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1. Detailed Description of Simulation Steps 
The main text provides a general outline of the simulation, while this section describes the 

simulation steps in detail. A more detailed overview of the simulation can be obtained by 
downloading the R script and the comments contained within. Section 2 provides instructions for 
running this script. 

The simulation is performed for a unique event, E. Here, E corresponds to either the 
hypothesized Younger Dryas Impact or the Laacher See volcanic eruption. For each event E, we 
performed the simulation for 10,000 iterations in each year xE,i in a vector xE of calendar years. 
For the former event, we used dates corresponding to the purported Younger Dryas Boundary 
(YDB), and for the latter event we used dates associated with the Laacher See Tephra (LST). For 
the YDB, xYDB spans 151 years within 12,860–12,710 cal yr BP, and for the LST, xLST spans 151 
years within 12,991–12,841 cal yr BP. The central 101 years in each xE vector corresponds to a 
range of possible calendar years for each hypothesized event. We simulated over a 25-year buffer 
on each side of the hypothesized range to observe how expectations vary for calendar years 
proximate to the possible calendar years for each hypothesized event. 

For each of the 10,000 iterations in each year xE,i, the simulation performs four main steps:  

(1) Create a vector of true calendar ages C for the synchronous event. The length of C 
depends on the number of 14C measurements in the observed sample (30 for the YDB 
and 19 for the LST). 

(2) Generate expected target 14C values for each true calendar age Ci in vector C. 
(3) For each target 14C value, generate a measured 14C value as observed by a laboratory. 
(4) Calibrate each measured 14C value with the IntCal13 14C calibration curve (Reimer et al., 

2013). 

The remainder of this section describes each of the four steps. These descriptions concern a 
single iteration for a single calendar age xE,i. To help illustrate these steps, Table S1.1 provides a 
toy set of observed 14C measurements that could be used as simulation input for a hypothetical 
synchronous event. We expand on this table with each simulation step. All references to “calendar 
ages/years/dates” indicate years BP (AD 1950). AMS refers to accelerator mass spectrometry, 
GPC refers to gas proportional counting, and LSC refers to liquid scintillation counting. 

 
1.1. True Calendar Ages 

For each iteration within calendar year xE,i, a vector of repeated xE,i values is first generated. 
The length of this vector is determined by the number of measurements in the observed 14C 
dataset. The YDB dataset consists of 30 reported dates, which creates a vector of 30 xE,i values 
for these simulations. The corresponding LST vector length is 19. For simulations that lack “old 
wood” effects, these repeated vectors are treated as the true calendar ages for each simulated 
14C measurement. 

Some versions of the simulation account for “old wood” effects with an “old wood” model 
(OWM). These versions add a calendar year offset to each xE,i value. Additional years are added 
only to the xE,i values that correspond to dated materials from organisms that may have died prior 
to the event of interest. Twenty-four of 30 reported YDB measurements originate from such 
materials, and 18 of 19 reported LST measurements correspond to these materials. Short-lived 
samples, such as those from grasses or seeds, do not receive age offsets. The new vector of 
calendar years that includes offset values is referred to here as xEO (Table S1.2). 
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Table S1.1. A toy dataset of reported 14C measurements for five samples associated with a 
hypothesized event E. These measurements were made by three laboratories with codes ABCD, 
EFGH, and IJKLM. The first and last laboratories measure 14C via AMS, while EFGH measures 
14C via GPC. Three of the five measurements are on wood, indicating that they may correspond 
to calendar ages older than the event of interest. The simulation generates expected 14C values 
(i.e., what might be observed in the μ column given a true synchronous event), while all other 
columns in this table provide context dependent input for the simulation itself. 
 Reported 14C   
Sample ID μ σ “old wood”? Lab type 
ABCD-0001 10,251 25 No (seed) AMS 
ABCD-0002 10,290 35 No (seed) AMS 
EFGH-0001 10,295 75 Yes (wood) GPC 
EFGH-0003 10,299 55 Yes (wood) GPC 
IJKLM-0001 10,321 40 Yes (wood) AMS 

 

OWM age offsets are drawn randomly from an exponential distribution, with offset values near 
zero more likely. In other words, OWM offsets assume that organism death most likely occurred 
shortly before the calendar year of the event E, with the probability of an earlier death event 
decreasing with temporal distance from event E. We considered two exponential distributions, 
one with the λ parameter set to 0.04 and one with λ set to 0.01 (Figure S1.1). The former 
distribution is a conservative scenario in which old samples predate the event by few years (μ = 
25, 95% HDI = 0–75), while the latter distribution results in larger age offsets on average (μ = 100, 
95% HDI = 0–300; Figure S1.1b,c). New values are drawn from each exponential distribution for 
each of the 10,000 iterations, allowing for λ specific variability in “old wood” effects to be estimated 
across 10,000 iterations. These distributions were selected to bound the extremes of realistic 
offsets that might be expected given “old wood” effects. 

