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1. Overview and justification of the radiocarbon TFD analysis used
in this study

1.1. Paleodemographic Inference using TFDs – approaches and caveats

Estimating human population history is both an essential element to understanding long-term human-
environmental dynamics and one of the more difficult tasks in archaeology (Kelly, 2018). Throughout the
second half of the 20th century, temporal frequency distributions (TFDs) built from counts of dated artifacts,
burials, houses, rooms, sites and site areas within study regions have provided imprecise population estimates.
Over the past two decades, the ability to aggregate large radiocarbon data sets has allowed us to improve
on these methods, under certain conditions (Rick, 1987; Williams, 2012; Brown, 2015, 2017; Fitzhugh et al.,
2016; Crema et al., 2016, 2017; Robinson et al., 2019; Kelly et al., 2021; Price et al., 2021; Shennan and
Sear, 2021; Crema, 2022). Efforts to aggregate and archive data in digital repositories and targeted attempts
to compile archaeological radiocarbon databases at up to-continental scales (e.g., Canadian Archaeological
Radiocarbon Database /CARD: https://www.canadianarchaeology.ca; Kelly et al., 2021; Palmisano et al.,
2022) have made it possible to compile TFDs of dates for many regions of interest. In TFD paleodemography
(based on events dated by radiocarbon or other chronometric methods), accumulation rates are sought as
proxies for population change. The resulting graphs are taken to reflect trends in population histories (e.g.,
Figs. 2d and 4 in the main text).

Even so, the shapes of TFDs are inevitably biased, not only by the interests of the researchers who selected
the original samples for dating (sampling bias), but also by underlying issues of archaeological visibility
and preservation (what remains to be sampled; taphonomic bias). Where research histories, visibility and
preservation issues can be controlled and mitigated, TFDs track the relative accumulation rates of dated
archaeological materials left by people in the past in focal sampling regions. Changes in the per capita rate
of creation/deposition of dateable materials will also factor into the shape of TFDs. For example, changes
in settlement organization (moving from single to multi-family dwellings), in the practices of residential
mobility (from highly mobile to more sedentary or vice versa), or in approaches to ceremonial activity (e.g.,
in feasting practices, ceremonial burning of houses following the death of an important resident) introduce
non-demographic influence on TFDs. Such cultural factors might amplify, mute or overwhelm demographic
signals represented in TFD trends. In sum, TFDs can be taken as demographic proxies when sampling,
preservation and cultural changes can either be ruled out or mitigated. More pragmatically, TFDs serve
as hypothetical paleodemographic models, and their interpretations should include efforts to identify non-
demographic influences when possible.

In many cases—especially when aggregated data come from numerous prior research projects with varying
degrees of documentation—it is not possible to rule out all of the various forms of bias (especially sampling
bias). In these cases, paleodemographic researchers often make the working assumption that, with large
enough data sets drawn from numerous independent sources, the idiosyncrasies of the original research
projects will be statistically neutralized (Rick, 1987). This assumption makes many archaeologists nervous
and has led to a strong undercurrent of skepticism (Contreras and Meadows, 2014; Attenbrow and Hiscock,
2015; Hiscock and Attenbrow, 2016). One form of known systematic taphonomic bias relates to the loss
of archaeological visibility/preservation reflected in the overall positive trends observed in most raw TFD
curves. Surovell and colleagues (2009) have argued that the deterioration of the archaeological signal over
time can be estimated (at least globally) as a function of the changing rate of preservation of volcanic tephras
globally which also deteriorate over time.

While unique TFD trajectories should contain demographic information, perhaps predominantly so, they
provide no inherent basis on which to evaluate their demographic relevance. In this study, our approach to
the uncertainty in individual radiocarbon-based TFDs is comparative. Rather than interpreting any single
TFD as a clean representation of past population trends, we assume that TFDs are noisy and the product of
multiple influences. We look for structural coherence in spatio-temporal features visible in the comparison of
multiple time series. The greater the coherence in data structure between series, the more likely the trends are
meaningful at scales larger than individual series, and not driven by idiosyncratic research histories or local
preservation factors (see Contreras and Meadows, 2014; Brown, 2015, 2017). Ruling out non-demographic
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cultural influences requires consideration of the archaeological evidence associated with the TFD data sources
themselves. We address cultural considerations when reviewing the regional series in the main text.

In this study, after addressing known statistical and taphonomic biases by applying the CRFPAB procedure
and taphonomic correction discussed below, we conduct visual comparison and time-incremental spatial
autocorrelation analyses of thirteen radiocarbon TFDs from Alaska, Hokkaido and the Kuril Islands. We
aim to isolate variability that can be attributed to demographic changes and to use them to evaluate the
hypotheses above. Demographic processes underlying net population change include intrinsic fertility and
mortality as well as in-migration and out-migration.

Ideally, we would define localized areas for construction of TFDs and allow spatial correlations to identify the
unique spatial scales of meaningful variability. Limitations in archaeological radiocarbon sample sizes force
us to define spatial units larger than might be ideal, especially in Alaska. TFD analysis is inevitably affected
by the spatial boundaries imposed, as noted above. Any scale of aggregation will average the signals of TFD
generating processes encompassed within the aggregation. For some questions, the ideal scale may be the
site, settlement or neighborhood, and for others, much larger areas may be more appropriate. While the
minimal analytical unit is set by the need for sufficient sample size, there is no limit at the maximum unit size,
aside from the challenges of linking aggregate trends to underlying causal processes. The logical implications
of these considerations are that smaller sample areas (with fewer dates) will generate a greater abundance
of idiosyncratic distributional structures (peaks and valleys) in sample distributions (i.e., sampling error),
while too-large areas (with more dates) will entangle too many, more localized and independent processes
that could wash out stronger, but more local signals. Where sample sizes are small across large areas,
both problems are compounded and trends are least interpretable. Ultimately, spatial scale needs to be
established with consideration both for sample sufficiency and the scale/s at which the processes of interest
may be expected to have operated. Spatial scale mismatch is a real hazard in interpreting TFDs. This is
one reason to define smaller units and look at structural patterns shared between them. Table 1 in the main
text reports the numbers of dates included in each set, as well as estimates of effective sample size after
penalizing redundant dates from the same locations.

1.2. Generating and Interpreting North Pacific Archaeological TFD Curves

In brief, the procedure we apply for synthesizing radiocarbon datasets into TFDs—which we have labeled
‘composite redundancy filtering through presence-absence buffering’ (CRFPAB)—is a three-step approach:

1. For each archaeological site, a binary presence-absence time series is derived first by placing a binary
‘presence-absence buffer’ around each of the site’s calibrated age estimates, extending for 100 years in
either direction, then by assessing whether one or more of these buffers covers each point along the
timeline. By design, this step reduces intra-site oversampling bias by insistently single-counting site
occupation whenever multiple buffers overlap, hence the label ‘redundancy filtering through presence-
absence buffering’ (RFPAB). By the same token, it places what has elsewhere been labeled an ‘oc-
cupation window’ (Maschner et al. 2009) around the set of events represented by a site’s full set of
calendar age estimates, in effect presuming to fill in gaps in the sample distribution resulting from
sampling error, in a manner analogous to kernel density estimation. A measure of intra-site effective
or nonredundant sample size can also be derived from the area under this presence-absence time series.

2. At the scale of the study region, a TFD time series is derived by summing all sites’ presence-absence
time series at each point along the timeline. Temporal changes in the height of this TFD measure
result from changes in the estimated count of synchronously occupied sites in the regional data set
over time. Intra-site effective sample sizes calculated in the first step can also be summed to further
estimate an effective or non-redundant sample size for the overall regional sample.

3. To mitigate chronometric uncertainty accompanying calibrated radiocarbon age estimation, the first
two steps are repeated a large number of times through Monte Carlo (MC) simulation: a new sam-
ple of calendar age estimates is repeatedly drawn from each radiocarbon date’s calibrated posterior
distribution, and intra-site presence-absence and inter-site TFD time series are recalculated for each
new sample of draws. The resulting ensemble of TFDs are then synthesized through averaging into a
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‘composite’ TFD. Graphically, the ensemble of simulated TFDs can be represented with a spaghetti
plot or summarized with a confidence ribbon or band, overlaid with the composite TFD.

By design, this procedure mitigates both intra-site oversampling bias (in the first step) and chronometric
uncertainty (in the third step). In addition, it mitigates random sampling error to the degree that the
aggregate TFD can be interpreted as a kernel density estimate (KDE). The presence-absence time series
produced in the first step can validly be interpreted as a novel variant of a kernel density estimate (KDE),
in which overlapping rectangular kernels are disallowed from stacking up in the manner typical of kernel
density estimation. By implication, the TFD calculated in the second step can also validly be interpreted
as a penalized KDE in which the nonduplicate segments of all sites’ kernels are stacked up for the study
region. Consequently, the composite TFD calculated in the third step contributes a new member to the
broad family of composite KDEs discussed under different names by Baxter and Cool (2016), Bronk Ramsey
(2017), Brown (2017), and McLaughlin (2019). We concede that in the CRFPAB case, the default 200-year
buffer width is set a priori rather than adapted to the particular radiocarbon data set under analysis. As
a result, this method cannot claim to optimize the mitigation of sampling error, as in the case of standard
kernel density estimation procedures. Consequently, there is room for improvement on this aspect of the
procedure in future methodological work, as was also true for kernel density estimation in its nascency (Jones
et al. 1996).

Finally, we concede that the finite mixture approach recently introduced by Price et al. (2021; see also
Brown, 2019: Chapter 4) should replace the use of both summed probability distributions (SPDs) and
KDEs (composite or otherwise) as the standard of practice in modeling regional TFDs. However, in the
present study the desire to explicitly inform regional-scale mixture models with site occupation models that
mitigate intra-site sampling redundancy would require a hierarchical expansion on Price’s single-level finite
mixture approach. In the interim, we believe that the CRFPAB procedure offered and applied here suffices
to serve this purpose. Formal and computational details of the CRFPAB procedure are described in Section
3 of Supplemental Materials, below.

Following the insights of Surovell and colleagues (Surovell and Brantingham, 2007; Surovell et al., 2009)
and unlike the approach taken in our own previous radiocarbon TFD analyses (Fitzhugh et al., 2016, 2020;
Gjesfjeld et al., 2019), we include standardized taphonomic corrections to mitigate the effects of declining
archaeological preservation/visibility with greater antiquity, described above. The ‘correction’ function stan-
dardizes TFDs by adjusting the overall trend by a factor dependent on the rate of signal loss calculated from
preserved and globally sampled volcanic tephras (Surovell et al., 2009). The ‘correction’ is deterministic and
approximate, necessarily inflating features at the older end of the time series where samples sizes are typically
smaller, and its accuracy will vary between geographical regions with different underlying rates of deposition,
erosion and degradation. See below for comparisons of corrected and uncorrected series (cf. Williams, 2012,
fig 7 and text). Despite these caveats, the taphonomic adjustment enables readers to view the TFD curves
without undue attention to the aggregate positive trends, drawing focus instead to the deviations from those
trends, which is where our primary interests lie.

Unlike the time series comparisons commonly presented in paleoclimate and paleoecological publications,
radiocarbon TFDs are built on time-stamped data points (e.g., radiocarbon-anchored site occupation events
or episodes). Consequently, no age model calculations, axis adjustments or curve fitting are necessary. The
correspondence between TFD time series is literally one-to-one along the x-axis. This does not mean that the
radiocarbon based TFD series are necessarily accurate representations of the archaeological events they are
taken to represent (whether population trends and/or cultural shifts). TFD time series built on radiocarbon
dates are constrained by the same issues affecting their interpretation in other contexts. Where terrestrial
charcoal and other wood are used exclusively for building the TFDs (as in this analysis), the most likely issue
to affect the trends the inclusion significant numbers of “old wood” dates in TFD data sets. Like most other
radiocarbon paleodemographic analyses, here we assume that old wood issues do not systematically bias
our results. That working assumption deserves scrutiny, however, especially for data sets from places like
the Arctic where deadwood can preserve for centuries after death or in places where long-lived trees could
have been used as fuel and raw materials (Anderson and Feathers, 2019; Ledger and Forbes, 2019; McGhee
and Tuck, 1976). Collectively, large samples of dates (which is what radiocarbon-based TFDs are) should
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reflect the antiquities of the life-histories of the underlying source forests, not specifically the antiquity of tree
deaths—however closely associated those deaths were to the human use of the wood (the target date). We
must assume for now that, on average, prehistoric fire-builders disproportionately used fuels from recently
dead trees and shrubs because 1) prehistoric use of long-dead wood should be rare relative to use of recently
dead wood in any assemblage, 2) the volume—and therefore chance of selection for dating—of later-growth
wood (closer to the date of harvest) should be greater than the volume and chance of sampling earlier growth
from the dead tree, 3) processing large logs or trees for domestic fires (the assumed source of most wood
sampled here) would have been inconvenient compared to the use of smaller branches with age profiles closer
to the death of the tree (or branch) and 4) common tree taxa around the North Pacific Rim live an average
of only 100-200 years (Fitzhugh et al., 2016). Accordingly, the preponderance of dates in any large data set
should derive from wood that predominantly dates close to the target event (human activity). The resulting
one-sided skew of included ‘old-wood’ dates, randomly distributed through large data sets, should have the
main effect of dampening amplitude variability in trends by pulling some of the TFD mass in the direction of
greater antiquity, but the inclusion of such dates should not seriously affect the location of trend inflections.

1.3. Analyzing Proxy Population Time Series

Most archaeological analyses of TFDs are presented individually and interpreted as if they were de facto
population trends to a given region. As we have seen, several factors can influence TFDs values, and while
the fluctuation of population numbers in a region may be a significant or even dominant factor, trends
necessarily also include the influence of other cultural, taphonomic and sampling variability. Arguably,
taphonomic and sampling biases create mostly non-systematic biases (‘noise’) in individual time series. When
comparing contemporaneous trends between different time series, we would not expect such noisy variability
to generate correspondence more often than random. In principle, non-random, or statistically significant,
trend correlations between neighboring series could be taken as a strong sign of an underlying process worth
further investigation. Comparison of multiple TFD time series, therefore, provides a method to identify
coherence between regions, while retaining the spatial discrimination that would be lost by pooling the
samples into larger regional units of analysis. In the case of TFDs constructed as radiocarbon date summed
probability distributions (SPDs), we know that the data are also influenced by both instrument error (on the
order of decades) and calibration errors tied to variability in atmospheric production of radiocarbon. Brown
(2015; see also Williams, 2012; Fitzhugh et al., 2016; Bronk Ramsey, 2017; Price et al., 2021) argues that
SPD features (spikes and troughs) shorter than 100 years are most vulnerable to calibration error effects.
As a result, demographic assessments of SPDs should only consider trends that persist for more than a
century in interpreting both single and multiple time series. In contrast, the double-smoothing inherent
in the CRFPAB procedure—resulting first from the use of presence-absence buffers or kernels, then from
repeated MC recalculation and averaging across these recalculations—should mitigate the presence of such
misleading high-resolution artifacts.

