9	V 19	
A Phase 2																				18	
Boundary Transition Phase 3 to 2	≣								-1997	-1962	68.3	-2015	-1954	95.4	-1981				99.6	17	
R_Date AA-104834		-2035	-1947	68.3	-2132	-1900	95.4	-1998	-2008	-1973	68.3	-2021	-1961	95.4	-1990		130.2		99.5	16	
R_Date AA-104835		-2136	-2029	68.3	-2196	-1972	95.4	-2082	-2136	-2029	68.3	-2196	-1971	95.4	-2081			3.6	99.4	15	

1/3/22, 1:01 PM

Supplementary Table 1. (continued)

https://c14.arch.ox.ac.uk/oxcal/ocp_right.html

A Phase 3	==																14	
Boundary Transition Phase 4 to 3								-2020	-1984	68.3 ·	-2026	-1967	95.4 -2	000		99.4	13	
R_Date UGAMS-55319	EE -	-2021 -	1934	68.3 -	-2033	-1892 95	4 -1968	-2026	-1998	68.3 ·	-2031	-1975	95.4 -2	011	103.3	99.4	12	
R_Date AA-109794	.	-2026 -	1948	68.3 -	-2114	-1900 95	4 -1984	-2027	-1999	68.3 ·	-2032	-1976	95.4 -2	011	116.6	99.4	11	
R_Date UGAMS-49350	.	-2034 -	1953	68.3 -	-2133	-1929 95	4 -2002	-2028	-1997	68.3 ·	-2035	-1974	95.4 -2	012	127.2	99.4	10	
R_Date UGAMS-55318	.	-2034 -	1953	68.3 -	-2133	-1929 95	4 -2002	-2028	-1997	68.3 ·	-2035	-1974	95.4 -2	012	127.2	99.4	9	
R_Date AA-101941	EE-	-2128 - ⁻	1951	68.3 -	-2141	-1897 95	4 -2023	-2029	-1996	68.3 ·	-2036	-1972	95.4 -2	012	128.6	99.3	8	
A Phase 4																	7	
Boundary Transition Phase 5 to 4								-2039	-2007	68.3 ·	-2051	-1976	95.4 -2)22		99.3	6	
R_Date AA-109795		-2135 -2	2031	68.3 -	-2194	-1976 95	4 -2083	-2066	-2017	68.3 ·	-2118	-1981	95.4 -2	039	96.3	98.8	5	
A Phase 5																	4	
Boundary Start Phase 5								-2097	-2021	68.3 ·	-2182	-1981	95.4 -2	056		96.6	3	
Sequence																	2	

1/3/22, 1:01 PM

Supplementary Figure 1. Model 2: Bayesian sequencing of calibrated radiocarbon ages for 19 seed and charcoal samples from *Troullia* West, Politiko-*Troullia*, Cyprus; $A_{model} = 146.5$. Light gray curves indicate single-sample calibration distributions; dark curves indicate modeled calibration distributions. Calibrations and Bayesian modeling based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two ages (AA-94185, AA-104835) are excluded as statistical outliers based on A \leq 60.

Supplementary Table 2. OxCal output for Model 2: Bayesian sequencing of calibrated radiocarbon ages for 19 seed and charcoal samples from *Troullia* West, Politiko-*Troullia*, Cyprus based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two ages (AA-94185, AA-104835) are excluded as statistical outliers based on $A \leq 60$.

