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S1 Mixing and Convergence

For the mainly dendrochronologically-dated tine period from approximately 0-14 cal kBP, the curve
is predominantly obtained via Gibbs sampling and so convergence is not a significant concern.
We therefore concentrate on assessing convergence for the older period of the curve from 14-55
cal kBP whereby the MCMC updating is Metropolis-within-Gibbs. In this older period, all the
data have uncertain calendar ages, i.e. have errors-in-variables, which are updated during curve
construction within the MCMC according to a Metropolis-Hastings (MH) step. It is this calendar
age updating step where we might be most concerned about MCMC mixing and convergence, both
in terms of ensuring the chain has reached equilibrium and that it has fully explored the potential
parameter space to overcome potential multi-modality in the posterior. Addressing these concerns
is a significant factor in our change to Bayesian splines from the previous random walk approach.

In using splines, the MCMC updating is less constrained and so hopefully enables the chain to
move around and explore the space more freely. With splines, given the current set of calendar
ages, we can update the entire curve simultaneously in a single step. This is a key improvement on
the previous random walk approach whereby the curve value was updated a single year at a time
conditional upon its value at all other times, with the consequence it was very slow and cumbersome
to move. Further, the faster updating possible with splines enable us to perform diagnostics
and run multiple chains. This was not computationally feasible with the previous random walk
approach. The use of tempering also aims to address convergence concerns, specifically potential
multi-modality.

The large number of parameters in our MCMC mean that it is difficult to assess convergence
using standard statistical tests. However, in order to assess whether the target MCMC chain has
reached its equilibrium distribution, and whether it fully explores the potential parameter space
to overcome potential multi-modality, we performed the following visual checks.

S1.1 Log-likelihood

For the older part of the curve, where we have errors-in-variables, we provide in Figure S1 a trace
plot of the log-likelihood of the target (non-tempered) MCMC chain. This indicates that the
likelihood has reached a settled value by the point we begin to sample from it and hence provides
support that hopefully we have reached equilibrium in the chain itself.

S1.2 Tempering

Perhaps the most significant concern regarding mixing lies in the potential for calendar age
posteriors of the constituent data to be multi-modal, i.e. have multiple potential values, with
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Figure S1: A trace-plot of the log-likelihood of the target MCMC chain, thinned to every 5"
realisation i.e. iteration 10,000 equates to running the MCMC for 50,000 updates. The first 25,000
thinned iterations (i.e. 125,000 MCMC wupdates pre-thinning) of our sampler are discarded as
burn-in. Our curve estimate is based upon the iterations after this burn-in period.
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Figure S2: Effect of tempering. The left hand plot shows the curves in the region of the floating
Bylling-Allergd tree ring sequences from 14-16 cal kBP, the right hand plot shows the curve over
a longer period from 18-26 cal kBP. Note that the data are shown at their prior/observed calendar
ages. Consequently assessing their fit to the estimated curve is not appropriate as they are relocated
during our Bayesian errors-in-variables curve fitting approach. This is perhaps most apparent in
the case of the Cariaco varved sediment (shown in green on the left hand plot) which demonstrates
the same shape as the fitted curve yet has a prior calendar age estimate somewhat more recent.
The calendar ages of these data will be jointly updated during curve construction to fit with the rest
of the data.
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Figure S3: Trace plots of estimated location of floating trees for each tempered chain. The first
25,000 plotted values (corresponding to 125,000 MCMC updates pre-thinning) are considered burn-
in and not used in our final curve estimate.

the consequence of a multi-modal posterior for the curve itself. Our MCMC sampler alternates
between updating the curve given the current set of calendar age estimates via Gibbs; and then
proposing new calendar ages, given the current curve estimate, in a Metropolis-Hastings step.
Enabling mixing of calendar age estimates is a particular challenge since, within the Metropolis-
Hastings step, the curve which helps determine whether a proposed new set of calendar ages should
be accepted or not has been created based upon a fit to the previous set of calendar ages. This
means the probability of large changes to calendar age estimates being accepted in any single
update is low. Hence, we have the potential for calendar age estimates to get stuck in a single
mode of the posterior as switching to another mode would require a significant change to the curve.