Visual examination of TFD time series allows us to consider the relationship between regional trends to
each other and to compare them to known archaeological evidence. Approaching the series this way, before
distilling the analyses to statistical generalizations, serves as a ‘ground-truthing’ exercise and one that we
hope will allow readers to judge for themselves the integrity of the interpretations proposed. Visual trend
comparisons make it possible to see the structure of the individual regional trends and provide a means
to evaluate inferences from statistical simplifications. Nevertheless, the sheer number of trends and their
inherent noisiness calls out for some method or mechanized procedure to evaluate the relatedness of multiple
trends. After visual inspection, we then turn to what we believe is a novel spatial autocorrelation approach to
formally evaluate the hypotheses presented above, which we have labeled a time iterative Moran’s I (TIMI)
analysis. Formal and computational details of this approach are presented in Section 4 below.
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2. Data management

The raw North Pacific radiocarbon data sets are loaded for the Kurils (including only IKIP-KBP radiocarbon
data), Hokkaido (based on a data set compiled by T. Katsunori), Alaska (compiled by A. Tremayne), Kodiak
(based on a series of compilations by R. Mills, B. Fitzhugh, W. Brown, and others, featured in Brown, 2015),
and the Aleutians (compiled by W. Brown).

## Northwest Pacific Rim (Hokkaido-Kurils)
allKurils = read.csv(

file = "IKIP_KBP_data.csv",
header = TRUE, stringsAsFactors = FALSE
)

allHokkaidoRaw = read.csv(
file = "Hokkaido_data_revised.csv",
header = TRUE, stringsAsFactors = FALSE
)

## Northeast Pacific Rim (Alaska)
AK_raw = read.csv(

file = "AK_RCdates_2017Nov28.csv",
header = TRUE, stringsAsFactors = FALSE
)

allKodiak = read.csv(
file = "Kodiak_data.csv",
header = TRUE, stringsAsFactors = FALSE
)

allAleutians = read.csv(
file = "Aleutians_data.csv",
header = TRUE, stringsAsFactors = FALSE
)

2.1. Cleaning the Hokkaido data

The following chunks clean up the Hokkaido data.

# Combining Hokkaido region and coastal/inland setting into a new categorical variable
allHokkaidoRaw$RegionSetting = paste0(

allHokkaidoRaw$Region,
", ",
allHokkaidoRaw$CoastInland
)

#EHokSoJind = which(allHokkaidoRaw$RegionSetting=="Eastern Hokkaido, Sea of Japan")

kable(table(allHokkaidoRaw$RegionSetting))

Var1 Freq
Central Hokkaido, Inland 1616
Central Hokkaido, Pacific Ocean 78
Central Hokkaido, Sea of Japan 32
Eastern Hokkaido, Inland 175
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Var1 Freq
Eastern Hokkaido, Okhotsk Sea 215
Eastern Hokkaido, Pacific Ocean 143
Northern Hokkaido, Inland 66
Northern Hokkaido, Okhotsk Sea 18
Northern Hokkaido, Sea of Japan 65
Southern Hokkaido, Inland 15
Southern Hokkaido, Pacific Ocean 208
Southern Hokkaido, Sea of Japan 36
Southern Hokkaido, Tsugaru Strait 405

# Selecting only the variables that (might) matter
allHokkaido = subset(

x = allHokkaidoRaw,
select = c(

Region, CoastInland, X...North.latitude,
X...East.longitude, SiteRoman, SpecimenType,
HalfLife, MeasuredAge, MeasuredAgeError,
X.13C.permil., ConventionalAge, ConventionalAgeError,
LabNo, RegionSetting
)

)

The next chunk recodes radiocarbon age measures as NA if they lack point measures. Note that age measures
are included in either of two columns in the data set: MeasuredAge and ConventionalAge.

#sort(unique(allHokkaido$MeasuredAge))
naIndexes = which(

allHokkaido$MeasuredAge == "" |
allHokkaido$MeasuredAge == "?" |
allHokkaido$MeasuredAge == "??" |
allHokkaido$MeasuredAge == "????" |
allHokkaido$MeasuredAge == "Failed" |
allHokkaido$MeasuredAge == "Modern" |
allHokkaido$MeasuredAge == "Older than 18000" |
allHokkaido$MeasuredAge == "Unmeasurable"
)

allHokkaido$MeasuredAge[naIndexes] = NA

#sort(unique(allHokkaido$MeasuredAge[-naIndexes]))
allHokkaido$MeasuredAge[which(allHokkaido$MeasuredAge == "6550-")] = 6550

allHokkaido$MeasuredAge = as.numeric(allHokkaido$MeasuredAge)

# This table compares region counts of the raw dataset
# and the dataset after recoding non-point measures as NA;
# sizes are identical because these cases aren't yet removed
# from the dataset
kable(cbind(

table(allHokkaidoRaw$RegionSetting), table(allHokkaido$RegionSetting)
))

7



Central Hokkaido, Inland 1616 1616
Central Hokkaido, Pacific Ocean 78 78
Central Hokkaido, Sea of Japan 32 32
Eastern Hokkaido, Inland 175 175
Eastern Hokkaido, Okhotsk Sea 215 215
Eastern Hokkaido, Pacific Ocean 143 143
Northern Hokkaido, Inland 66 66
Northern Hokkaido, Okhotsk Sea 18 18
Northern Hokkaido, Sea of Japan 65 65
Southern Hokkaido, Inland 15 15
Southern Hokkaido, Pacific Ocean 208 208
Southern Hokkaido, Sea of Japan 36 36
Southern Hokkaido, Tsugaru Strait 405 405

## Cleaning up non-point conventional 14C ages
#sort(unique(allHokkaido$ConventionalAge))

naIndexes2 = which(
allHokkaido$ConventionalAge == "" |
allHokkaido$ConventionalAge == "?" |
allHokkaido$ConventionalAge == "Modern" |
allHokkaido$ConventionalAge == ">29950" |
allHokkaido$ConventionalAge == "Unmeasurable"
)

allHokkaido$ConventionalAge[naIndexes2] = NA

#unique(allHokkaido$ConventionalAge[-naIndexes2])

allHokkaido$ConventionalAge = as.numeric(allHokkaido$ConventionalAge)

The following code chunk recodes radiocarbon errors as NA if they lack point values. Once again, separate
columns are included in the dataset for measured and conventional radiocarbon ages.

#sort(unique(allHokkaido$MeasuredAgeError))

naIndexes3 = which(
allHokkaido$MeasuredAgeError == "" |
allHokkaido$MeasuredAgeError == "-" |
allHokkaido$MeasuredAgeError == "?"
)

allHokkaido$MeasuredAgeError[naIndexes3] = NA

#sort(unique(allHokkaido$MeasuredAgeError[-naIndexes3]))

allHokkaido$MeasuredAgeError = as.numeric(allHokkaido$MeasuredAgeError)

#sort(unique(allHokkaido$ConventionalAgeError))

naIndexes4 = which(
allHokkaido$ConventionalAgeError == "" |
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allHokkaido$ConventionalAgeError == "?"
)

allHokkaido$ConventionalAgeError[naIndexes4] = NA

#sort(unique(allHokkaido$ConventionalAgeError[-naIndexes4]))

allHokkaido$ConventionalAgeError = as.numeric(allHokkaido$ConventionalAgeError)

The following chunk removes observation that are missing either some point measure of radiocarbon age
(measured or conventional) or some measure of error.

allHokkaidoTrimmed = subset(
x = allHokkaido,
subset =

(is.finite(allHokkaido$MeasuredAge) | is.finite(allHokkaido$ConventionalAge)) &
(is.finite(allHokkaido$MeasuredAgeError) | is.finite(allHokkaido$ConventionalAgeError))

)

# This table summarizes the reduction in sample size after
# removing cases with incomplete radiocarbon age measurements.
kable(cbind(

table(allHokkaido$RegionSetting),
table(allHokkaidoTrimmed$RegionSetting)
))

Central Hokkaido, Inland 1616 1570
Central Hokkaido, Pacific Ocean 78 76
Central Hokkaido, Sea of Japan 32 31
Eastern Hokkaido, Inland 175 170
Eastern Hokkaido, Okhotsk Sea 215 215
Eastern Hokkaido, Pacific Ocean 143 143
Northern Hokkaido, Inland 66 64
Northern Hokkaido, Okhotsk Sea 18 18
Northern Hokkaido, Sea of Japan 65 65
Southern Hokkaido, Inland 15 15
Southern Hokkaido, Pacific Ocean 208 206
Southern Hokkaido, Sea of Japan 36 36
Southern Hokkaido, Tsugaru Strait 405 405

The following code chunk removes cases of questionable material type (unknown, animal bone, animal tooth,
brass pipe, charred material, fish bone, human bone, peat, shell, soil, and unknown)

#sort(unique(allHokkaidoRaw$SpecimenType))

allHokkaidoTrimmed2 = subset(
x = allHokkaidoTrimmed,
subset =

SpecimenType != "" &
SpecimenType != "Animal bone" &
SpecimenType != "Animal tooth" &
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SpecimenType != "Brass pipe" &
SpecimenType != "C" &
#SpecimenType != "Cahrred grass" &
#SpecimenType != "Charcoal" &
#SpecimenType != "Charcoal?" &
#SpecimenType != "Charred bark" &
SpecimenType != "Charred material" &
SpecimenType != "Charred material (collected by flotation)" &
SpecimenType != "Charred material attached to pottery surface" &
SpecimenType != "Charred material attached to pottery surface (exterior surface)" &
SpecimenType != "Charred material attached to pottery surface (interior surface)" &
#SpecimenType != "Charred nuts" &
#SpecimenType != "charred plant remain" &
#SpecimenType != "Charred plant remain" &
#SpecimenType != "Charred Sasa" &
#SpecimenType != "Charred seed" &
#SpecimenType != "Charred seed (nuts)" &
#SpecimenType != "Charred seeds (six Polygonum)" &
#SpecimenType != "Deer antler" &
#SpecimenType != "Deer bone" &
#SpecimenType != "Deer tooth" &
#SpecimenType != "Drift wood" &
SpecimenType != "Fish bone" &
#SpecimenType != "Grass" &
SpecimenType != "Human bone" &
#SpecimenType != "Japanese lacker fragment" &
#SpecimenType != "Japanese lacquer" &
SpecimenType != "Peat" &
#SpecimenType != "Root" &
#SpecimenType != "Seed" &
SpecimenType != "Shell" &
SpecimenType != "Soid attached to iron pan surface" &
SpecimenType != "Soil" &
#SpecimenType != "Texile" &
SpecimenType != "Unknown" #&
#SpecimenType != "Wood" &
#SpecimenType != "Wooden artifact"

)

# This table describes sample size reductions after cases
# with incomplete radiocarbon age measures and cases with
# questionable material type are removed.
kable(cbind(

table(allHokkaido$RegionSetting),
table(allHokkaidoTrimmed$RegionSetting),
table(allHokkaidoTrimmed2$RegionSetting)
))

Central Hokkaido, Inland 1616 1570 1170
Central Hokkaido, Pacific Ocean 78 76 35
Central Hokkaido, Sea of Japan 32 31 22
Eastern Hokkaido, Inland 175 170 120
Eastern Hokkaido, Okhotsk Sea 215 215 116
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Eastern Hokkaido, Pacific Ocean 143 143 133
Northern Hokkaido, Inland 66 64 40
Northern Hokkaido, Okhotsk Sea 18 18 10
Northern Hokkaido, Sea of Japan 65 65 45
Southern Hokkaido, Inland 15 15 8
Southern Hokkaido, Pacific Ocean 208 206 62
Southern Hokkaido, Sea of Japan 36 36 14
Southern Hokkaido, Tsugaru Strait 405 405 321

This code chunk removes cases whose radiocarbon age measures are either based on unknown half-lives or
the Cambridge half-life

#sort(unique(allHokkaidoTrimmed2$HalfLife))
#table(allHokkaidoTrimmed2$HalfLife)
#par(mfrow = c(1,1))
#boxplot(formula = allHokkaidoTrimmed2$MeasuredAge~allHokkaidoTrimmed2$HalfLife)
#CharacteristicLifeLibby = 5568*-1/log(0.5)
#CharacteristicLifeCambridge = 5730*-1/log(0.5)
#5568/5730 == CharacteristicLifeLibby/CharacteristicLifeCambridge
#5568/5730

allHokkaidoTrimmed3 = subset(
x = allHokkaidoTrimmed2,
subset = (HalfLife == "5568")|(HalfLife == "5570")
)

allHokkaidoTrimmed3$HalfLife = as.numeric(allHokkaidoTrimmed3$HalfLife)

# This table describes sample size reductions after cases
# with incomplete radiocarbon age measures, cases with
# questionable material type, and cases assuming unknown or
# Cambridge half-lives are removed.
kable(cbind(

table(allHokkaido$RegionSetting),
table(allHokkaidoTrimmed$RegionSetting),
table(allHokkaidoTrimmed2$RegionSetting),
table(allHokkaidoTrimmed3$RegionSetting)
))

Central Hokkaido, Inland 1616 1570 1170 1117
Central Hokkaido, Pacific Ocean 78 76 35 27
Central Hokkaido, Sea of Japan 32 31 22 19
Eastern Hokkaido, Inland 175 170 120 120
Eastern Hokkaido, Okhotsk Sea 215 215 116 106
Eastern Hokkaido, Pacific Ocean 143 143 133 132
Northern Hokkaido, Inland 66 64 40 40
Northern Hokkaido, Okhotsk Sea 18 18 10 10
Northern Hokkaido, Sea of Japan 65 65 45 33
Southern Hokkaido, Inland 15 15 8 8
Southern Hokkaido, Pacific Ocean 208 206 62 62
Southern Hokkaido, Sea of Japan 36 36 14 14
Southern Hokkaido, Tsugaru Strait 405 405 321 321
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This chunk combines “measured” and “conventional” radiocarbon ages into a single column. It does the
same for “measured” and “conventional” errors.

allHokkaidoTrimmed4 = allHokkaidoTrimmed3
allHokkaidoTrimmed4$ConventionalAge = ifelse(

test = is.na(allHokkaidoTrimmed3$ConventionalAge),
yes = allHokkaidoTrimmed3$MeasuredAge,
no = allHokkaidoTrimmed3$ConventionalAge
)

allHokkaidoTrimmed4$ConventionalAgeError = ifelse(
test = is.na(allHokkaidoTrimmed3$ConventionalAgeError),
yes = allHokkaidoTrimmed3$MeasuredAgeError,
no = allHokkaidoTrimmed3$ConventionalAgeError
)

#write.csv(x = allHokkaidoTrimmed4, file = "HokkaidoCleanedImputed.csv")

This chunk is the final prepartion of the Hokkaido/W. Pacific sample for temporal frequency analysis (TFA).

forTFAnalysisHokkaido = data.frame(
LabNo = allHokkaidoTrimmed4$LabNo,
BP = allHokkaidoTrimmed4$ConventionalAge,
SE = allHokkaidoTrimmed4$ConventionalAgeError,
Site = allHokkaidoTrimmed4$SiteRoman,
RegionSetting = allHokkaidoTrimmed4$RegionSetting,
stringsAsFactors = FALSE
)

forTFAnalysisKurils = subset(x = allKurils, select = c(labNo, rcybp, rcError, siteName))
colnames(forTFAnalysisKurils) = c("LabNo", "BP", "SE", "Site")

2.2. Cleaning the Alaska data

The following chunk combines Alaska region and ecological setting/type into a new categorical variable.