 

Table S1.2. The initial step in a single simulation iteration. Here, the toy dataset is used as input 
for a simulation iteration at 12,000 cal yr BP. The reported 14C means have been removed, as 
these do not serve as input for the simulation. The age offsets are shown for hypothetical values 
drawn from an exponential distribution with λ = 0.04. 
 Reported 14C    OWM 

Offset 
 

Sample ID μ σ “old wood”? Lab type XE,i xE,iO 

ABCD-0001 - 25 No AMS 12,000 N/A 12,000.00 
ABCD-0002 - 35 No AMS 12,000 N/A 12,000.00 
EFGH-0001 - 75 Yes GPC 12,000 27.5 12,027.50 
EFGH-0003 - 55 Yes GPC 12,000 6.10 12,006.10 
IJKLM-0001 - 40 Yes AMS 12,000 88.50 12,088.50 

 

 

Most of the wood samples for Laacher See are Populus (Baales et al., 2002), which is most 
likely Eurasian aspen (Populus tremula) or black poplar (Populus nigra). The former species lives 
an average of 50–100 years (Caudullo and de Rigo, 2016) and can live up to 200 years (von 
Wühlisch, 2009). In contrast, black popular generally live only 20–50 years. As such, the 
conservative exponential model (λ = 0.04) generally gives offsets intermediate between the 
lifespans of these species (Figure S1.1b). The latter “old wood” exponential function (λ = 0.01) is 
more consistent with aspen and produces occasional offsets several centuries older than the 
lifespan of aspen (Figure S1.1c). This can accommodate scenarios in which dead wood on the 
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landscape is incorporated into the geological stratum of interest.  We assume that true “old wood” 
effects for the YDB and LST wood and charcoal 14C samples fall somewhere between the two 
extremes defined by these exponential functions, and neither exponential function is intended to 
match precisely the “old wood” effects in either context, which are probably unknowable. 

 

 
Figure S1.1. Exponential distributions used for versions of the simulation employing an OWM. (a) 
Probability density functions for each offset. (b and c) 30 examples of 20 “old wood” dates for a 
synchronous event at 12,000 cal yr BP, where each row is a sample of 20 dates. Panel b 
corresponds to an exponential distribution with λ = 0.04, and panel c corresponds to an 
exponential distribution with λ = 0.01. 

 

1.2. Target 14C Values 

We generated a target 14C value for each xE,iO value in two steps. First, mean 14C values were 
obtained by “uncalibrating” xE,iO values with the uncalibrate function in the rcarbon R package 
(Bevan and Crema, 2018). This function works by drawing from a normal distribution of 14C values 
associated with a calendar year, where the distribution corresponds to the calibration curve error 
in the IntCal13 14C calibration curve (Figure S1.2a). This produces a hypothetical mean 
atmospheric 14C value for the calendar year (Table S1.3). xE,iO values that are identical receive 
the same uncalibrated mean atmospheric 14C value since they correspond to a calendar year with 
the sample hypothetical mean atmospheric 14C value. Mean atmospheric 14C values are 
resampled for each of the 10,000 iterations. 

Second, we account for intra-annual variability around the mean atmospheric 14C value in a 
calendar year. We estimated the difference between seasonal extremes of atmospheric 14C 
variability using data from McDonald et al. (2019). They estimate the distance between seasonal 
extremes of atmospheric 14C with two calculation methods, each of which is performed for 
situations in which atmospheric 14C production is in increasing and decreasing states (Table S1.4). 
We also consider stable atmospheric 14C production, treated here as the midpoint between 
McDonald et al.’s (2019) values for increasing and decreasing production. 
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Table S1.3. The first part of step two for a single simulation iteration. Here, the toy dataset is used 
as input for a simulation iteration at 12,000 cal yr BP. The reported 14C means have been removed, 
as these do not serve as simulation input. Mean atmospheric 14C values have been sampled from 
the IntCal13 14C calibration curve error distribution around each calendar age xE,iO. 
 Reported 14C     
Sample ID μ σ “old wood”? Lab type xE,iO Mean atmospheric 14C 
ABCD-0001 - 25 No AMS 12,000.00 10,222 
ABCD-0002 - 35 No AMS 12,000.00 10,222 
EFGH-0001 - 75 Yes GPC 12,027.50 10,261 
EFGH-0003 - 55 Yes GPC 12,006.10 10,300 
IJKLM-0001 - 40 Yes AMS 12,088.50 10,366 