Name	==	Unmo	delled	I (BC)	AD)				Mode	lled (B	C/AE)				Indices A _{model}	s =146.5	5		Select	Page
Show all	==															Aoveral	_I =146.	1		All	brea
Snow structure		from	to	%	from	to	%	m	from	to	%	from	to	%	m	A _{comb}	Α	LP	с	VISIDIE	_
End Phase 1a	=								-1883	-1807	68.3	-1919	-1726	95.4	-1843				98.8	34	
UGASM-55320) ==	-1876	-1749	68.3	-1884	-1700	95.4	-1808	-1888	-1844	68.3	-1925	-1771	95.4	-1867		92.3		99.8	33	
AA-109808	==	-1894	-1774	68.3	-1931	-1751	95.4	-1833	-1901	-1826	68.3	-1928	-1786	95.4	-1877		100.7		99.7	32	
▲ 1a	==																			31	
1b to 1a	==								-1936	-1881	68.3	-1961	-1848	95.4	-1906				99.8	V 30	
AA-109807		-2008	-1899	68.3	-2026	-1884	95.4	-1944	-1956	-1913	68.3	-1968	-1892	95.4	-1935		119.5		99.9	29	
UGASM-55317	1	-2018	-1905	68.3	-2027	-1890	95.4	-1956	-1957	-1917	68.3	-1969	-1894	95.4	-1936		110.2		99.9	28	
AA-106612		-2021	-1932	68.3	-2033	-1891	95.4	-1967	-1959	-1918	68.3	-1970	-1895	95.4	-1938		96.5		99.9	27	
▲ 1b																				26	
Transition Phase 2 to 1b									-1971	-1937	68.3	-1992	-1913	95.4	-1953				99.9	25	
AA-94183		-2134	-1973	68.3	-2194	-1936	95.4	-2045	-1980	-1949	68.3	-2003	-1936	95.4	-1965		75.2		99.9	24	
AA-109809		-1959	-1891	68.3	-2024	-1831	95.4	-1934	-1977	-1947	68.3	-2007	-1931	95.4	-1962		81.9		99.9	23	
AA-101943		-2109	-1902	68.3	-2136	-1883	95.4	-1986	-1980	-1947	68.3	-2004	-1934	95.4	-1964		132.5		99.9	22	
AA-94184		-2112	-1936	68.3	-2134	-1891	95.4	-1995	-1980	-1947	68.3	-2003	-1935	95.4	-1964		126.2		99.9	21	
AA-101942		-2120	-1932	68.3	-2137	-1889	95.4	-1999	-1980	-1947	68.3	-2003	-1934	95.4	-1964		128.4		99.9	20	
AA-94185		-2139	-2027	68.3	-2199	-1955	95.4	-2080	-2138	-2027	68.3	-2198	-1956	95.4	-2080			3.8	3 99.6	V 19	
▲ 2																				18	
Transition Phase 3 to 2									-1990	-1955	68.3	-2014	-1946	95.4	-1975				99.9	17	
AA-104834		-2035	-1947	68.3	-2132	-1900	95.4	-1998	-2001	-1966	68.3	-2019	-1955	95.4	-1985		128.3		99.9	16	
AA-104835		-2136	-2029	68.3	-2196	-1972	95.4	-2082	-2135	-2029	68.3	-2196	-1971	95.4	-2082			3.8	3 99.6	15	
A 3																				14	
Transition Phase	==								-2017	-1980	68.3	-2026	-1960	95.4	-1996				99.8	13	
UGASM-55319		-2021	-1934	68.3	-2033	-1892	95.4	-1968	-2026	-1996	68.3	-2031	-1969	95.4	-2008		104.4		99.7	12	
AA-109794		-2026	-1948	68.3	-2114	-1900	95.4	-1984	-2027	-1995	68.3	-2031	-1971	95.4	-2008		117.1		99.8	11	
UGASM-49350	≣≣	-2034	-1953	68.3	-2133	-1929	95.4	-2002	-2028	-1993	68.3	-2034	-1970	95.4	-2009		127		99.7	V 10	
UGASM-55318		-2034	-1953	68.3	-2133	-1929	95.4	-2002	-2028	-1993	68.3	-2034	-1970	95.4	-2009		127		99.7	9	
AA-101941		-2128	-1951	68.3	-2141	-1897	95.4	-2023	-2029	-1992	68.3	-2036	-1967	95.4	-2009		128.3		99.7	8 🔽	
4																				7	
Transition Phase	==								-2040	-2002	68.3	-2052	-1972	95.4	-2021				99.7	6	
AA-109795		-2135	-2031	68.3	-2194	-1976	95.4	-2083	-2063	-1986	68.3	-2115	-1978	95.4	-2039		94.1		99.4	5	
4 5																				4	
Start Phase 5									-2099	-2020	68.3	-2176	-1978	95.4	-2054				97.6	3	
												-									

https://c14.arch.ox.ac.uk/oxcal/ocp_right.html

6/21/22, 2:49 PM

Supplementary Figure 2. Model 3: Bayesian sequencing of calibrated radiocarbon ages for 4 seed and charcoal samples from *Troullia* East, Politiko-*Troullia*, Cyprus; $A_{model} = 104.0$. Light gray curves indicate single-sample calibration distributions; dark curves indicate modeled calibration distributions. Calibrations and Bayesian modeling based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020).