AK_raw = AK_raw[order(AK_raw$AHRSNO, AK_raw$Site_Name, AK_raw$Normalized_C14_Date),]
AK_raw$regionRecode = paste0(AK_raw$Habitat, ", ", AK_raw$Ecological_Setting)

#write.csv(x = table(AK_raw$regionRecode, AK_raw$Material), file = "AKmatByRegion.csv")

The following code chunk removes Island data points from the Alaska set, including the Kodiak and Aleutian
Archipelagos and St. Lawrence, Nunivak, King, and Round Islands. While most sites with Afognak (AFG)
and Karluk (KAR) codes are removed as a part of the Kodiak data, two are retained because they are
actually located on the Alaska Peninsula: Cabin Point Island Village (KAR-00121) and Sukoi Bay Terrace
(AFG-00207). Likewise, while most XNI sites are on Nunivak, Cevnermiut (XNI-00053) and Qengaramiut
(XNI-00052) are on the mainland and are retained.

KodiakInds = sort(unique(c(
grep(pattern = "KOD", x = AK_raw$AHRSNO, ignore.case = TRUE),
grep(pattern = "AFG", x = AK_raw$AHRSNO, ignore.case = TRUE),
grep(pattern = "KAR", x = AK_raw$AHRSNO, ignore.case = TRUE),
grep(pattern = "XTI", x = AK_raw$AHRSNO, ignore.case = TRUE)
)))

KodiakInds = KodiakInds[-which(KodiakInds == which(AK_raw$Site_Name == "Cabin Point Island Village"))]
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KodiakInds = KodiakInds[-which(KodiakInds == which(AK_raw$Site_Name == "Sukoi Bay Terrace"))]

AleutianInds = which(AK_raw$Habitat == "Aleutian Islands")

NunivakInds = sort(unique(c(
grep(pattern = "XCM", x = AK_raw$AHRSNO, ignore.case = TRUE),
grep(pattern = "XNI", x = AK_raw$AHRSNO, ignore.case = TRUE)
)))

NunivakInds = NunivakInds[-which(NunivakInds == which(AK_raw$Site_Name == "Cevnermiut"))]
NunivakInds = NunivakInds[-which(NunivakInds == which(AK_raw$Site_Name == "Qengaramiut"))]

StLawrenceInds = sort(unique(c(
grep(pattern = "XSL", x = AK_raw$AHRSNO, ignore.case = TRUE)
)))

KingIslandInds = sort(unique(c(
which(AK_raw$AHRSNO == "TEL-00210")
)))

RoundIslandInds = grep(
pattern = "Round Island",
x = AK_raw$Site_Name, ignore.case = TRUE
)

AK_trim1 = AK_raw[
-sort(unique(c(

KodiakInds,
AleutianInds,
NunivakInds,
StLawrenceInds,
KingIslandInds,
RoundIslandInds
))),

]

The following code chunk maps out Alaska data mid-trim/cleaning, showing trimmed sites in red and retained
sites in blue.

world1 = map("world", fill=TRUE, col="transparent", plot=FALSE)
world2 = map2SpatialPolygons(

world1,
world1$names,
CRS("+proj=longlat +ellps=WGS84")
)

# Removing problematic polygons
world3 = world2[-grep("Antarctica", row.names(world2)),]
world3 = world3[-grep("Ghana", row.names(world3)),]
world3 = world3[-grep("UK:Great Britain", row.names(world3)),]
world4 = nowrapRecenter(world3)

rawLongRecode = ifelse(
AK_raw$DDLONG<0,
AK_raw$DDLONG+360,
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AK_raw$DDLONG
)

trim1LongRecode = ifelse(
AK_trim1$DDLONG<0,
AK_trim1$DDLONG+360,
AK_trim1$DDLONG
)

plot(
world4,
xlim = range(rawLongRecode,trim1LongRecode, na.rm = TRUE),
ylim = range(AK_raw$DDLAT, AK_trim1$DDLAT, na.rm = TRUE),
col="dark gray", border = "dark gray",bg="light gray"
)

points(x = rawLongRecode, y = AK_raw$DDLAT, col = "red", pch=20)
points(x = trim1LongRecode, y = AK_trim1$DDLAT, col = "blue", pch=20)

The following chunk removes data points of unreliable or unknown material. Plant matter (wood, twig,
charcoal, grass, bark) and antler are retained.

kable(table(AK_raw$Material))
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Var1 Freq
9

Alkali Soluble Portion 1
antler 1
Antler 28
Ash 1
Bark 14
Bark/Grass/Twigs 1
Birch Bark 1
bone 28
Bone 167
Burned Bone 1
Calcined Bone 3
Carbonized Plant Remains 1
caribou bone collagen; collagène osseux de caribou 1
charcoal 17
Charcoal 1899
Charcoal and Bone 1
Charcoal and Peat 2
Charcoal and Snail Shells 1
Charcoal and Wood 1
Charcoal? 27
Charrded Wood 1
Charred Bone 1
Charred Log 1
Charred material 3
Charred Material 320
Charred Wood 11
Cone 1
construction material (wood?) 1
driftwood 19
Fur 6
Grass 4
Grass mat 1
Grass Mat 1
Hair 1
Hide 3
Ivory 5
Leather 1
Organic Material 1
Organic Matter 1
organic Sediment 1
Organic Sediment 11
Organic Soil 6
Peat 6
Plant Material 6
Plant remains 3
Plant Remains 11
Plant/Wood 4
Pottery Residue 6
Residue 2
Root 1
Sediment 5

15



Var1 Freq
Shell 1
Sinew 1
Skin and Feathers 1
Soil 1
Soil Organics 4
Soot or Ash 1
Undetermined 147
wood 3
Wood 316
Wood and Charcoal 7

## Marine and non-anthropogenic dates already omitted,
## as well as dates challenged by P.I.s

AK_trim2 = subset(
x = AK_trim1,
subset =

Material != "Alkali Soluble Portion" &
Material != "Animal Remains" &
#Material != "antler" &
#Material != "Antler" &
Material != "ash" &
#Material != "Bark" &
#Material != "Bark/Grass/Twigs" &
#Material != "Birch Bark" &
Material != "bone" &
Material != "Bone" &
Material != "Burned Bone" &
Material != "Calcined Bone" &
#Material != "Carbonized Plant Remains" &
#Material != "caribou bone collagen; collagène osseux de caribou" &
#Material != "charcoal" &
#Material != "Charcoal" &
Material != "Charcoal and Bone" &
Material != "Charcoal and Peat" &
Material != "Charcoal and Snail Shells" &
#Material != "Charcoal and Wood" &
#Material != "Charcoal?" &
#Material != "Charred Wood" &
Material != "Charred Bone" &
#Material != "Charred Log" &
Material != "Charred material" &
Material != "Charred Material" &
#Material != "Charred Wood" &
#Material != "construction material (wood?)" &
#Material != "driftwood" &
Material != "Fur" &
#Material != "Grass" &
#Material != "Grass mat" &
#Material != "Grass Mat" &
Material != "Hair" &
Material != "Hide" &
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Material != "ivory" &
Material != "Ivory" &
Material != "Leather" &
Material != "Organic Material" &
Material != "Organic Matter" &
Material != "organic Sediment" &
Material != "Organic Sediment" &
Material != "Organic Soil" &
Material != "Peat" &
#Material != "Plant Material" &
#Material != "Plant remains" &
#Material != "Plant Remains" &
#Material != "Plant/Wood" &
Material != "Pottery Residue" &
Material != "Residue" &
Material != "Root" &
Material != "Sediment" &
Material != "Shell" &
Material != "Sinew" &
Material != "Soil" &
Material != "Soil Organics" &
Material != "Soot or Ash" &
Material != "Undetermined" #&
#Material != "wall construction (wood?)" &
#Material != "wood" &
#Material != "Wood" &
#Material != "Wood and Charcoal"
)

This chunk is the final prepartion of the Alaska/E. Pacific sample for TFA.

forTFAnalysisAlaska = data.frame(
LabNo = AK_trim2$Lab_NO,
BP = AK_trim2$Normalized_C14_Date,
SE = AK_trim2$Normalized_Error,
Site = AK_trim2$AHRSNO,
RegionSetting = paste0(AK_trim2$Habitat, ", ", AK_trim2$Ecological_Setting),
stringsAsFactors = FALSE
)

forTFAnalysisKodiak = subset(
x = allKodiak,
select = c(labNo, rcybp, rcyError, site)
)

colnames(forTFAnalysisKodiak) = c("LabNo", "BP", "SE", "Site")

forTFAnalysisAleutians = subset(
x = allAleutians,
select = c(labNo, rcybp, rcyError, site)
)

colnames(forTFAnalysisAleutians) = c("LabNo", "BP", "SE", "Site")
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2.3. Packaging the Hokkaido and Alaska data for TFA

Finally, the following code chunk packages the data sets by region into R list objects for analysis.

HokkaidoRegions = sort(unique(forTFAnalysisHokkaido$RegionSetting))
listForTFAnalysisHokkaido = list()

for (i in 1:length(HokkaidoRegions)){
listForTFAnalysisHokkaido[[i]] = subset(

x = forTFAnalysisHokkaido,
subset = RegionSetting == HokkaidoRegions[i]
)

names(listForTFAnalysisHokkaido)[i] = HokkaidoRegions[i]
}

AlaskaRegions = sort(unique(forTFAnalysisAlaska$RegionSetting))
listForTFAnalysisAlaska = list()

for (i in 1:length(AlaskaRegions)){
listForTFAnalysisAlaska[[i]] = subset(

x = forTFAnalysisAlaska,
subset = RegionSetting == AlaskaRegions[i]
)

names(listForTFAnalysisAlaska)[i] = AlaskaRegions[i]
}
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3. Formal and computational details of the composite redundancy
filtering through presence-absence buffering (CRFPAB) procedure

3.1. Calibration

The IntCal13 and IntCal20 calibration curves are loaded into the work space in the following R code chunk.
Several functions are also written:

• A function that can produce a cubic spline interpolation of calibration curves at any desired temporal
grain, with a default of 5-year intervals

• A function that will calculate the likelihood of observing an inputted radiocarbon age ri given a
corresponding measurement error si, calendar timestamp t, and calibration curve:

ri ∼ Normal
(
µρ(t), s2

i + σ2
ρ(t)

)
∴ p(ri|si, t) = 1√

2π × (s2
i + σ2

ρ(t))
× exp

{
−0.5(ri − µρ(t))2

s2
i + σ2

ρ(t)

}
• A function that normalizes the likelihood for each inputted assay (i.e., calculates a Bayesian posterior

for each assay assuming a flat prior and no dependence with other dates)

IntCal13.raw = read.table(
file = "http://intcal.org/curves/intcal13.14c",
skip = 11,
sep = ","
)[,1:3]

IntCal20.raw = read.table(
file = "http://intcal.org/curves/intcal20.14c",
skip = 11,
sep = ","
)[,1:3]

colnames(IntCal13.raw) = colnames(IntCal20.raw) =
c("calBP", "mu_rho.t", "sigma_rho.t")

calcurve.cspline = function(temp.res = 5, calcurve = IntCal20.raw){
timeline = seq(min(calcurve[,1]), max(calcurve[,1]), temp.res)
cspline.interp = data.frame(

timeline,
spline(

x = calcurve$calBP,
y = calcurve$mu_rho.t,
xout = timeline
)$y,

spline(
x = calcurve$calBP,
y = calcurve$sigma_rho.t,
xout = timeline
)$y

)
colnames(cspline.interp) = colnames(calcurve)
return(cspline.interp)
}

19



IntCal13.5yr = calcurve.cspline(calcurve = IntCal13.raw)
IntCal20.5yr = calcurve.cspline(calcurve = IntCal20.raw)

calGivenRcLlhds = function(
RCdates, temp.res=5, calcurve=IntCal20.raw

){
calcurve.interp = calcurve.cspline(

temp.res = temp.res,
calcurve = calcurve
)

llhdMat = matrix(
NA, nrow = nrow(RCdates),
ncol = nrow(calcurve.interp)
)

for(i in 1:nrow(RCdates)){
llhdMat[i,] = dnorm(

x = RCdates[i,2],
mean = calcurve.interp$mu_rho.t,
sd = sqrt(calcurve.interp$sigma_rho.tˆ2 + RCdates[i,3]ˆ2)
)

}
rownames(llhdMat) = RCdates[,1]
colnames(llhdMat) = calcurve.interp$calBP
return(llhdMat)
}

stratifiedPosts = function(
RCdates,
temp.res=5,
calcurve=IntCal20.raw,
SPD=FALSE

){
llhdMat = calGivenRcLlhds(

RCdates = RCdates,
temp.res = temp.res,
calcurve = calcurve
)

postsFromUnifPrior = llhdMat/(temp.res*rowSums(llhdMat))
out = postsFromUnifPrior
if(SPD){

SPDout = colSums(postsFromUnifPrior)/nrow(RCdates)
out = SPDout; names(out) = colnames(llhdMat)
}

return(out)
}
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3.2. Redundancy filtering through presence-absence buffering (RFPAB)

We wish to elicit a descriptive model of our data comprising a time series that answers the repeated, time-
indexed question, “what is the number of distinct geographic locations for which we have evidence of human
occupation within a certain ±h period of time t?” Here, 2h (the size of the interval ±h) is the size/width
of what will be labeled a presence-absence buffer (PAB). To operationalize this question and the time series
it elicits, we will need to distinguish between two levels of observational unit. The first is the geographic
location (e.g. the archaeological site). In the following mathematical expressions,

• j will be used as a placeholder for the index or unique identifier of a single geographic location out of
J locations.

• For each distinct location j, the symbol ij will be used as a placeholder for the index of a unique
radiocarbon-dated event (i.e., a unique radiocarbon specimen), out of nj specimens.

• Ti[j] will denote the timestamp variable of the ith observation from location j.
• t will be used as a placeholder for a particular temporal value belonging to the domain of the variable

T , i.e. belonging to the timeline T .
• For a discrete time series, T will comprise a set of evenly spaced timestamps, in this case T =

{0, 5, 10, . . . , 50000} (the interval covered by the IntCal13 calibration curve, discretized at five-year in-
tervals) or T = {0, 5, 10, . . . , 55000} (the interval covered by the IntCal20 calibration curve, discretized
at five-year intervals).