The potential for such an issue is most evident when considering the floating tree-ring sequences.
Here, proposed calendar age changes result in moving the complete tree-ring sequence as a whole
while rigidly maintaining its internal structure. In the case such a floating sequence has multiple
potential posterior calendar age modes, a change from one mode to another in a single update
step is challenging since it would be highly probable any such proposed move would be rejected by
the MH — placing the complete tree-ring sequence at the alternate location would be unlikely to
fit with the current curve estimate which had been obtained based upon the sequence’s previous
location.

Through tempering we hope to reduce this risk. Specifically, we aim to create higher temperature
chains in which the calendar ages of the data cam move much more freely within the update steps
and cover the full range of potential different modes. In proposing exchanges between these freer
chains at high temperatures, which explore more of the space, and those that are less flexible as we
reduce the temperatures, we can hopefully enable our sampler to switch between potential modes
in our target untempered chain.

To demonstrate the effect, and benefit, of tempering we present in Figure S2 the posterior
curve estimates obtained for the target chain (i.e. not tempered) and the chain run at the highest
temperature (i.e. increasing up the observational noise). In these plots, the blue curve is the
estimate obtained at the highest temperature while the red curve is the target. For interest, we
also show, in green, the naive spline estimate obtained were we to ignore the errors-in-variables.
As expected, increasing the temperature provides a smoother curve compared with the target.
This is particularly evident in the left-hand plot where we might be most concerned about the
mixing of the three floating tree-ring sequences which are present in this time period. The higher
temperature curve is much smoother and does not show the same significant inversion around
14.75 cal kBP indicating that, at these higher temperatures, the fitted locations of the floating
tree-ring sequences are more easily able to move in calendar age. Hence, by proposing state swaps
between different temperature chains, we provide the target chain with the potential to switch
between multiple modes if it is appropriate. While this is perhaps most important for our tree-ring
sequences, it also enables improved mixing for all our uncertain calendar age data.

Relatedly, Figure S3 provides the trace of the calendar age estimates for the three floating
Bolling-Allergd tree ring sequences (Adolphi et al., 2017) obtained with each tempered chain. Since
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Figure Sj: Posterior calendar age estimates for three Bglling-Allergd floating tree ring sequences
(Adolphi et al., 2017); and two older Southern Hemisphere kauri trees (Turney et al., 2010, 2017).

these trees shown the most significant internal '*C' variation, they have the potential to have the
most difficult mixing. As described in the main manuscript we increase the amount of tempering
on tree P305u and P317 further, in comparison to the other uncertain age data used for IntCal20,
to address this. At the higher temperatures (e.g. the yellow, most tempered chain) the calendar
ages can move relatively freely, seen most clearly in the case of P305u and P317. In the case of
P305u, the highest temperature chain moves evenly from approximately 14.35 to 14.45 cal kBP;
however as seen in Figure S4, the untempered target has a bimodal posterior with peaks around
14.36 cal kBP and 14.41 cal kBP. If we were not able to propose swaps from a chain which moved
more freely and covered both these modes we might not be able to satisfactorily explore them both
in the target but would rather remain solely in one or the other. Conversely, in the case of tree
P317, the highest temperature chain appears to alternate between two distinctly different modes,
one around 14.5 cal kBP and another around 14.8 cal kBP. As the temperature reduces towards
the target, the 14.5 cal kBP mode becomes less likely with probability concentrating around a
single mode located around 14.8 cal kBP for the target posterior. The rejection of proposed swaps
to the more recent 14.5 cal kBP mode suggests that, for this tree and its quoted *C uncertainties
the older mode around 14.8 cal kBP is the appropriate fitted age.