Supplementary Table 3. OxCal output for Model 3: Bayesian sequencing of calibrated radiocarbon ages for 4 seed and charcoal samples from *Troullia* East, Politiko-*Troullia*, Cyprus based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et oxf.a2020);wan der Plicht et al. 2020).

Name Show all	==	Unmo	dellec	I (BC/	/AD)				Mode	lled (B	C/AD)				Indices A _{model} : A _{overall}	=104 =105.9)	Select	Page break
Show structure		from	to	%	from	to	%	m	from	to	%	from	to	%	m	Acomb	Α	LPC	Visible	
End Phase 1b									-1994	-1874	68.3	-2022	-1735	95.4	-1925			95.2	9	
AA-101939		-2008	-1781	68.3	-2031	-1751	95.4	-1909	-2016	-1921	68.3	-2032	-1877	95.4	-1957		95.9	98.9	8 🔽	
AA-94182		-2019	-1900	68.3	-2125	-1785	95.4	-1958	-2016	-1934	68.3	-2030	-1895	95.4	-1967		112.4	99.1	7	
UGAMS-55316	;≣≣	-2026	-1943	68.3	-2113	-1896	95.4	-1979	-2017	-1943	68.3	-2032	-1914	95.4	-1973		108.4	99.4	6	
AA-101940		-2133	-1961	68.3	-2195	-1901	95.4	-2039	-2019	-1944	68.3	-2110	-1898	95.4	-1982		96	99.1	5	
▲ 1b																			4	
Start Phase 1b									-2053	-1955	68.3	-2214	-1919	95.4	-2018			95	<mark>7</mark> 3	
A																			2	

Supplementary Figure 3. Model 4: Bayesian sequencing of calibrated radiocarbon ages for 25 seed and charcoal samples from Politiko-*Troullia*, Cyprus using the Charcoal Outlier Model for charcoal samples AA-101939, AA-94182, AA-106612, AA-101940 and AA-106613; $A_{model} = 154.0$. Light gray curves indicate single-sample calibration distributions; dark curves indicate modeled calibration distributions. Calibrations and Bayesian modeling based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two ages (AA-94185, AA-104835) are excluded as statistical outliers based on A \leq 60.

Supplementary Table 4. OxCal output for Model 4: Bayesian sequencing of calibrated radiocarbon ages for 25 seed and charcoal samples from Politiko-*Troullia*, Cyprus using the Charcoal Outlier Model in OxCal for charcoal samples AA-101939, AA-94182, AA-106612, AA-101940 and AA-106613. The Outlier Model posteriors are 0 for all five charcoal ages, which indicate that wood-age offsets are negligible. Calibrations and Bayesian modeling based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two ages (AA-94185, AA-104835) are excluded as statistical outliers based on A \leq 60.