Assuming that each Ti[j] is known exactly, the time series, denoted RFPAB(t) below, is calculated as

RFPAB(t) =
J∑

j=1
Ij(t)

where the time series function Ij(t) is an indicator variable equaling 1 if any evidence exists for the occupation
of location j within a ±h interval around t—i.e. if any timestamp known for location j falls within the interval
t ± h—or 0 if none do:

Ij(t) =


1

⋃n[j]
i[j]=1 Ti[j] ∈ [t − h, t + h]

0
⋂n[j]

i[j]=1 Ti[j] ̸∈ [t − h, t + h]

The goal of the presence-absence buffer is to avoid the multiple counting of the same geographic unit for
any time t. The consequence of this approach is a statistical construct—the time series RFPAB(t) that is
formally analogous to a kernel density estimate based on a rectangular kernel with a binwidth of h, with
the caveat that repeated observations from the same location are prevented from contributing to the value
of RFPAB(t) to the degree that their specimen-indexed rectangular kernels overlap.

A proportional measure of nonredundant data points for each location can be calculated as

NRj =
5
h

∑
T Ij(t)
nj

Justification: Assuming no overlap between any pair of specimens’ rectangular kernels, the contribution of
each specimen’s kernel to the area under the Ij(t) curve would be 1. Each kernel would contribution either
0 or 1/h to the Ij(t) function at time t. Because the timeline is discretized at five-year intervals, multiplying
1/h by 5 accommodates the area “missing” under each kernel between 5-year points. As the degree of overlap
between kernels increases, the numerator decreases from nj toward 1; in the unique case that all observations
for a given geographic location have identical timestamps, non-redundancy would minimize at 1/nj . The
numerator can therefore be thought of as an “effective” sample size for location j.
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In a similar fashion, proportional non-redundancy can be calculated for a whole data set across all locations
as

NR =
5
h

∑
T RFPAB(t)∑J

j=1 nj

=
5
h

∑
T RFPAB(t)

n

In the unique case that all observations for each geographic location have timestamps for all other observations
from the same geographic location, this proportional non-redundancy measure would minimize at J/n. Once
again, the numerator can be interpreted as an effective sample size for the whole region.

The size of h will affect the smoothness of the resulting descriptive model, with larger values of h smoothing
the function to a much greater degree, analogous to the bandwidth of a kernel density estimate. The formal
similarity of this statistical construct to a kernel density estimate may thus tempt us to treat the RFPAB
time series as a probability density estimate, once normalized:

p̂(t) = RFPAB(t)
5

∑
T RFPAB(t)

That being said, few of the safeguards that have been developed over the decades for kernel density estimates
are in place here. Most importantly, no rule of thumb for tuning h for this unique application has been
explored, whose value will not only smooth the distribution but also increase the degree of redundancy as h
increases.

3.3. Composite RFPAB (CRFPAB)

If we do not know Ti[j] exactly for any timestamp but possess a probabilistic estimate for each, an additional
step is recommended and applied here, based on Monte Carlo simulation.

• First, we draw a unique sample from each timestamp’s posterior distribution:

T
(s)
i[j] ∼ Posti[j]

• Next, for each s out of S draws, we elicit a RFPAB time series as described in the previous section, in
this case indexed for the sth simulated draw: RFPAB(s)(t). We can also calculate non-redundancy
measures for each geographic location and for the overall data set, NR

(s)
j and NR(s).

• Finally, if we imagine that the sth RFPAB time series were a probability distribution estimate (and
normalize it accordingly), then the average of all RFPAB time series across all S draws would constitute
a sort of predictive distribution for a future observation, incorporating our uncertainty regarding the set
of all unknown timestamps included in our data into our prediction about the fundamentally uncertain
value t̃ of the predictand:

p̂(t̃) ≜ CRFPAB1(t) =
∑S

s=1 p̂(s)(t)
S

• Alternatively, the average of all time-indexed unnormalized RFPAB functions would yield the CRFPAB
function,

CRFPAB2(t) =
∑S

s=1 RFPAB(s)(t)
S

Without first normalizing RFPAB time series, averaging will result in CRFPAB time series with an
area under the curve greater than 1.

The following chunk sets up code for calculating Ij(t) and RFPAB(t) time series from data
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sim.I_jt = function(dates, calcurve, h = 100, S = 201){
posteriors = stratifiedPosts(RCdates = dates, calcurve = calcurve)
MC.sample = apply(

X = posteriors, MARGIN = 1,
FUN = sample, x = timeline, size = S, replace = TRUE
)

I_jt.mat = matrix(data = NA, nrow = nrow(calcurve), ncol = S)
for (t in 1:nrow(I_jt.mat)){

I_jt.mat[t,] = colSums(matrix(
data = between(

x = MC.sample,
left = timeline[t]-h, right = timeline[t]+h
),

byrow = TRUE, nrow = nrow(dates), ncol = S
))>0

}
return(I_jt.mat)
}

sim.RFPAB = function(dates, calcurve, h = 100, S = 201){
siteNames = unique(dates$Site); J = length(siteNames)

# Creates a T-by-J-by-S array:
# one row per time step,
# one column per site,
# one slice per simulation
I_jt.siteArray = array(data = NA, dim = c(length(timeline), J, S))
for (j in 1:J){

tempDates = subset(x = dates, subset = Site == siteNames[j])
I_jt.siteArray[,j,] = sim.I_jt(

dates = tempDates, calcurve = calcurve,
h = h, S = S
)

#print(noquote(paste(j,"/",J)))
}

return(apply(X = I_jt.siteArray, MARGIN = 3, FUN = rowSums))
}

3.4. Taphonomic correction

Here, we adjust all RFPABs by applying Surovell and Brantingham’s (2009) taphonomic correction, i.e. by
rescaling the TFD by a time-dependent factor intended to control for the cumulative, time-transgressive
hazard of site destruction. This correction factor takes the form of the reciprocal of the Lomax survival
function:

RFPABtaph(t) = RFPABraw(t) × S−1 (t | b, c) = RFPABraw(t) ×
(

1 + t

b

)c

where b is the Lomax survival model’s scale parameter estimated at 1788.03 and c is the model’s shape
parameter estimated at 1.26 by Surovell and Brantingham (2009).

23

fitzhugh
Cross-Out

fitzhugh
Inserted Text
et al.'s



3.5. Analysis

The following chunk applies simulated RFPAB models to the N. Pacific data, at the micro-regional scale. It
also corrects each simulated RFPAB for taphonomy.

calcurve = IntCal13.5yr; timeline = calcurve[,1]
S. = 201
#S. = 5
h. = 100
correctionFactor = 1/Renext::plomax(

q = timeline,
scale = 1788.03, shape = 1.26,
lower.tail = FALSE
)

## Alaska
AlaskaCRFPAB = list()
nAlaskaRegions = length(listForTFAnalysisAlaska)
for (i in 1:length(listForTFAnalysisAlaska)){

AlaskaCRFPAB[[i]] = list()
AlaskaCRFPAB[[i]][[1]] = sim.RFPAB(

dates = listForTFAnalysisAlaska[[i]],
calcurve = calcurve,
h = h., S = S.
)

AlaskaCRFPAB[[i]][[2]] = nrow(listForTFAnalysisAlaska[[i]])
AlaskaCRFPAB[[i]][[3]] = AlaskaCRFPAB[[i]][[1]]*correctionFactor
names(AlaskaCRFPAB)[i] = names(listForTFAnalysisAlaska)[i]
#print(noquote(paste(i,"/", nAlaskaRegions)))
}

AlaskaCRFPAB[[1+length(AlaskaCRFPAB)]] = list()
AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[1]] = sim.RFPAB(

dates = forTFAnalysisKodiak,
calcurve = calcurve,
h = h., S = S.
)

AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[2]] = nrow(forTFAnalysisKodiak)
AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[3]] = AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[1]]*correctionFactor
names(AlaskaCRFPAB)[length(AlaskaCRFPAB)] =

"Kodiak Archipelago"
AlaskaCRFPAB[[1+length(AlaskaCRFPAB)]] = list()
AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[1]] = sim.RFPAB(

dates = forTFAnalysisAleutians, calcurve = calcurve,
h = h., S = S.
)

AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[2]] = nrow(forTFAnalysisAleutians)
AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[3]] = AlaskaCRFPAB[[length(AlaskaCRFPAB)]][[1]]*correctionFactor
names(AlaskaCRFPAB)[length(AlaskaCRFPAB)] =

"Aleutian Archipelago"

## Hokkaido & Kurils
HokkaidoCRFPAB = list()
nHokkaidoRegions = length(listForTFAnalysisHokkaido)
for (i in 1:nHokkaidoRegions){
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HokkaidoCRFPAB[[i]] = list()
HokkaidoCRFPAB[[i]][[1]] = sim.RFPAB(

dates = listForTFAnalysisHokkaido[[i]],
calcurve = calcurve,
h = h., S = S.
)

HokkaidoCRFPAB[[i]][[2]] = nrow(listForTFAnalysisHokkaido[[i]])
HokkaidoCRFPAB[[i]][[3]] = HokkaidoCRFPAB[[i]][[1]]*correctionFactor
names(HokkaidoCRFPAB)[i] = names(listForTFAnalysisHokkaido)[i]
#print(noquote(paste(i,"/", nHokkaidoRegions)))

}
HokkaidoCRFPAB[[1+length(HokkaidoCRFPAB)]] = list()
HokkaidoCRFPAB[[length(HokkaidoCRFPAB)]][[1]] = sim.RFPAB(

dates = forTFAnalysisKurils,
calcurve = calcurve,
h = h., S = S.
)

HokkaidoCRFPAB[[length(HokkaidoCRFPAB)]][[2]] = nrow(forTFAnalysisKurils)
HokkaidoCRFPAB[[length(HokkaidoCRFPAB)]][[3]] = HokkaidoCRFPAB[[length(HokkaidoCRFPAB)]][[1]]*correctionFactor
names(HokkaidoCRFPAB)[length(HokkaidoCRFPAB)] =

"Kuril Archipelago"

The following chunk aggregates the simulated RFPAB TFDs for micro-regions into larger regional TFDs.

## Alaska data aggregates
ChukchiArcticCoastCRFPAB = list()
ChukchiArcticCoastCRFPAB[[1]] =

AlaskaCRFPAB$`Arctic Coast, Coast`[[1]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[1]]

ChukchiArcticCoastCRFPAB[[2]] =
AlaskaCRFPAB$`Arctic Coast, Coast`[[2]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[2]]

ChukchiArcticCoastCRFPAB[[3]] =
AlaskaCRFPAB$`Arctic Coast, Coast`[[3]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[3]]

names(ChukchiArcticCoastCRFPAB)[1:length(ChukchiArcticCoastCRFPAB)] =
"Chukchi Arctic Coast"

BeringCoastCRFPAB = list()
BeringCoastCRFPAB[[1]] =

AlaskaCRFPAB$`Bering Coast, Coast`[[1]] +
AlaskaCRFPAB$`Bering Taiga, Coast`[[1]]

BeringCoastCRFPAB[[2]] =
AlaskaCRFPAB$`Bering Coast, Coast`[[2]] +
AlaskaCRFPAB$`Bering Taiga, Coast`[[2]]

BeringCoastCRFPAB[[3]] =
AlaskaCRFPAB$`Bering Coast, Coast`[[3]] +
AlaskaCRFPAB$`Bering Taiga, Coast`[[3]]

names(BeringCoastCRFPAB)[1:length(BeringCoastCRFPAB)] =
"Bering Coast"

GulfOfAlaskaCRFPAB = list()
GulfOfAlaskaCRFPAB[[1]] =
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AlaskaCRFPAB$`Gulf of Alaska, Coast`[[1]]
GulfOfAlaskaCRFPAB[[2]] =

AlaskaCRFPAB$`Gulf of Alaska, Coast`[[2]]
GulfOfAlaskaCRFPAB[[3]] =

AlaskaCRFPAB$`Gulf of Alaska, Coast`[[3]]
names(GulfOfAlaskaCRFPAB)[1:length(GulfOfAlaskaCRFPAB)] =

"Gulf of Alaska"

SEAKCoastCRFPAB = list()
SEAKCoastCRFPAB[[1]] =

AlaskaCRFPAB$`SE AK Coast, Coast`[[1]]
SEAKCoastCRFPAB[[2]] =

AlaskaCRFPAB$`SE AK Coast, Coast`[[2]]
SEAKCoastCRFPAB[[3]] =

AlaskaCRFPAB$`SE AK Coast, Coast`[[3]]
names(SEAKCoastCRFPAB)[1:length(SEAKCoastCRFPAB)] =

"Southeast Alaska Coast"

# The combined Bering-Brooks-Polar inland
BeringBrooksPolarInlandCRFPAB = list()
BeringBrooksPolarInlandCRFPAB[[1]] =

AlaskaCRFPAB$`Bering Taiga, Interior`[[1]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[1]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[1]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[1]]

BeringBrooksPolarInlandCRFPAB[[2]] =
AlaskaCRFPAB$`Bering Taiga, Interior`[[2]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[2]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[2]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[2]]

BeringBrooksPolarInlandCRFPAB[[3]] =
AlaskaCRFPAB$`Bering Taiga, Interior`[[3]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[3]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[3]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[3]]

names(BeringBrooksPolarInlandCRFPAB)[1:length(BeringBrooksPolarInlandCRFPAB)] =
"Bering Brooks Polar Inland"

# The Bering-only inland
BeringInlandCRFPAB = list()
BeringInlandCRFPAB[[1]] =

AlaskaCRFPAB$`Bering Taiga, Interior`[[1]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[1]]

BeringInlandCRFPAB[[2]] =
AlaskaCRFPAB$`Bering Taiga, Interior`[[2]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[2]]

BeringInlandCRFPAB[[3]] =
AlaskaCRFPAB$`Bering Taiga, Interior`[[3]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[3]]

names(BeringInlandCRFPAB)[1:length(BeringInlandCRFPAB)] =
"Bering Inland"

# The combined Bering-Brooks-Polar inland
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BrooksPolarInlandCRFPAB = list()
BrooksPolarInlandCRFPAB[[1]] =

AlaskaCRFPAB$`Brooks Tundra, Interior`[[1]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[1]]

BrooksPolarInlandCRFPAB[[2]] =
AlaskaCRFPAB$`Brooks Tundra, Interior`[[2]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[2]]

BrooksPolarInlandCRFPAB[[3]] =
AlaskaCRFPAB$`Brooks Tundra, Interior`[[3]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[3]]

names(BrooksPolarInlandCRFPAB)[1:length(BrooksPolarInlandCRFPAB)] =
"Brooks Polar Inland"

InteriorSouthernInlandCRFPAB = list()
InteriorSouthernInlandCRFPAB[[1]] =

AlaskaCRFPAB$`Coastal Rainforest, Interior`[[1]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[1]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[1]]

InteriorSouthernInlandCRFPAB[[2]] =
AlaskaCRFPAB$`Coastal Rainforest, Interior`[[2]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[2]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[2]]

InteriorSouthernInlandCRFPAB[[3]] =
AlaskaCRFPAB$`Coastal Rainforest, Interior`[[3]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[3]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[3]]

names(InteriorSouthernInlandCRFPAB)[1:length(InteriorSouthernInlandCRFPAB)] =
"Interior Southern Inland"