S2 Posterior information

S2.1 Fitting locations of floating tree-ring sequences

We highlight some of the posterior information provided by the MCMC. Firstly we present, in
Figure S4, the posterior calendar ages of the five floating tree ring sequences — three from the
Bolling-Allergd (Adolphi et al., 2017) and the two older SH kauri trees (Turney et al., 2010, 2017).
An uninformative prior was placed on the calendar ages of these five sequences and hence the
posteriors are determined according to their fit with the rest of the constituent IntCal20 data on
which some calendar age information is available. In using such uninformative priors, as opposed
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Figure S5: Posterior estimate of the spline smoothing parameter X in a) the predominantly
dendrochronologically-dated based section of the curve from 0-13.9 cal kBP; and b) the older time
period from 13.9-55 cal kBP where the curve is based on a wider range of material. Note that due
to the differing density of knots in each section, we would not expect the posterior estimates to be
the same in each region.

to for example the ice-core based calendar age estimate provided by Adolphi et al. (2017), we
maintain independence between the radiocarbon and ice-core timescales. This allows consideration
of potential transfer functions between the radiocarbon and ice-core timescales without concerns
over circularity. Note in particular the bi-modality for tree P305u indicating there are two potential
fitting calendar age locations for this sequence, as already highlighted in Section S1.2. Since
this ring sequence exhibits significant internal '4C variability (see Adolphi et al., 2017), this will
also lead to some bi-modality in the posterior for the curve itself. Approximately half the curve
realisations will correspond to 4C history where this tree-ring sequence begins around 14.36 cal
kBP and other half of the curve realisations will correspond to '*C history where this feature
begins around 14.41 cal kBP.

S2.2 Posterior on smoothing parameters

In Figure S5 we present the posterior estimate of A, the spline smoothing parameter, for both
sections of the curve separately — firstly the predominantly dendrochronologically-dated section
extending from 0-13,910 cal BP; and secondly the older section of curve from 13,910-55,000 cal
BP based upon a wider variety of material including speleothems, lake and marine sediment cores,
corals and floating tree-ring sequences. Since the number, and density, of knots in the two separate
sections of curve are not equivalent the two posteriors are not directly comparable with one another.

S3 Choice of additive error model

We introduce an additive error term to recognise and adapt to potential additional variability in
14C" determinations beyond the lab-reported uncertainty. Specifically, in the F'*C domain, we
model the observed values as

Fy=f(0;,)+e+¢ fori=1,...,n,

where 6; is the calendar year of determination 4, and the function f(6;) is our estimate of the
atmospheric level of F'*(C in that calendar year. Under this model, the observational uncertainty
is decomposed into two terms: ¢; ~ N(0,02), with o; known, being the independent uncertainty
reported by the laboratory; and ¢; ~ N(0,77?) the additive error which models the potential over-
dispersion present in our '4C observations and takes the form of independent random effects with
unknown variance 72. We considered three potential models for the form of 7; (the standard

K]
deviation of the additive error):

1. Constant additive error model — A constant standard deviation model i.e.

G~ N(0,72).

S5



(@
Recent SIRI trees Older SIRI trees
3 8 8 o3
[ R d
(0] O e (0] e _é_
E B 6 g o ERE, _—
[ © - g QY- o
— | _:_ | o
I - = L °
T.I. _ — [ . 1 ; '_LI_ © -
! ! ; N o ———
S @) —&— o N
o T T T T T
1 2 3 1 2
Tree Identifier Tree Identifier
(b) Constant additive error model
S _ _ - i
N
- — o
o |
o [Te]
z 87 z T
[7) 2] —
c — c
[ [}
o - a o
S
— 9]
o - o -
I T T I T T
0.002 0.004 0.006 0.002 0.004 0.006
SIRI Estimate for T on recent trees SIRI Estimate for t on older trees
(c) Scaled (linear) additive error model
]
S @
2 ® 2 o
2 2 8
o o )
o o
I T T T T T T 1 T T T T T T T 1
0.004 0.008 0.012 0.016 0.004 0.008 0.012 0.016
SIRI Estimate for © on recent trees SIRI Estimate for t on older trees
(d) Scaled (square root) additive error model
S _
Q _ -
o
o — o
2 > 9
@ _ s ©
5 ]
o 8 /| a
<+ o
o
— Al
o - o
I T T T T T T 1 I T T T T T T 1
0.0040 0.0050 0.0060 0.0070 0.0040 0.0050 0.0060 0.0070
SIRI Estimate for t on recent trees SIRI Estimate for t on older trees