Name	Ur	mode	elled	(BC/	AD)				Mode	lled (B	C/AI	D)			Indices A _{model} =154	7		Select	Pag
Show structure	fro	m to	,	%	from	to	%	m	from	to	%	from	to	% m	A _{comb} A	LP	с	Visible	brea
End Phase 1a	==								-1881	-1791	68.3	-1924	-1711	95.4 -1839			96.9	40	
UGAMS-55320) <u>=</u> = -14	876 -1	749	68.3	-1884	-1700	95.4	-1808	-1889	-1842	68.3	-1927	-1771	95.4 -1866	91.7		99.6	<mark>V</mark> 39	
AA-109808	=- 18	394 -1	774	68.3	-1931	-1751	95.4	-1833	-1921	-1831	68.3	-1936	-1785	95.4 -1880	95.7		99.7	38	
A Phase 1a	==																	37	
Transition Phase 1b to 1a	≡								-1956	-1909	68.3	-1965	-1879	95.4 -1931			99.3	<mark>⁄</mark> 36	
AA-101939	-20	008 -1	781	68.3	-2031	-1751	95.4	-1909	-1963	-1930	68.3	-1976	-1901	95.4 -1945	116.5		99.9	35	
Charcoal														0			100	45	
AA-109807	-20	008 -1	899	68.3	-2026	-1884	95.4	-1944	-1963	-1932	68.3	-1976	-1905	95.4 -1946	121.6		99.9	<mark>V</mark> 34	
AA-94182	-2)19 -1	900	68.3	-2125	-1785	95.4	-1958	-1965	-1932	68.3	-1977	-1907	95.4 -1947	127.2		99.8	33	
Charcoal	==													0			100	✓ 44	
UGAMS-51988	-2	016 -1	925	68.3	-2026	-1891	95.4	-1955	-1963	-1934	68.3	-1977	-1911	95.4 -1948	122.4		99.9	32	
UGAMS-55317	-2	018 -1	905	68.3	-2027	-1890	95.4	-1956	-1964	-1934	68.3	-1977	-1909	95.4 -1948	122.5		99.9	31	
AA-106612	-20	021 -1	932	68.3	-2033	-1891	95.4	-1967	-1965	-1935	68.3	-1978	-1910	95.4 -1949	116.1		99.9	<mark>V</mark> 30	
Charcoal														0			100	43 🗸	
UGAMS-55316	-2	026 -1	943	68.3	-2113	-1896	95.4	-1979	-1966	-1936	68.3	-1980	-1911	95.4 -1950	101.7		99.9	29	
AA-101940	-2	33 -1	961	68.3	-2195	-1901	95.4	-2039	-1966	-1937	68.3	-1982	-1911	95.4 -1951	65.8		99.8	28	
Charcoal	==													0			100	✓ 42	
A Phase 1b	=																	27	
Transition Phase 2 to 1b	=								-1975	-1949	68.3	-1995	-1937	95.4 -1962			99.7	26	
AA-106613	-2	23 -1	971	68.3	-2136	-1942	95.4	-2022	-1986	-1956	68.3	-2004	-1947	95.4 -1973	98.4		99.5	25	
Charcoal														0			100	✓ 41	
AA-94183	-2	34 -1	973	68.3	-2194	-1936	95.4	-2045	-1986	-1956	68.3	-2004	-1947	95.4 -1973	87.1		99.6	24	
AA-109809	-19	959 -1	891	68.3	-2024	-1831	95.4	-1934	-1981	-1954	68.3	-2006	-1946	95.4 -1970	65.4		99.8	23	
AA-101943	-2	09 -1	902	68.3	-2136	-1883	95.4	-1986	-1983	-1956	68.3	-2006	-1946	95.4 -1971	135.2		99.6	22	
AA-94184	-2	12 -1	936	68.3	-2134	-1891	95.4	-1995	-1984	-1956	68.3	-2006	-1946	95.4 -1972	132.5		99.6	21	
AA-101942	-2	20 -1	932	68.3	-2137	-1889	95.4	-1999	-1984	-1956	68.3	-2006	-1946	95.4 -1972	134.2		99.6	20	
AA-94185	-2	39 -2	2027	68.3	-2199	-1955	95.4	-2080	-2139	-2026	68.3	-2198	-1956	95.4 -2080		4.1	99	V 19	
A Phase 2																		<mark>∨</mark> 18	
Transition Phase 3 to 2									-1997	-1962	68.3	-2014	-1954	95.4 -1981			99.3	17	
AA-104834	-2	035 -1	947	68.3	-2132	-1900	95.4	-1998	-2008	-1972	68.3	-2020	-1960	95.4 -1990	130.1		99.4	16	
AA-104835	-2	36 -2	2029	68.3	-2196	-1972	95.4	-2082	-2135	-2030	68.3	-2196	-1972	95.4 -2082		3.5	99.3	15	
A Phase 3																		V 14	
Transition Phase	==								-2020	-1984	68.3	-2026	-1966	95.4 -2000			99.5	13	
UGAMS-55319	-20)21 -1	934	68.3	-2033	-1892	95.4	-1968	-2026	-1998	68.3	-2031	-1974	95.4 -2011	103.6		99.7	12	
AA-109794	-2)26 -1	948	68.3	-2114	-1900	95.4	-1984	-2027	-1999	68.3	-2032	-1975	95.4 -2011	116.7		99.7	11	
UGAMS-49350	-20)34 -1	953	68.3	-2133	-1929	95.4	-2002	-2028	-1997	68.3	-2034	-1974	95.4 -2012	127.2		99.7	10	
UGAMS-55318	== -2)34 -1	953	68.3	-2133	-1929	95.4	-2002	-2028	-1997	68.3	-2034	-1974	95.4 -2012	127.2		99,6	9	