KodiakCRFPAB = list()
KodiakCRFPAB[[1]] =

AlaskaCRFPAB$`Kodiak Archipelago`[[1]]
KodiakCRFPAB[[2]] =

AlaskaCRFPAB$`Kodiak Archipelago`[[2]]
KodiakCRFPAB[[3]] =

AlaskaCRFPAB$`Kodiak Archipelago`[[3]]
names(KodiakCRFPAB)[1:length(KodiakCRFPAB)] =

"Kodiak"

AleutiansCRFPAB = list()
AleutiansCRFPAB[[1]] =

AlaskaCRFPAB$`Aleutian Archipelago`[[1]]
AleutiansCRFPAB[[2]] =

AlaskaCRFPAB$`Aleutian Archipelago`[[2]]
AleutiansCRFPAB[[3]] =

AlaskaCRFPAB$`Aleutian Archipelago`[[3]]
names(AleutiansCRFPAB)[1:length(AleutiansCRFPAB)] =

"Aleutians"

AllAlaskaCRFPAB = list()
AllAlaskaCRFPAB[[1]] =

AlaskaCRFPAB$`Arctic Coast, Coast`[[1]] +
AlaskaCRFPAB$`Bering Coast, Coast`[[1]] +
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AlaskaCRFPAB$`Bering Taiga, Coast`[[1]] +
AlaskaCRFPAB$`Bering Taiga, Interior`[[1]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[1]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[1]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[1]] +
AlaskaCRFPAB$`Coastal Rainforest, Interior`[[1]] +
AlaskaCRFPAB$`Gulf of Alaska, Coast`[[1]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[1]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[1]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[1]] +
AlaskaCRFPAB$`SE AK Coast, Coast`[[1]] +
AlaskaCRFPAB$`Kodiak Archipelago`[[1]] +
AlaskaCRFPAB$`Aleutian Archipelago`[[1]]

AllAlaskaCRFPAB[[2]] =
AlaskaCRFPAB$`Arctic Coast, Coast`[[2]] +
AlaskaCRFPAB$`Bering Coast, Coast`[[2]] +
AlaskaCRFPAB$`Bering Taiga, Coast`[[2]] +
AlaskaCRFPAB$`Bering Taiga, Interior`[[2]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[2]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[2]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[2]] +
AlaskaCRFPAB$`Coastal Rainforest, Interior`[[2]] +
AlaskaCRFPAB$`Gulf of Alaska, Coast`[[2]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[2]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[2]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[2]] +
AlaskaCRFPAB$`SE AK Coast, Coast`[[2]] +
AlaskaCRFPAB$`Kodiak Archipelago`[[2]] +
AlaskaCRFPAB$`Aleutian Archipelago`[[2]]

AllAlaskaCRFPAB[[3]] =
AlaskaCRFPAB$`Arctic Coast, Coast`[[3]] +
AlaskaCRFPAB$`Bering Coast, Coast`[[3]] +
AlaskaCRFPAB$`Bering Taiga, Coast`[[3]] +
AlaskaCRFPAB$`Bering Taiga, Interior`[[3]] +
AlaskaCRFPAB$`Bering Tundra, Interior`[[3]] +
AlaskaCRFPAB$`Brooks Tundra, Interior`[[3]] +
AlaskaCRFPAB$`Chukchi Coast, Coast`[[3]] +
AlaskaCRFPAB$`Coastal Rainforest, Interior`[[3]] +
AlaskaCRFPAB$`Gulf of Alaska, Coast`[[3]] +
AlaskaCRFPAB$`Interior Boreal, Interior`[[3]] +
AlaskaCRFPAB$`Mountain Transition, Interior`[[3]] +
AlaskaCRFPAB$`Polar Tundra, Interior`[[3]] +
AlaskaCRFPAB$`SE AK Coast, Coast`[[3]] +
AlaskaCRFPAB$`Kodiak Archipelago`[[3]] +
AlaskaCRFPAB$`Aleutian Archipelago`[[3]]

names(AllAlaskaCRFPAB)[1:length(AllAlaskaCRFPAB)] =
"Alaska"

## Hokkaido data aggregates
CentralHokkaidoInlandCRFPAB = list()
CentralHokkaidoInlandCRFPAB[[1]] =

HokkaidoCRFPAB$`Central Hokkaido, Inland`[[1]]
CentralHokkaidoInlandCRFPAB[[2]] =
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HokkaidoCRFPAB$`Central Hokkaido, Inland`[[2]]
CentralHokkaidoInlandCRFPAB[[3]] =

HokkaidoCRFPAB$`Central Hokkaido, Inland`[[3]]
names(CentralHokkaidoInlandCRFPAB)[1:length(CentralHokkaidoInlandCRFPAB)] =

"central Hokkaido Inland"

HokkaidoPacificCoastCRFPAB = list()
HokkaidoPacificCoastCRFPAB[[1]] =

HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[1]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[1]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[1]]

HokkaidoPacificCoastCRFPAB[[2]] =
HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[2]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[2]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[2]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[2]]

HokkaidoPacificCoastCRFPAB[[3]] =
HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[3]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[3]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[3]]

names(HokkaidoPacificCoastCRFPAB)[1:length(HokkaidoPacificCoastCRFPAB)] =
"Hokkaido Pacific Coast"

HokkaidoSeaOfJapanCoastCRFPAB = list()
HokkaidoSeaOfJapanCoastCRFPAB[[1]] =

HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[1]]

HokkaidoSeaOfJapanCoastCRFPAB[[2]] =
HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[2]] +
HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[2]]

HokkaidoSeaOfJapanCoastCRFPAB[[3]] =
HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[3]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[3]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[3]]

names(HokkaidoSeaOfJapanCoastCRFPAB)[1:length(HokkaidoSeaOfJapanCoastCRFPAB)] =
"Hokkaido Sea of Japan Coast"

NorthernHokkaidoInlandCRFPAB = list()
NorthernHokkaidoInlandCRFPAB[[1]] =

HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[1]]

NorthernHokkaidoInlandCRFPAB[[2]] =
HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[2]]

NorthernHokkaidoInlandCRFPAB[[3]] =
HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[3]] +
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HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[3]]
names(NorthernHokkaidoInlandCRFPAB)[1:length(NorthernHokkaidoInlandCRFPAB)] =

"Northern Hokkaido Inland"

TsugaruStraitCRFPAB = list()
TsugaruStraitCRFPAB[[1]] =

HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[1]]
TsugaruStraitCRFPAB[[2]] =

HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[2]]
TsugaruStraitCRFPAB[[3]] =

HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[3]]
names(TsugaruStraitCRFPAB)[1:length(TsugaruStraitCRFPAB)] =

"Tsugaru Strait"

#[Exclude `Southern Hokkaido, Inland` (n = 8)]

KurilCRFPAB = list()
KurilCRFPAB[[1]] =

HokkaidoCRFPAB$`Kuril Archipelago`[[1]]
KurilCRFPAB[[2]] =

HokkaidoCRFPAB$`Kuril Archipelago`[[2]]
KurilCRFPAB[[3]] =

HokkaidoCRFPAB$`Kuril Archipelago`[[3]]
names(KurilCRFPAB)[1:length(KurilCRFPAB)] =

"Kuril Archipelago"

AllHokkaidoCRFPAB = list()
AllHokkaidoCRFPAB[[1]] =

HokkaidoCRFPAB$`Central Hokkaido, Inland`[[1]] +
HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[1]] +
HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[1]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[1]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[1]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[1]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Inland`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[1]] +
HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[1]]

AllHokkaidoCRFPAB[[2]] =
HokkaidoCRFPAB$`Central Hokkaido, Inland`[[2]] +
HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[2]] +
HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[2]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[2]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[2]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[2]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[2]] +
HokkaidoCRFPAB$`Southern Hokkaido, Inland`[[2]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[2]] +

30



HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[2]] +
HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[2]]

AllHokkaidoCRFPAB[[3]] =
HokkaidoCRFPAB$`Central Hokkaido, Inland`[[3]] +
HokkaidoCRFPAB$`Central Hokkaido, Pacific Ocean`[[3]] +
HokkaidoCRFPAB$`Central Hokkaido, Sea of Japan`[[3]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Inland`[[3]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Okhotsk Sea`[[3]] +
HokkaidoCRFPAB$`Eastern Hokkaido, Pacific Ocean`[[3]] +
HokkaidoCRFPAB$`Northern Hokkaido, Inland`[[3]] +
HokkaidoCRFPAB$`Northern Hokkaido, Okhotsk Sea`[[3]] +
HokkaidoCRFPAB$`Northern Hokkaido, Sea of Japan`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Inland`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Pacific Ocean`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Sea of Japan`[[3]] +
HokkaidoCRFPAB$`Southern Hokkaido, Tsugaru Strait`[[3]]

names(AllHokkaidoCRFPAB)[1:length(AllHokkaidoCRFPAB)] =
"Hokkaido"

The following chunk programs two functions, one for extracting raw and effective sample sizes from the above
regional RFPAB objects, the other for plotting RFPABs and CRFPABs based on these.

sampSizeCalc = function(CRFPAB.list, compositeOnly=TRUE){
n_raw = CRFPAB.list[[2]]
n_eff = colSums(CRFPAB.list[[1]])*5/(2*h.)
out = rbind(n_raw=n_raw, n_eff=n_eff, Nonredundancy=n_eff/n_raw)
colnames(out) = paste0("s", 1:ncol(out))
out = cbind(

out, Mean = c(
CRFPAB.list[[2]],
sum(rowMeans(CRFPAB.list[[1]]))*5/(2*h.),
sum(rowMeans(CRFPAB.list[[1]]))*5/(2*h.)/CRFPAB.list[[2]]
)

)
if(compositeOnly) out=out[,ncol(out)]
return(out)
}

RFPAB.plotter = function(RFPAB.obj,xlim = NULL){
if(is.null(xlim)) xlim = rev(range(timeline))
plot(

x = NA,
xlim = xlim, ylim = c(0, max(RFPAB.obj[[3]])),
type = "l",
xlab = "T (cal BP)", ylab = "RFPAB(t)",
main = names(RFPAB.obj[1])
)

polygon(
x = c(timeline, rev(timeline)),
y = c(

apply(
X = RFPAB.obj[[1]], MARGIN = 1,
FUN = quantile, prob = 0.025

31



),
rev(apply(

X = RFPAB.obj[[1]], MARGIN = 1,
FUN = quantile, prob = 0.975
))

), col = "light gray", border = NA
)

lines(
x = timeline,
y = rowMeans(RFPAB.obj[[1]])
)

polygon(
x = c(timeline, rev(timeline)),
y = c(

apply(
X = RFPAB.obj[[3]], MARGIN = 1,
FUN = quantile, prob = 0.025
),

rev(apply(
X = RFPAB.obj[[3]], MARGIN = 1,
FUN = quantile, prob = 0.975
))

),
col = adjustcolor("#1f78b4", alpha.f = 0.5),
#col = "dark gray",
border = NA
)

lines(
x = timeline,
y = rowMeans(RFPAB.obj[[3]]),
col = "#1f78b4"
)

legend(
"topleft", bty = "n",
legend = c(

paste(
"n =",
RFPAB.obj[[2]]
),

paste(
"n_eff =",
round(sum(rowMeans(RFPAB.obj[[1]]))*5/(2*h.), 2)
)

)
)

}

The following chunk presents sample sizes and (C)RFPAB-based TFDs for the regions aggregated above.

xlims=c(10000, 0)
sampSizeCalc(ChukchiArcticCoastCRFPAB)

## n_raw n_eff Nonredundancy
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## 324.0000000 198.6267413 0.6130455

RFPAB.plotter(RFPAB.obj = ChukchiArcticCoastCRFPAB, xlim = xlims)
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n = 324
n_eff = 198.63

sampSizeCalc(BeringCoastCRFPAB)

## n_raw n_eff Nonredundancy
## 162.0000000 108.8370647 0.6718337

RFPAB.plotter(RFPAB.obj = BeringCoastCRFPAB, xlim = xlims)
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n = 162
n_eff = 108.84

sampSizeCalc(GulfOfAlaskaCRFPAB)

## n_raw n_eff Nonredundancy
## 307.0000000 227.4279851 0.7408078

RFPAB.plotter(RFPAB.obj = GulfOfAlaskaCRFPAB, xlim = xlims)
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n = 307
n_eff = 227.43

sampSizeCalc(SEAKCoastCRFPAB)

## n_raw n_eff Nonredundancy
## 211.0000000 177.5263682 0.8413572

RFPAB.plotter(RFPAB.obj = SEAKCoastCRFPAB, xlim = xlims)
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n = 211
n_eff = 177.53

sampSizeCalc(BeringBrooksPolarInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 470.0000000 304.0157960 0.6468421

RFPAB.plotter(RFPAB.obj = BeringBrooksPolarInlandCRFPAB, xlim = xlims)
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n_eff = 304.02

sampSizeCalc(BeringInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 192.00000 121.36704 0.63212

RFPAB.plotter(RFPAB.obj = BeringInlandCRFPAB, xlim = xlims)
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n = 192
n_eff = 121.37

sampSizeCalc(BrooksPolarInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 278.0000000 182.6487562 0.6570099

RFPAB.plotter(RFPAB.obj = BrooksPolarInlandCRFPAB, xlim = xlims)
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n_eff = 182.65

sampSizeCalc(InteriorSouthernInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 522.0000000 410.1287313 0.7856872

RFPAB.plotter(RFPAB.obj = InteriorSouthernInlandCRFPAB, xlim = xlims)
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sampSizeCalc(KodiakCRFPAB)

## n_raw n_eff Nonredundancy
## 304.0000000 205.1840796 0.6749476

RFPAB.plotter(RFPAB.obj = KodiakCRFPAB, xlim = xlims)
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n = 304
n_eff = 205.18

sampSizeCalc(AleutiansCRFPAB)

## n_raw n_eff Nonredundancy
## 350.0000000 238.9997512 0.6828564

RFPAB.plotter(RFPAB.obj = AleutiansCRFPAB, xlim = xlims)
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n = 350
n_eff = 239

sampSizeCalc(AllAlaskaCRFPAB)

## n_raw n_eff Nonredundancy
## 2650.0000000 1870.7465174 0.7059421

RFPAB.plotter(RFPAB.obj = AllAlaskaCRFPAB, xlim = xlims)
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n = 2650
n_eff = 1870.75

sampSizeCalc(CentralHokkaidoInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 1117.0000000 437.2960199 0.3914915

RFPAB.plotter(RFPAB.obj = CentralHokkaidoInlandCRFPAB, xlim = xlims)
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n = 1117
n_eff = 437.3

sampSizeCalc(HokkaidoPacificCoastCRFPAB)

## n_raw n_eff Nonredundancy
## 327.0000000 159.6756219 0.4883047

RFPAB.plotter(RFPAB.obj = HokkaidoPacificCoastCRFPAB, xlim = xlims)
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n = 327
n_eff = 159.68

sampSizeCalc(HokkaidoSeaOfJapanCoastCRFPAB)