Figure S6: Comparing different additive error models. An appropriate model would provide the
same/similar estimates of T when fitted to both the more recent and the older trees taken from
SIRI. We model the F1*C on tree i in laboratory j as Fy; = f(0;) + €5 + Cij. Here €;5 ~ N(O,J?j)
are independent with o;; the laboratory-reported uncertainty; and (;; denotes the over-dispersion.
Panel a) shows box plots of the measured F*C' laboratory values for each of the three recent
SIRI tree-rings and the two older SIRI tree-rings. Panel b) shows the posterior estimates obtained
for T, on both the recent and older sets of trees separately, if we model the over-dispersion seen
within any tree-ring as independent of the value of f(6) i.e. (i ~ N(0,7%). Panel ¢) if we
model the over-dispersion seen within any tree-ring as scaling linearly with the value of f(0) i.e.
Cij ~ N(0,72f(0;)?). Panel d) if we model it as scaling linearly with \/ f(0) i.e. i; ~ N(0,72f(6;)).
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Under this model, the level of over-dispersion on Fj is not dependent upon the level of C
in the object.

2. Scaled (linear) additive error model — A model where the standard deviation of the additive
error scales linearly with f(6), i.e.

G~ N(0,72£(6;)%)

3. Scaled (square root) additive error model — A model where the standard deviation of the
additive error scales linearly with 1/ f(0), i.e.

Gi ~ N(0,7°f(67))

In order to assess which of these models was most suitable we considered data from the SIRI
intercomparison exercise (Scott et al., 2017) consisting of repeat measurements of trees from two
distinct time periods — 3 trees with radiocarbon determinations of around 300 *Cyrs BP; and
2 trees with radiocarbon determinations of about 10,000 *Cyrs BP. Approximately 80 repeat
measurements were available on each of the younger group of trees; and 76 repeat measurements
on each of the older trees. We implemented separate Bayesian analyses fitting the three above
models on each distinct time period independently. Uninformative priors were placed on the
values of f(6) for each tree and the value of 7. MCMC was then performed for 100,000 iterations,
with the first 50,000 discarded as burn-in.

For a given additive error model, this provided posterior estimates of 7 for both the recent and
older sets of trees independently. To assess model suitability, the consistency of these two posterior
estimates over the differing time periods were considered. An appropriate model would be expected
to provide similar posterior estimates for 7 when fitted to the older trees as when fitted to the more
recent trees. The relative estimates are shown in Fig S6. As can be seen, both the model where
the standard deviation of the additive error is constant (option 1) and the model it scales linearly
with f(0) (option 2), provide posterior T estimates that are considerably different when fitted to
the more recent trees as compared to the older trees. This suggests these additive error models
are not appropriate. Conversely, the model whereby the additive error scales linearly with +/ f(6)
provides similar estimates for 7 in both the recent and older time periods. It was therefore decided
to implement this square-root additive error model (option 3) to adapt to over-dispersion within
the IntCal20 data. To provide a prior on the value of 7 to use for curve construction, the SIRI
data were combined into a single dataset and another Bayesian analysis performed. The mean and
variance of the resultant joint estimate for 7 were calculated and used to determine our prior for
IntCal20 as described in the main manuscript.
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