Supplementary Table 4. OxCal output for Model 4 (continued).

OxCal Table View		https://	//c14.arch.c	x.ac.uk/oxcal/	ocp_right.html
AA-101941	-2128 -1951 68.3 -2141 -1897 95.4 -	2023 -2029 -1996 68.3 -2036 -1972 95.4 -2012	128.5	99.7 🔽 °	
Transition Phas	e ==	-2039 -2007 68.3 -2051 -1976 95.4 -2022		99.5 🔽 6	
5 to 4		-2083 -2066 -2017 68.3 -2117 -1980 95.4 -2040	96.7	99.2 25	
A Phase 5				4	
Start Phase 5	=	-2101 -2022 68.3 -2177 -1981 95.4 -2057		95.7 🔽 ³	
A	=			2	
2 of 3				10/2	26/22, 1:57 PM

Supplementary Table 5. OxCal output for Bayesian sequencing of calibrated radiocarbon ages for 10 charcoal samples from Sotira *Khaminoudhia*, Cyprus based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020).

OxCal Table View

https://c14.arch.ox.ac.uk/oxcal/ocp_right.html

Nam Shov	ie w all		Unmo	delled	(BC/	AD)				Mode	lled (B	C/AD)				Indices A _{model} A _{overal}	s =124 _I =124.	.9		Select	Page break
Show	w structure		from	to	%	from	to	%	m	from	to	%	from	to	%	m	A _{comb}	Α	LΡ	С	Visible	
	End Phase II									-2280	-2148	68.3	-2337	-2081	95.4	-2215				98.9	17	
	OxA-3312		-2272	-1936	68.3	-2452	-1775	95.4	-2087	-2291	-2196	68.3	-2346	-2128	95.4	-2243		74.2		99.8	16	
	OxA-3546		-2291	-2038	68.3	-2456	-1973	95.4	-2181	-2290	-2200	68.3	-2343	-2140	95.4	-2244		111.3		99.7	15	
	OxA-3310		-2343	-2039	68.3	-2467	-1961	95.4	-2215	-2291	-2201	68.3	-2346	-2140	95.4	-2245		125.2		99.8	14	
	OxA-3548		-2401	-2067	68.3	-2463	-2035	95.4	-2244	-2291	-2201	68.3	-2344	-2143	95.4	-2245		128.3		99.8	13	
	OxA-3544		-2454	-2202	68.3	-2556	-2039	95.4	-2300	-2292	-2203	68.3	-2345	-2146	95.4	-2246		116.3		99.8	12	
	OxA-3545	≣≣	-2456	-2210	68.3	-2566	-2057	95.4	-2327	-2292	-2203	68.3	-2346	-2146	95.4	-2247		104		99.8	11	
	OxA-3547	≣≣	-2459	-2207	68.3	-2568	-2048	95.4	-2326	-2292	-2203	68.3	-2346	-2146	95.4	-2247		106.6		99.8	10	
	OxA-3311		-2476	-2203	68.3	-2661	-2036	95.4	-2361	-2293	-2203	68.3	-2348	-2145	95.4	-2247		102.6		99.8	9	
	Phase II	≣≣																			8 🔽	
to I	Transition II									-2316	-2216	68.3	-2408	-2157	95.4	-2277				99.7	7	
	OxA-3309	≣≣	-2343	-2039	68.3	-2467	-1961	95.4	-2215	-2395	-2229	68.3	-2457	-2209	95.4	-2308		100.3		99.5	6	
	OxA-3038		-2472	-2206	68.3	-2621	-2047	95.4	-2361	-2375	-2231	68.3	-2476	-2202	95.4	-2315		114.8		99.4	5	
	Phase I																				4	
I.	Start Phase									-2433	-2237	68.3	-2682	-2159	95.4	-2351				96.6	<mark>У</mark> 3	
		≣≣																			✓ 2	