## n_raw n_eff Nonredundancy
## 76.0000000 36.1284826 0.4753748

RFPAB.plotter(RFPAB.obj = HokkaidoSeaOfJapanCoastCRFPAB, xlim = xlims)
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n = 76
n_eff = 36.13

sampSizeCalc(NorthernHokkaidoInlandCRFPAB)

## n_raw n_eff Nonredundancy
## 160.0000000 123.9590796 0.7747442

RFPAB.plotter(RFPAB.obj = NorthernHokkaidoInlandCRFPAB, xlim = xlims)
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n = 160
n_eff = 123.96

sampSizeCalc(TsugaruStraitCRFPAB)

## n_raw n_eff Nonredundancy
## 321.0000000 125.9381841 0.3923308

RFPAB.plotter(RFPAB.obj = TsugaruStraitCRFPAB, xlim = xlims)
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n_eff = 125.94

sampSizeCalc(KurilCRFPAB)

## n_raw n_eff Nonredundancy
## 364.0000000 182.2447761 0.5006725

RFPAB.plotter(RFPAB.obj = KurilCRFPAB, xlim = xlims)
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n = 364
n_eff = 182.24

sampSizeCalc(AllHokkaidoCRFPAB)

## n_raw n_eff Nonredundancy
## 2009.0000000 890.5488806 0.4432797

RFPAB.plotter(RFPAB.obj = AllHokkaidoCRFPAB, xlim = xlims)
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## Warning in rug(x = seq(5000, 0, -1000), ticksize = 0.03, col = "light gray"):
## some values will be clipped

The following chunk programs a function for generating stacked plots of (C)RFPABs.

tfdStackPlot = function(tfdList, xlim = c(50000, 0), h, corrected=TRUE, text=TRUE){
nPanels = length(tfdList)
tfdStackLayout = layout(

mat = matrix(data = 1:nPanels, nrow = nPanels, ncol = 1)
)

corr.ind=ifelse(corrected, 3, 1)
par(oma = c(5,5,5,5))
for (i in 1:nPanels){

ciEnvelope = apply(
X = tfdList[[i]][[corr.ind]], MARGIN = 1,
FUN = quantile, probs = c(0.025, 0.5, 0.975)
)

meanTfd = rowMeans(tfdList[[i]][[corr.ind]])
est.n_eff = round(quantile(

colSums(tfdList[[i]][[1]])*5/(2*h.),probs=c(0.025,0.975)
),2)

xlimInds = which(timeline==xlim[1]):which(timeline==xlim[2])
ylim = c(0, ceiling(max(tfdList[[i]][[corr.ind]][xlimInds,])))
par(mar = c(0,1,0,1))
plot(
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x = NA,
xlim = xlim, ylim = ylim,
xaxt = "n", yaxt = "n",
xlab = NA, ylab = NA
)

abline(v = seq(50000, 0, -500), col = "light gray", lty = 2)
abline(h = 0, lty = 3)
polygon(

x = c(timeline, rev(timeline)),
y = c(ciEnvelope[1,], rev(ciEnvelope[3,])),
col = NA, border = "dark gray", lty = 1
)

#lines(
# x = timeline,
# y = ciEnvelope[2,],
# lwd = 1, col = "black"
# )
lines(

x = timeline,
y = meanTfd,
lwd = 1, col = "black"
)

if(text){
axis(ifelse(i %% 2 == 1, 2, 4))

if (i == 1) axis(3)
if (i == nPanels) axis(1)

text(
x = xlim[1], y = 0.8*ylim[2], pos = 4,
font = 2,
labels = paste0(

names(tfdList)[i],
", n=",
tfdList[[i]][[2]],
"\n(",
est.n_eff[1],
" < n_eff < ",
est.n_eff[2],
")"
)

)
title(xlab = "t (cal BP)", outer = TRUE)
title(ylab = "RFPAB(t)", outer = TRUE)
}

}
}

The next several chunks generate stacked plots for various regional series of RFPABs.

AlaskaCRFPABlist1 = list(
ChukchiArcticCoastCRFPAB,
BeringCoastCRFPAB,
AleutiansCRFPAB,
KodiakCRFPAB,
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GulfOfAlaskaCRFPAB
)

names(AlaskaCRFPABlist1) = c(
"Chukchi and Arctic Coasts",
"Bering Coast",
"Aleutian Archipelago",
"Kodiak Archipelago",
"Gulf of Alaska"
)

tfdStackPlot(tfdList = AlaskaCRFPABlist1, xlim = c(15000, 0), h = h., text = FALSE)

AlaskaCRFPABlist2 = list(
BeringInlandCRFPAB,
BrooksPolarInlandCRFPAB,
InteriorSouthernInlandCRFPAB,
SEAKCoastCRFPAB
)

names(AlaskaCRFPABlist2) = c(
"Bering Inland",
"Brooks and Polar Inland",
"Interior Boreal Forest, Mountain Transition, and Coastal Rainforest",
"Southeast Alaska"
)
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tfdStackPlot(tfdList = AlaskaCRFPABlist2, xlim = c(15000, 0), h = h., text = FALSE)

HokkaidoCRFPABlist = list(
KurilCRFPAB,
HokkaidoPacificCoastCRFPAB,
HokkaidoSeaOfJapanCoastCRFPAB,
NorthernHokkaidoInlandCRFPAB,
CentralHokkaidoInlandCRFPAB,
TsugaruStraitCRFPAB
)

names(HokkaidoCRFPABlist) = c(
"Kuril Archipelago",
"Hokkaido Pacific Coast",
"Hokkaido Sea of Japan Coast",
"Northern Hokkaido Inland",
"Central Hokkaido Inland",
"Hokkaido Tsugaru Strait"
)

tfdStackPlot(tfdList = HokkaidoCRFPABlist, xlim = c(15000, 0), h = h., text = FALSE)
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AllSeriesCRFPABlist = list(
ChukchiArcticCoastCRFPAB,
BrooksPolarInlandCRFPAB,
BeringInlandCRFPAB,
BeringCoastCRFPAB,
InteriorSouthernInlandCRFPAB,
AleutiansCRFPAB,
GulfOfAlaskaCRFPAB,
KodiakCRFPAB,
KurilCRFPAB,
HokkaidoPacificCoastCRFPAB,
HokkaidoSeaOfJapanCoastCRFPAB,
NorthernHokkaidoInlandCRFPAB,
CentralHokkaidoInlandCRFPAB,
TsugaruStraitCRFPAB
)

names(AllSeriesCRFPABlist) = c(
"Arctic Coast",
"Brooks Arctic Inland",
"Bering Inland",
"Bering Coast",
"Forested Interior",
"Aleutians",
"Gulf of Alaska",
"Kodiak",
"Kuril Islands",
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"E. Hokkaido",
"N/W Hokkaido",
"N. Int. Hokkaido",
"Central Int. Hokkaido",
"Oshima"
)

tfdStackPlot(tfdList = AllSeriesCRFPABlist, xlim = c(10000, 0), h = h., text=FALSE)

HokkKurilsCRFPABlist = list(
KurilCRFPAB,
HokkaidoPacificCoastCRFPAB,
HokkaidoSeaOfJapanCoastCRFPAB,
NorthernHokkaidoInlandCRFPAB,
CentralHokkaidoInlandCRFPAB,
TsugaruStraitCRFPAB
)

names(HokkKurilsCRFPABlist) = c(
"Kuril Islands",
"E. Hokkaido",
"N/W Hokkaido",
"N. Int. Hokkaido",
"Central Int. Hokkaido",
"Oshima"
)
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tfdStackPlot(tfdList = HokkKurilsCRFPABlist, xlim = c(10000, 0), h = h., text=FALSE)

AlaskaCRFPABlist = list(
ChukchiArcticCoastCRFPAB,
BrooksPolarInlandCRFPAB,
BeringInlandCRFPAB,
BeringCoastCRFPAB,
InteriorSouthernInlandCRFPAB,
AleutiansCRFPAB,
GulfOfAlaskaCRFPAB,
KodiakCRFPAB
)

names(AlaskaCRFPABlist) = c(
"Arctic Coast",
"Brooks Arctic Inland",
"Bering Inland",
"Bering Coast",
"Forested Interior",
"Aleutians",
"Gulf of Alaska",
"Kodiak"
)

tfdStackPlot(tfdList = AlaskaCRFPABlist, xlim = c(10000, 0), h = h., text=FALSE)
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The following chunk writes out matrices as csv files, comprising simulated uncorrected and taphonomically
corrected RFPABS, one per region. These are also used for the Moran’s I analysis, below.

TFDs.for.csv = data.frame(

# Alaska series
ChukchiArcticCoast = rowMeans(ChukchiArcticCoastCRFPAB[[1]]),
BeringCoast = rowMeans(BeringCoastCRFPAB[[1]]),
GulfOfAlaska = rowMeans(GulfOfAlaskaCRFPAB[[1]]),
SEAKCoast = rowMeans(SEAKCoastCRFPAB[[1]]),
BeringInland = rowMeans(BeringInlandCRFPAB[[1]]),
BrooksPolarInland = rowMeans(BrooksPolarInlandCRFPAB[[1]]),
InteriorSouthernInland = rowMeans(InteriorSouthernInlandCRFPAB[[1]]),
Kodiak = rowMeans(KodiakCRFPAB[[1]]),
Aleutians = rowMeans(AleutiansCRFPAB[[1]]),

# W. Hokkaido-Kurils series
CentralHokkaidoInland = rowMeans(CentralHokkaidoInlandCRFPAB[[1]]),
HokkaidoPacificCoast = rowMeans(HokkaidoPacificCoastCRFPAB[[1]]),
HokkaidoSeaOfJapanCoast = rowMeans(HokkaidoSeaOfJapanCoastCRFPAB[[1]]),
NorthernHokkaidoInland = rowMeans(NorthernHokkaidoInlandCRFPAB[[1]]),
TsugaruStrait = rowMeans(TsugaruStraitCRFPAB[[1]]),
Kuril = rowMeans(KurilCRFPAB[[1]])
)

for(j in 1:ncol(TFDs.for.csv)){
TFDs.for.csv[,j] = TFDs.for.csv[,j]/sum(TFDs.for.csv[,j])
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}
rownames(TFDs.for.csv) = timeline

correctedTFDs.for.csv = TFDs.for.csv * correctionFactor
for(j in 1:ncol(correctedTFDs.for.csv)){

correctedTFDs.for.csv[,j] = correctedTFDs.for.csv[,j]/sum(correctedTFDs.for.csv[,j])
}

#MAGRs.for.csv = apply(
# X = log(TFDs.for.csv), MARGIN = 2, FUN = diff
# )/5
#correctedMAGRs.for.csv = apply(
# X = log(correctedTFDs.for.csv), MARGIN = 2, FUN = diff
# )/5

write.csv(x = TFDs.for.csv, file = "NPacificTFDs.csv")
write.csv(x = correctedTFDs.for.csv, file = "correctedNPacificTFDs.csv")
#write.csv(x = MAGRs.for.csv, file = "NPacificMAGRs.csv")
#write.csv(x = correctedMAGRs.for.csv, file = "correctedNPacificMAGRs.csv")
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4. Formal and computational details of the time iterative Moran’s
I (TIMI) analysis

4.1. Calculating Moran’s I time series for MAGR when MAGR is unavailable
for some regions at certain points in time

We wish to calculate a times series of Moran’s I for a set of time series of mean adjusted growth rates
(MAGR, or r), each based on a region-specific TFD. The MAGR is

rit = ∆ ln tfdit

∆t

Here, t serves as an index for a step in the time series out of T steps, not a calendar timestamp. i is an index
for the region for which the TFD has been assessed, out of N regions. Algebraically speaking, the MAGR
is the average slope of the log-TFD function over an interval [t, t + l), where l is a non-negative integer
representing the lag from the beginning to the end of the interval over which the MAGR is evaluated. the
change in log-TFD in the numerator is

∆ ln tfdit = ln tfdi,t+l − ln tfdit = ln tfdi,t+l

tfdit

Assuming 5-year intervals between steps in the time series, the denominator’s size is

∆t = 5l

The time series of Moran’s It is calculated as

It =

(∑N

i=1

∑N

j=1
qijtwijditdjt∑N

i=1

∑N

j=1
qijtwij

)
(∑N

i=1
qitd2

it∑N

i=1
qit

) =
∑N

i=1 qit∑N
i=1

∑N
j=1 qijtwij

∑N
i=1

∑N
j=1 qijtwijditdjt∑N
i=1 qitd2

it

• qit is an indicator variable equaling 1 if the MAGR for region i can be assessed at time t or 0 if not.
This variable is not a standard feature of treatments of Moran’s I but is necessary for a time series
extension of this statistic, at least in cases where the contribution of different units to Moran’s It turn
on/off over time (e.g. if the MAGR cannot be calculated for some regions at certain points in time).

• qijt abbreviates the product qitqjt, yielding an indicator that equals 1 if and only if the MAGR for
both region i and j can be assessed at time t, 0 otherwise.

• wij is a weight function and specifically an indicator variable, with a value either of 1 or 0. Typically,
this is used as an adjacency indicator for dyad ij, but it may also/instead be used to indicate shared
membership in some meaningful group (macro-region, ecological similarity), or even as a contrast
indicator (contrasting macro-regions). wij is an element in a square (N × N), symmetrical (wij = wji)
matrix whose main diagonal (i = j) is wii = 0.

• dit is the deviation of region i’s MAGR from the average at time step t:

dit = rit − r̄t = rit −
∑N

j=1 qjtrjt∑N
j=1 qjt

In most cases, Moran’s It will range between -1 and 1, but these are not strict boundaries. The statistic
may transgress either of these boundaries particularly if the distribution of deviations {d1t, . . . , dNt} at time
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t is markedly skewed. Consequently, these boundaries can be strictly enforced if the weights wijt are row-
standardized for time step t, rescaling all wij in row i by the reciprocal of the sum of “active-region” weights
at time t:

w∗
ijt = qijtwij∑N

h=1 qihtwih

In this case, the row sums of row-standardized weights will either be 1 (if qijt = 1 for any j) or 0 (if qijt = 0
for every j)—

N∑
j=1

w∗
ijt =


1

⋃N
j=1 qijt = 1

0
⋂N

j=1 qijt = 0

—and therefore the sum of the row-standardized weight matrix (which serves as the denominator of the
weighted average of off-diagonal products of deviations in the numerator of Moran’s It) is the effective
sample size at that time:

N∑
i=1

qit =
N∑

i=1

N∑
j=1

w∗
ij

This further entails a simplification of It:

It =

(∑N
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j=1
qijtwijditdjt∑N
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j=1
qijtwij

)
(∑N
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)
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=
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The expected value for Moran’s It is

E[It] = − 1(∑N
i=1 qit

)
− 1

Assuming that the effective sample size at time t—

Neff,t =
N∑

i=1
qit

—is greater than or equal to 2, the expected value will be negative, approaching an upper asymptote of 0
as Neff,t → ∞.