Supplementary Table 6. OxCal output for Bayesian sequencing of calibrated radiocarbon ages for 21 seed and charcoal samples from Marki *Alonia*, Cyprus based on OxCal 4.4.4 (Bronk Ramsey 2009a) using the IntCal20 atmospheric curve (Reimer et al. 2020; van der Plicht et al. 2020). Two samples (OZA-334 and Wk-166434) are excluded as statistical outliers based on $A \le 60$ and two samples (OZA-345 and OZB-159) are excluded following Manning 2013, Models 7-10.

Name Show all	Unm	odelle	d (BC	/AD)				Mode	elled (B	C/AE	D)				Indices A _{model} =154 A _{overall} =15	1.3 1.6		Select	Page
Show structure	from	to	%	from	to	%	m	from	to	%	from	to	%	m	A _{comb} A	LF	, c	Visible	bica
Boundary End Phase I								-1870	-1419	68.3	-1937	63	95.4	-1608			98	46	
R_Date Beta-50747 Ph I	= -188	3 -1636	68.3	-2018	-1535	95.4	-1774	-1887	-1687	68.3	-1976	-1548	95.4	-1783	107.	4	99.8	45	
R_Date Beta-50746 Ph I	-191	3 -1688	3 68.3	-2026	-1547	95.4	-1800	-1890	-1691	68.3	-2012	-1613	95.4	-1794	105.	9	99.8	44	
A Phase I	II																	<mark>V</mark> 43	
Boundary Start Phase I								-2161	-1698	68.3	-3754	-1628	95.4	-1964			97.3	42	
Sequence																		41	
Boundary End Phase H								-2119	-1997	68.3	-2187	′ -1881	95.4	-2045			96.2	40	
R_Date OZA-345 Ph H-1	-220	1 -2037	7 68.3	-2291	-1975	95.4	-2131	-2201	-2038	68.3	-2291	-1975	95.4	-2131		7	7.1 99.8	39	
R_Date OZB-159 Ph H-1	-228	5 -2052	2 68.3	-2398	-2027	95.4	-2181	-2284	-2053	68.3	-2398	-2027	95.4	-2181		3	8.8 99.7	38	
A Phase H	EE .																	37	
Boundary Transition Phase F to H								-2119	-2029	68.3	-2187	′ -1969	95.4	-2068			98.9	36	
R_Date OZA-279U Ph F/ late Gamma	-219	0 -1891	1 68.3	-2291	-1747	95.4	-2023	-2118	-2043	68.3	-2188	-1990	95.4	-2080	120.	4	99	35	
R_Date OZB-160 Ph F/late Gamma	-227	4 -189 ⁻	1 68.3	-2454	-1748	95.4	-2069	-2118	-2043	68.3	-2189	-1990	95.4	-2080	137.	1	99.1	34	
R_Date OZA-340 Ph F-1	-220	3 -2042	2 68.3	-2286	-2028	95.4	-2145	-2103	-2040	68.3	-2188	-2023	95.4	-2079	93.4		99.1	33	
A Phase F																		<mark>∕</mark> 32	
Boundary Transition Phase E to E								-2125	-2061	68.3	-2190	-2031	95.4	-2091			99.2	31	
R_Date OZA-334 Ph E	-195	6 -1775	5 68.3	-2027	-1746	95.4	-1891	-1956	-1775	68.3	-2027	-1747	95.4	-1891		C).4 99.8	30	
A Phase E	≣≣																	29	
Boundary Transition Phase D to E								-2136	-2091	68.3	-2193	-2054	95.4	-2113			99.5	28	
R_Date OZA-336 Ph D-1	-213	2 -1947	7 68.3	-2194	-1891	95.4	-2024	-2141	-2105	68.3	-2196	-2076	95.4	-2124	91.9		99.7	27	
R_Date OZA-337 Ph D-1	-213	6 -1975	5 68.3	-2200	-1901	95.4	-2054	-2141	-2106	68.3	-2196	-2073	95.4	-2125	112.	7	99.8	26	
R_Date	== _218	-203	1 68 3	-2203	-1061	95 /	-2080	-2143	-2107	68.3	-2106	-2071	95 /	-2125	116	5	99.7	25	