60



4.2. Permutation tests

To evaluate whether an observed value of Moran’s It is significantly different from expectation, we can
implement a permutation test, in which

• The regional labels of the time series are switched or reshuffled at random without replacement, so
that ever time series is reassigned to one out of N possible labels with equal probability;

• Moran’s It is calculated for this random permutation and stored;
• A global test statistic quantifying the cumulative deviation of observed as well as each permuted

Moran’s It away from expectation over time is also calculated and stored. In the present study, the
global statistic is calculated as the sum of squared differences between observed and expected Moran’s
It,

X2 =
T∑

t=1
(It − E[It])2

• These three steps are repeated a large number of times, S, producing a vector of stored Moran’s It as
well as of X2.

• The observed value of Moran’s It is compared to the boundaries of the 100(1 − α) central interval of
stored Moran’s It for all permutations. This interval serves as a failure-to-reject interval for the null
hypothesis: only if the observed value of Moran’s It falls outside of this interval do we conclude that
the observed data are significantly different from what we would expect under the null hypothesis of
no autocorrelation.

• Likewise, the observed X2 is compared to the boundaries of the 100(1 − α) central interval of X2

calculated for all permuted time series. In this case, if the observed value falls outside of the failure-
to-reject interval, then at least some parts of the observed time series of Moran’s It are significantly
different from the null hypothesis of no autocorrelation.

While permutation tests based on every possible permutation are in theory possible, they are usually im-
practical because there are N ! =

∏N
i=1 i permutations to evaluate, becoming computationally prohibitive

even for modest values of N ; the factorials of N = 2 through N = 12 are 2, 6, 24, 120, 720, 5040, 4.032×104,
3.6288 × 105, 3.6288 × 106, 3.99168 × 107, 4.790016 × 108, which poses an explosive computational challenge.
Instead, S should be set to a reasonably large value (e.g., 1000, 10000, or similar). This simulation-based
approach to permutation tests maintains reasonable computing time and memory while also insuring that
the simulated approximation of the sampling distribution of the focal statistic between permutations is
reasonably stable.

4.3. Computation

• The data are loaded as fourteen regional TFD time series, assessed at 5-calendar-year intervals. This
includes two data sets: taphonomy-corrected and uncorrected TFDs.

TFD.uncorrected.dat = TFDs.for.csv
TFD.uncorrected.dat = data.frame(

calBP = timeline,
TFD.uncorrected.dat

)
#TFD.uncorrected.dat = read.csv(
# file = "NPacificTFDs.csv",
# stringsAsFactors = FALSE
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# )

TFD.corrected.dat = correctedTFDs.for.csv
TFD.corrected.dat = data.frame(

calBP = timeline,
TFD.corrected.dat
)

#TFD.corrected.dat = read.csv(
# file = "correctedNPacificTFDs.csv",
# stringsAsFactors = FALSE
# )

• Four distinct dyadic weight matrices are constructed. As noted above, these are square, symmetrical
N × N matrices such that wij = wji and the main diagonal wii = 0. The first weight matrix—the
shared-region weight matrix—assigns unit weights (=1) to pairs of regions belonging to the same
macro-region (NW Pacific Rim, i.e. Hokkaido-Kurils, versus NE Pacific Rim, i.e. Alaska) and assigns
null weights (=0) to pairs of regions belonging to opposite macro-regions. The second weight matrix—
the between-regions weight matrix—assigns unit weights to pairs of regions belonging to opposite
macro-regions and null weights to pairs of regions belonging to the same macro-region. The third
weight matrix—the eco-similarity weight matrix—assigns unit weights to pairs of regions that are
ecologically similar (either both coastal or both inland) and null weights to pairs of regions that are
ecologically dissimilar. The fourth weight matrix—the adjacency weight matrix—assigns unit weights
to pairs of regions that are spatially adjacent and null weights to pairs of regions that are spatially
nonadjacent. (Note: there are 19 realized adjacencies out of 14(13)/2=91 possible adjacencies for the
full set of 14 regions.)

#colnames(TFD.uncorrected.dat)

# AK vs. NW Pacific regions
region.AK = c(

"ChukchiArcticCoast", "BeringCoast",
"GulfOfAlaska", "SEAKCoast",
"Kodiak", "Aleutians",
"BeringInland", "BrooksPolarInland", "InteriorSouthernInland"
)

region.NWPac = c(
"HokkaidoPacificCoast", "HokkaidoSeaOfJapanCoast",
"TsugaruStrait", "Kuril",
"CentralHokkaidoInland", "NorthernHokkaidoInland"
)

# Coastal vs. inland regions, Bering inland is inland
ecosimilarity.Coast1 = c(

"ChukchiArcticCoast", "BeringCoast",
"GulfOfAlaska", "SEAKCoast",
"Kodiak", "Aleutians",
"HokkaidoPacificCoast", "HokkaidoSeaOfJapanCoast",
"TsugaruStrait", "Kuril"
)

ecosimilarity.Inland1 = c(
"BeringInland", "BrooksPolarInland", "InteriorSouthernInland",
"CentralHokkaidoInland", "NorthernHokkaidoInland"
)
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# Coastal vs. inland regions, Bering inland is coastal
ecosimilarity.Coast2 = c(

"ChukchiArcticCoast", "BeringCoast", "BeringInland",
"GulfOfAlaska", "SEAKCoast",
"Kodiak", "Aleutians",
"HokkaidoPacificCoast", "HokkaidoSeaOfJapanCoast",
"TsugaruStrait", "Kuril"
)

ecosimilarity.Inland2 = c(
"BrooksPolarInland", "InteriorSouthernInland",
"CentralHokkaidoInland", "NorthernHokkaidoInland"
)

# Adjacency list
adjacency.list = rbind(

#AK regions
c("SEAKCoast", "GulfOfAlaska"),
c("ChukchiArcticCoast", "BeringCoast"),
c("ChukchiArcticCoast", "BrooksPolarInland"), #
c("BeringCoast", "BeringInland"),
c("BeringCoast", "Aleutians"),
c("BeringCoast", "GulfOfAlaska"),
c("BrooksPolarInland", "InteriorSouthernInland"),
c("BrooksPolarInland", "BeringInland"),
c("BeringInland", "InteriorSouthernInland"),
c("BeringInland", "GulfOfAlaska"),
c("InteriorSouthernInland", "GulfOfAlaska"),
c("GulfOfAlaska", "Kodiak"),

# NW Pacific regions
c("Kuril", "HokkaidoPacificCoast"),
c("HokkaidoPacificCoast", "HokkaidoSeaOfJapanCoast"),
c("HokkaidoPacificCoast", "CentralHokkaidoInland"),
c("HokkaidoPacificCoast", "TsugaruStrait"),
c("HokkaidoSeaOfJapanCoast", "NorthernHokkaidoInland"),
c("HokkaidoSeaOfJapanCoast", "CentralHokkaidoInland"),
c("HokkaidoSeaOfJapanCoast", "TsugaruStrait"),
c("NorthernHokkaidoInland", "CentralHokkaidoInland"),
c("CentralHokkaidoInland", "TsugaruStrait")
)

regionMat = crossRegionMat = ecosimilarityMat1 = ecosimilarityMat2 = adjacencyMat = matrix(
data = 0,
nrow = ncol(TFD.uncorrected.dat)-1,
ncol = ncol(TFD.uncorrected.dat)-1,
dimnames = list(

colnames(TFD.uncorrected.dat)[2:ncol(TFD.uncorrected.dat)],
colnames(TFD.uncorrected.dat)[2:ncol(TFD.uncorrected.dat)]
)

)
for(i in 2:nrow(regionMat)){for(j in 1:i){

# Within-region pairs
if(
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((
length(intersect(x = rownames(regionMat)[i], region.AK))>0 &
length(intersect(x = rownames(regionMat)[j], region.AK))>0
) | (
length(intersect(x = rownames(regionMat)[i], region.NWPac))>0 &
length(intersect(x = rownames(regionMat)[j], region.NWPac))>0
)) &

rownames(regionMat)[i] != rownames(regionMat)[j]
){regionMat[i,j]=regionMat[j,i]=1}

# Between-region pairs
if(

(
length(intersect(x = rownames(crossRegionMat)[i], region.AK))>0 &
length(intersect(x = rownames(crossRegionMat)[j], region.NWPac))>0
) |

(
length(intersect(x = rownames(crossRegionMat)[i], region.NWPac))>0 &
length(intersect(x = rownames(crossRegionMat)[j], region.AK))>0
)

){crossRegionMat[i,j]=crossRegionMat[j,i]=1}

# Coastal vs. inland regions, Bering inland is inland
if(

((
length(intersect(x = rownames(ecosimilarityMat1)[i], ecosimilarity.Coast1))>0 &
length(intersect(x = rownames(ecosimilarityMat1)[j], ecosimilarity.Coast1))>0
) | (
length(intersect(

x = rownames(ecosimilarityMat1)[i], ecosimilarity.Inland1
))>0 &

length(intersect(
x = rownames(ecosimilarityMat1)[j], ecosimilarity.Inland1
))>0

)) &
rownames(ecosimilarityMat1)[i] != rownames(ecosimilarityMat1)[j]
){ecosimilarityMat1[i,j]=ecosimilarityMat1[j,i]=1}

# Coastal vs. inland regions, Bering inland is coastal
if(

((
length(intersect(x = rownames(ecosimilarityMat2)[i], ecosimilarity.Coast2))>0 &
length(intersect(x = rownames(ecosimilarityMat2)[j], ecosimilarity.Coast2))>0
) | (
length(intersect(

x = rownames(ecosimilarityMat2)[i], ecosimilarity.Inland2
))>0 &

length(intersect(
x = rownames(ecosimilarityMat2)[j], ecosimilarity.Inland2
))>0
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)) &
rownames(ecosimilarityMat2)[i] != rownames(ecosimilarityMat2)[j]
){ecosimilarityMat2[i,j]=ecosimilarityMat2[j,i]=1}

# Adjacent regions
for(dyad in 1:nrow(adjacency.list)){

if(
length(intersect(

rownames(adjacencyMat)[i], adjacency.list[dyad,]
))>0 &

length(intersect(
rownames(adjacencyMat)[j], adjacency.list[dyad,]
))>0

& rownames(adjacencyMat)[i] != rownames(adjacencyMat)[j]
){adjacencyMat[i,j] = adjacencyMat[j,i] = 1}

}
}}

#View(regionMat)
#View(crossRegionMat)
#View(ecosimilarityMat)
#sum(adjacencyMat)/2; View(adjacencyMat)

• A flexible function is programmed that allows several inputs:

– A matrix with T rows and N columns, for N TFD time series of length T . This can take either
taphonomy-corrected or uncorrected TFD time series. If no explicit input is provided, the default
is the uncorrected data set.

– A dyadic weight matrix. If no explicit input is provided, the default is the shared-region matrix.
– A temporal granularity (∆t) over which the MAGR time series should be calculated. This should

be a multiple of 5, where the value 5 will result in a non-overlapping series of MAGR evaluations
and anything greater will result in overlapping evaluations. If no explicit input is provided,
the default is 200. This value is favored because our TFDs are constructed through composite
redundancy filtering through presence-absence buffering (CRFPAB), where the each buffer has a
width of 2h and h = 100.

– A list of regions to exclude globally from the analysis. If no explicit input is provided, the default
excludes the Tsugaru Strait and the Southeast Alaskan Coast TFD time series.

– A size for the permutation test. If no explicit input is provided, the default is S = 1000.
– A seed number for the random number generator used in the permutation simulation. If no

explicit input is provided, the default is 2021.
– A level of significance α for permutation tests. If no explicit input is provided, the default is

α = 0.01.
– A temporal upper boundary (a multiple of 5 in cal BP) specifying the interval over which the

global test statistic X2 should be calculate. If not explicit input is provided, the default is 5000
cal BP.

• Output of this function includes

– A cal BP timeline for plotting output of the function, truncated at the recent end to accommodate
the fact that growth rates cannot be calculated for end-series time steps, where the lag t + l > T .

– A time series vector of Moran’s It based on the observed data set.
– A matrix of time series of Moran’s It based on permuted data sets.
– Boundaries of the fail-to-reject region for each observed It in the time series, assuming a pre-

specified α.
– X2 for the observed time series, which allows for a global test of autocorrelation across the time

series.
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– A vector of X2, one element per permuted time series, which allows for a global test of autocor-
relation across the observed time series.

– The upper boundary of the fail-to-reject region (lower boundary of the rejection region) for a
right-tailed test using this global test statistic, assuming a pre-specified α.

– A vector of MAGR time series for all regions included in the analysis.
– For each region, a list of one or more intervals of time (in cal BP) during which that region

contributes to the analysis.
– A T × N matrix for qit, from which Neff,t can be calculated as the row sum

∑N
i=1 qit.

MoransIanalysis=function(
TFDs=TFD.uncorrected.dat,
weightMatrix=regionMat,
temporalGranularity=200, # Must be a multiple of 5
regionsToExclude = c("TsugaruStrait", "SEAKCoast"),
S = 1000,
seed = 2022,
alpha = 0.01,
globalStatStart = 5000

){
# Breaking the TFD object into the TFD and the timeline
calBP = TFDs$calBP; TFDs = TFDs[,-1]

# Excluding pre-specified sites from analysis
exclusionIndexes = rep(NA, length(regionsToExclude))
for(i in 1:length(exclusionIndexes)){

exclusionIndexes[i]=which(
rownames(weightMatrix)==regionsToExclude[i]
)

}
exclusionIndexes = -unique(exclusionIndexes)
weightMatrixExclusive = weightMatrix[

exclusionIndexes,exclusionIndexes
]

TFDsExclusive = TFDs[,exclusionIndexes]
N.effective = ncol(TFDsExclusive)

# Calculating the MAGR time series
TG.factor = temporalGranularity/5
MAGR.TS = apply(

X = log(TFDsExclusive), MARGIN = 2, FUN = diff, lag = TG.factor
) / temporalGranularity

T.effective = nrow(MAGR.TS)
rownames(MAGR.TS) = calBP[1:T.effective]
MAGR.TS[is.na(MAGR.TS)] = NA; MAGR.TS[is.infinite(MAGR.TS)] = NA
MAGRdev.TS = MAGR.TS - rowMeans(MAGR.TS, na.rm = TRUE)

# Assessing which and how many regions switch on/off
onOffMat = MAGRdev.TS; onOffMat[,] = NA
onOffMat[1,] = ifelse(

test=!is.na(MAGRdev.TS[1,]),
yes = 1, no = NA
)

for(i in 2:(T.effective-1)){
onOffMat[i,] = ifelse(
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test =
is.na(MAGRdev.TS[i-1,]) &
!is.na(MAGRdev.TS[i,]) &
!is.na(MAGRdev.TS[i+1,]),

yes = 1, no = NA
)

onOffMat[i,] = ifelse(
test =

is.na(MAGRdev.TS[i-1,]) &
!is.na(MAGRdev.TS[i,]) &
is.na(MAGRdev.TS[i+1,]),

yes = 0, no = onOffMat[i,]
)

onOffMat[i,] = ifelse(
test =

!is.na(MAGRdev.TS[i-1,]) &
!is.na(MAGRdev.TS[i,]) &
is.na(MAGRdev.TS[i+1,]),

yes = -1, no = onOffMat[i,]
)