3/2/22, 10:25 AM

Supplementary	Table 6	(continued).
OvCal Table View		

OZA-339 Ph D-1	9 ≣≣ -2198 -2035 68.3 -2285 -1961 95.4 -2114 -2144 -2106 68.3 -2196 -2071 95.4 -2126	6 118.6	99.7 🔽 24 🔲
A Phase D			23
Boundary Transition Phase C to D	-2152 -2118 68.3 -2200 -2093 95.4 -2137	,	99.8 🗹 22 🔲
R_Date Wk-166434 Ph C-1	e ≣≣ -2018 -1896 68.3 -2125 -1781 95.4 -1954 -2018 -1896 68.3 -2126 -1781 95.4 -1954	L	0.4 99.7 🔽 21 🔲
R_Date OZA-344 Ph C-1	9 ≣≣ -2286 -2063 68.3 -2401 -2030 95.4 -2191 -2166 -2130 68.3 -2211 -2116 95.4 -2149	126.3	99.8 🗹 20 🔲
R_Date OZA-338 Ph C	⁹ ■ -2286 -2063 68.3 -2401 -2030 95.4 -2191 -2166 -2130 68.3 -2211 -2116 95.4 -214§	126.2	99.8 🗹 ¹⁹ 🔲
Boundary Transition Phase B to C)	99.5 🔽 17 🔲
R_Date Beta-100553 Ph B		106.2	99.3 🔽 ¹⁶ 🔲
A Phase B	≣		1 5
Boundary Transition Phase A to B	-2210 -2143 68.3 -2268 -2141 95.4 -2181		99.1 🔽 14 🔲
R_Date Beta-138629 Ph A-1	9 ■■ -2282 -2143 68.3 -2297 -2051 95.4 -2203 -2274 -2147 68.3 -2282 -2144 95.4 -2196	6 114.2	98.9 🔽 13 🔲
R_Date Beta-138630 Ph A-1	9 ≣≣ -2282 -2143 68.3 -2297 -2051 95.4 -2203 -2274 -2147 68.3 -2282 -2144 95.4 -2196	6 114.2	98.9 🔽 12 🔲
Phase Phase A			V 11
Boundary Start Phase A	-2282 -2150 68.3 -2304 -2144 95.4 -2205	5	98 🔽 10 🔲
Sequence	II		9
Boundary End early Source Gamma	/ ≣≣ -2397 -2193 68.3 -2456 -1840 95.4 -2279)	96.9 🔽 ⁸ 🔲
R_Date OZB-163 Ph early Gamma	9 ≣≣ -2399 -2203 68.3 -2458 -2148 95.4 -2291 -2445 -2279 68.3 -2456 -2213 95.4 -2337	93.8	99.7 🔽 7 🔲
R_Date OZB-161 Ph early Gamma	9 ≣≣ -2458 -2305 68.3 -2471 -2206 95.4 -2371 -2424 -2299 68.3 -2467 -2232 95.4 -2364	104.6	99.7 🔽 6 🔲
R_Date OZB-162 Ph early Gamma	9 ≣≣ -2459 -2309 68.3 -2470 -2209 95.4 -2376 -2424 -2299 68.3 -2467 -2234 95.4 -2366	6 102.6	99.8 🗹 ⁵ 🔲
Phase early Source Gamma			✓ 4
Boundary Start early Source Gamma	/ ≣≣ -2501 -2325 68.3 -2865 -2234 95.4 -2439)	98.2 🗹 ³ 🔲
Sequence	II		2 □