}
onOffMat[T.effective,] = ifelse(

test = !is.na(MAGRdev.TS[T.effective,]),
yes = -1, no = NA
)

onOffList = list()
for(j in 1:N.effective){

onOffList[[j]] = data.frame(
on=calBP[as.numeric(which(onOffMat[,j]==1 | onOffMat[,j]==0))],
off=calBP[as.numeric(which(onOffMat[,j]==0 | onOffMat[,j]==-1))]
)

names(onOffList)[j] = colnames(onOffMat)[j]
}

whichOn = ifelse(!is.na(MAGRdev.TS),1,0)
N_eff.t = rowSums(whichOn)
expectedI_t = -1/(N_eff.t - 1)

# Calculating the original and permuted Moran's I
outerProdArray = array(

data = NA,
dim = c(N.effective, N.effective, T.effective)
)

for(t in 1:T.effective) outerProdArray[,,t]=outer(
MAGRdev.TS[t,], MAGRdev.TS[t,]
)

permutedMoransI = matrix(
data = NA,
nrow = T.effective, ncol=S+1,
dimnames = list(

rownames(MAGRdev.TS),
paste0("s=", 0:S)
)
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)
sumSqDev = rowSums(MAGRdev.TSˆ2, na.rm = TRUE)

permutationIndexes = matrix(
NA,
nrow = S+1, ncol = N.effective
)

permutationIndexes[1,] = observedIndexes = 1:N.effective
set.seed(seed)
for(s in 2:(S+1)){

permutationIndexes[s,] = sample(
x = observedIndexes, size = N.effective, replace = FALSE
)

}

for(s in 1:(S+1)){ # This is the big time suck.
sortedOuterProdArray = outerProdArray[

permutationIndexes[s,], permutationIndexes[s,],
]

for(t in 1:T.effective){
dropInds = as.numeric(

which(is.na(MAGRdev.TS[t,permutationIndexes[s,]]))
)

if(length(dropInds)>0){
weightMatrix.t = weightMatrixExclusive[-dropInds,-dropInds]
sortedOuterProdMatrix=sortedOuterProdArray[

-dropInds,-dropInds,t
]

}else{
weightMatrix.t = weightMatrixExclusive
sortedOuterProdMatrix=sortedOuterProdArray[,,t]
}

if(length(weightMatrix.t)==1){
weightMatrix.t=matrix(weightMatrixExclusive, nrow=1, ncol=1)
}

stdWeightMat = weightMatrix.t/rowSums(weightMatrix.t)
permutedMoransI[t,s] =

sum(
sortedOuterProdMatrix*stdWeightMat
) /

sumSqDev[t]
}

}
startInd=which(as.numeric(rownames(permutedMoransI))==globalStatStart)
permutedXsq = colSums(

x = (
permutedMoransI[startInd:T.effective,] -
expectedI_t[startInd:T.effective]
)ˆ2,

na.rm = TRUE
)

# Outputting objects resulting from the analysis
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return(list(
calBP = as.numeric(rownames(permutedMoransI)),
observedMoransI.TS = permutedMoransI[,1],
permutedMoransI.TS = permutedMoransI[,-1],
failToRejectBoundaries = t(apply(

X = permutedMoransI,
MARGIN = 1,
FUN = quantile,
probs = c(0.5-0.5*(1-alpha), 0.5+0.5*(1-alpha)),
na.rm = TRUE
)),

observedXsq = permutedXsq[1],
permutedXsq = permutedXsq[-1],
failToRejectBoundariesGlobal = quantile(

x = permutedXsq[-1],
probs = (1-alpha)
),

MAGR.TS = MAGR.TS,
onOffList = onOffList,
whichOn = whichOn,
N_eff.t = N_eff.t,
expectedI_t = expectedI_t
))

}

4.4. Results

#S = 25
S = 5000
alpha = 0.05

The following analyses are based on the taphonomy-corrected TFDs. S is set to 5000 and α is set to 0.05.
Each permutation takes approximately 1/10 of a second to complete assuming 12 regions, or quicker for
smaller analyses. The first analysis (Eval01) uses the shared-region weight matrix. The second (Eval02)
uses the between-regions weight matrix. The third (Eval03) uses the eco-similarity matrix. The fourth
(Eval04) uses the adjacency weight matrix. A fifth and sixth analysis (Eval05 and Eval06) repeat the first
analysis, using the shared-region weight matrix, but the fifth and sixth analyses stratify the analysis by
considering coastal and inland regions separately All analyses exculde Tsugaru Strait and the SE AK Coast.

# Regional membership analysis
Eval01=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = regionMat,
temporalGranularity = 200,
S = S,
alpha = alpha
)

# Regional contrast (cross-regional pairs) analysis
Eval02=MoransIanalysis(

TFDs = TFD.corrected.dat,
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weightMatrix = crossRegionMat,
temporalGranularity = 200,
S = S,
alpha = alpha
)

# Ecosimilarity analysis, Bering inland is inland
Eval03.1=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = ecosimilarityMat1,
temporalGranularity = 200,
S = S,
alpha = alpha
)

# Ecosimilarity analysis, Bering inland is coastal
Eval03.2=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = ecosimilarityMat1,
temporalGranularity = 200,
S = S,
alpha = alpha
)

# Adjacency analysis
Eval04=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = adjacencyMat,
temporalGranularity = 200,
S = S,
alpha = alpha
)

# Regional membership analysis, coastal stratum, Bering inland is inland
Eval05.1=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = regionMat,
temporalGranularity = 200,
regionsToExclude = c(

"TsugaruStrait", "SEAKCoast",
ecosimilarity.Inland1
),

S = S,
alpha = alpha
)

# Regional membership analysis, coastal stratum, Bering inland is coastal
Eval05.2=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = regionMat,
temporalGranularity = 200,
regionsToExclude = c(

"TsugaruStrait", "SEAKCoast",
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ecosimilarity.Inland2
),

S = S,
alpha = alpha
)

# Regional membership analysis, inland stratum, Bering inland is inland
Eval06.1=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = regionMat,
temporalGranularity = 200,
regionsToExclude = c(

"TsugaruStrait", "SEAKCoast",
ecosimilarity.Coast1
),

S = S,
alpha = alpha
)

# Regional membership analysis, inland stratum, Bering inland is coastal
Eval06.2=MoransIanalysis(

TFDs = TFD.corrected.dat,
weightMatrix = regionMat,
temporalGranularity = 200,
regionsToExclude = c(

"TsugaruStrait", "SEAKCoast",
ecosimilarity.Coast2
),

S = S,
alpha = alpha
)
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The following figure plots the effective sample size as this changes over time for the full period covered by
the calibration curve.

Eval = Eval01

plot(
x = Eval$calBP,

xlim = rev(range(Eval$calBP)),
xlab = "cal BP",

y = Eval$N_eff.t,
ylab = expression(N[eff]),

type = "s"
)

abline(v=5000, lty = 2, col = "red")
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The following figure plots the intervals during which each region has finite MAGR values, color-coded by
macroregion, with solid lines for coastal regions and dashed for inland. (Bering inland is treated as inland
here.) This plot illustrates that, even if the effective sample size at any given point in time is >1, the ability
to calculate Moran’s I may still be constrained by the fact that the regions with finite MAGR at that time
belong to the same macro-regional or eco-type groups. This constraint will be even more salient for stratified
analyses.

plot(
x=NA,
xlim = c(50000, 0), ylim = c(1, length(Eval)),
xlab = "cal BP",
ylab = NA, yaxt="n",
main = "Finite MAGR intervals"
)

for(i in 1:length(Eval)){
segments(

y0=i,
x0=Eval$onOffList[[i]][,1], x1 = Eval$onOffList[[i]][,2],
col = ifelse(

test=anyDuplicated(c(names(Eval$onOffList)[i], region.AK))>0,
yes="blue", no = "red"
),

lty = ifelse(
test=anyDuplicated(c(

names(Eval$onOffList)[i],
ecosimilarity.Coast1
))>0,

yes=1, no = 2
)

)
}

abline(v = 5000, lty = 2)
legend(

"bottomleft", bty="n",
legend = c(

"Alaska, coastal",
"Alaska, inland",
"Hokkaido-Kurils, coastal",
"Hokkaido-Kurils, inland"
),

lty = c(1,2,1,2), col = c("blue", "blue", "red", "red")
)
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The following figures plot the regional MAGR time series, color coded either for macroregional groups or
for ecological type. (The second figure treats Bering Inland as inland.) At any point in time When MAGR
time series of like color cluster with each other but separate from time series of contrasting color, we should
expect high values of Moran’s I.

# Color-coded for region
colMacroregion = rep(NA, ncol(Eval$MAGR.TS))
for(i in 1:length(colMacroregion)){

colMacroregion[i] = ifelse(
length(intersect(colnames(Eval$MAGR.TS)[i], region.AK))>0,
"blue",
"red"
)

}
plot(

x = Eval$calBP,
#xlim = rev(range(Eval$calBP)),
xlim = c(5000, 0),
xlab = "cal BP",

y = Eval$MAGR.TS[,1],
ylim = range(Eval$MAGR.TS, na.rm = TRUE),
ylab = expression(paste(bar(r))),

type = "l", lty = 1,
col = colMacroregion[1]
)

for(j in 2:ncol(Eval$MAGR.TS)){
lines(

x = Eval$calBP,
y = Eval$MAGR.TS[,j],
lty = j,
col = colMacroregion[j]
)

}
legend(

"bottom", bty = "n",
legend = colnames(Eval$MAGR.TS),
lty = 1:ncol(Eval$MAGR.TS),
col = colMacroregion,
cex = .6, horiz = FALSE, ncol = 3
)
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# Color-coded for eco-type
colEcosimilarity = rep(NA, ncol(Eval$MAGR.TS))
for(i in 1:length(colEcosimilarity)){

colEcosimilarity[i] = ifelse(
length(intersect(colnames(Eval$MAGR.TS)[i],ecosimilarity.Coast1))>0,
"blue",
"red"
)

}
plot(

x = Eval$calBP,
#xlim = rev(range(Eval$calBP)),
xlim = c(5000, 0),
xlab = "cal BP",

y = Eval$MAGR.TS[,1],
ylim = range(Eval$MAGR.TS, na.rm = TRUE),
ylab = expression(paste(bar(r))),

type = "l", lty = 1,
col = colEcosimilarity[1]
)

for(j in 2:ncol(Eval$MAGR.TS)){
lines(

x = Eval$calBP,
y = Eval$MAGR.TS[,j],
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lty = j,
col = colEcosimilarity[j]
)

}
legend(

"bottom", bty = "n",
legend = colnames(Eval$MAGR.TS),
lty = 1:ncol(Eval$MAGR.TS),
col = colEcosimilarity,
cex = .6, horiz = FALSE, ncol = 3
)
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The It time series for the within-region analysis are presented below for the last 5000 years:

#plottingXlim = rev(range(Eval$calBP))
plottingXlim = c(5000, 0)
#plottingXlim = c(10000, 0)
Eval = Eval01

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Shared-region analysis, unstratified"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)

78



5000 4000 3000 2000 1000 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Shared−region analysis, unstratified

cal BP

I

It
E[It]
Fail−to−reject interval

79



The It time series for the between-region analysis after omitting inland regions (Bering Inland counts
as inland, Eval05.1) is presented below for the last 5000 years:

Eval = Eval05.1

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Shared-region analysis, coastal stratum"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the between-region analysis after omitting inland regions (Bering Inland counts
as coastal, Eval05.2) is presented below for the last 5000 years:

Eval = Eval05.2

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Shared-region analysis, coastal stratum"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the between-region analysis after omitting coastal regions (Being Inland counts
as inland, Eval06.1) is presented below for the last 5000 years:

Eval = Eval06.1

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Shared-region analysis, inland stratum"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the between-region analysis after omitting coastal regions (Being Inland counts
as coastal, Eval06.2) is presented below for the last 5000 years:

Eval = Eval06.2

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Shared-region analysis, inland stratum"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the between-region analysis are presented below for the last 5000 years. This regional-
contrast analysis is effectively the mirror image of the shared-region analysis (Eval01).

Eval = Eval02

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Between-region analysis"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the ecological-similarity analysis are presented below for the last 5000 years (Bering
inland is treated as inland):

Eval = Eval03.1

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Eco-similarity analysis"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the ecological-similarity analysis are presented below for the last 5000 years (Bering
inland is treated as coastal):

Eval = Eval03.2

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Eco-similarity analysis"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)
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The It time series for the adjacency analysis are presented below for the last 5000 years:

Eval = Eval04

plot(
x = Eval$calBP,
xlim = plottingXlim,
xlab = "cal BP",

y = Eval$observedMoransI.TS,
ylim = c(-1, 1),
ylab = "I",
type = "l",

main = "Adjacency analysis"
)

abline(
h = c(-1, 1), lty = 3
)

lines(
x = Eval$calBP,
y = -1/(rowSums(Eval$whichOn)-1),
col = "red", type = "s"
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,1],
col = "red", lty = 2
)

lines(
x = Eval$calBP,
y = Eval$failToRejectBoundaries[,2],
col = "red", lty = 2
)

legend(
"topleft", bty = "n",
legend = c(

expression(I[t]),
expression(paste("E[",I[t],"]")),
"Fail-to-reject interval"
),

lty = c(1,1,2), col = c("black", "red", "red")
)

94



5000 4000 3000 2000 1000 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Adjacency analysis

cal BP

I

It
E[It]
Fail−to−reject interval

95



The simulated distributions of the global test statistic X2 are illustrated below for each evaluation. The
solid vertical line depicts the observed value, while the dashed vertical line represents the lower boundary of
the rejection interval.

Eval=Eval01
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Shared-region analysis, unstratified"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")

Shared−region analysis, unstratified
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Eval=Eval05.1
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),

96



main = "Shared-region analysis, coastal stratum"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")

Shared−region analysis, coastal stratum
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Eval=Eval05.2
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Shared-region analysis, coastal stratum"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Shared−region analysis, coastal stratum
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Eval=Eval06.1
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Shared-region analysis, inland stratum"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Shared−region analysis, inland stratum
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Eval=Eval06.2
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Shared-region analysis, inland stratum"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Shared−region analysis, inland stratum
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Eval=Eval02
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Between-region analysis"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Between−region analysis
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Eval=Eval03.1
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Eco-similarity analysis"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Eco−similarity analysis
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Eval=Eval03.2
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Eco-similarity analysis"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Eco−similarity analysis
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Eval=Eval04
hist(

x = Eval$permutedXsq,
xlim = range(c(

0, Eval$permutedXsq, Eval$observedXsq,
Eval$failToRejectBoundariesGlobal
)),

xlab = expression("X"ˆ"2"),
main = "Adjacency analysis"
)

rug(Eval$permutedXsq)
abline(v = Eval$observedXsq, lwd=2)
abline(v = Eval$failToRejectBoundariesGlobal, lty = 2, col = "red")
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Adjacency analysis
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