 
 
 

 
Figure S1.2. A visual schematic of simulated target 14C values based on context dependent input 
from the toy dataset: (a) “Uncalibrating” five calendar ages (i.e., converting xE,iO values into mean 
atmospheric 14C values; Table S1.3 for details). The blue calibration curve bands show the 50% 
and 95% error regions, and the white line shows the mean value of the curve. (b) 30 randomly 
sampled beta distributions that represent possible intra-annual distributions of 14C variability. (c) 
Mean “uncalibrated” 14C values (dotted lines), intra-annual 14C variability around those values 
based on 10,000 randomly sampled beta distributions (red semitransparent regions), and 14C 
values sampled from those intra-annual 14C variability distributions (solid lines). The 14C values 
sampled from each intra-annual distribution comprise the target 14C values. These are the values 
that laboratories attempt to measure. In panels a and c, light red geometry corresponds to three 
calendar ages with “old wood” effects, and dark red geometry corresponds to two overlapping 
calendar ages that date the event of interest. 

 

 

 



5 
 

Table S1.4. Estimates of the intra-annual distance between atmospheric 14C extremes (McDonald 
et al., 2019 for increasing and decreasing values. The stable values are the midpoints between 
the increasing and decreasing values).  
Intra-annual distance Error Atmospheric 14C trend Calculation method 
18.0 13.0 Increasing First 
23.0 16.0 Decreasing First 
20.5 14.5 Stable First 
26.0 16.0 Increasing Second 
22.0 13.0 Decreasing Second 
24.0 14.5 Stable Second 

 
 

To estimate intra-annual atmospheric 14C variability, we first modelled possible values as 
sparsely beta distributed β(2, 2), centered on 0, and scaled by the intra-annual distance. Since 
the intra-annual distance is imprecisely known, we simulated 10,000 beta distributions scaled by 
samples drawn from Ν(Intra-annual distance, Error) (Figure S1.2b). For each of the 10,000 
samples, we randomly selected one of the six possible distance and error pairings. Therefore, 
these distributions average across atmospheric 14C production trends and calculation methods. 
For each of the 10,000 simulation iterations, a random value is drawn from one of the 10,000 
centered and scaled beta distributions. This random value is then added to the mean atmospheric 
14C value to estimate a target 14C value that reflects both inter- and intra-annual 14C variability 
(Table S1.5; Figure S1.2c). 

 
 
Table S1.5. The second part of step two for a single simulation iteration. Here, the toy dataset is 
used as input for a simulation iteration at 12,000 cal yr BP. The reported 14C means have been 
removed, as these do not serve as input for the simulation. 
 Reported 14C “old 

wood”? 
Lab 
type 

Mean 
atmospheric 14C 

Intra-annual 
variation offset 

 
Sample ID μ σ Target 14C 
ABCD-0001 - 25 No AMS 10,222 15 10,237 
ABCD-0002 - 35 No AMS 10,222 -1 10,221 
EFGH-0001 - 75 Yes GPC 10,261 -6 10,255 
EFGH-0003 - 55 Yes GPC 10,300 -1 10,299 
IJKLM-0001 - 40 Yes AMS 10,366 1 10,367 

 

 

1.3. Measured 14C Values 

Given minor inter-laboratory variability that conditions systematic biases, as well as minor 
instrumental error that shapes intra-laboratory measurement repeatability, measured 14C values 
depart from their target values (Boaretto et al., 2003; International Study Group, 1982; Scott et 
al., 1990, 1998, 2010a; Scott, Cook, and Naysmith, 2007). As such, the dispersion of reported 14C 
values should vary based on the number of laboratories that have contributed to a reported 14C 
dataset, as well as based on laboratory specific characteristics that might further influence the 
repeatability of measurements. These sources of inter- and intra-laboratory variability can be used 
to model expected departures of 14C measurements from their target values, given known 
numbers of laboratories and measurements per laboratory. 

To estimate this variability, we fit a Bayesian multilevel model to data reported in the Fifth 
International Radiocarbon Intercomparison (VIRI) (Scott et al., 2010a, 2010b; Scott, Cook, 
Naysmith et al., 2007). We refer to this model as the Laboratory Measurement Bias and 
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Repeatability Model, or LBM. The LBM treats 14C measurements as a normally distributed 
outcome. We defined a three-parameter linear model for the outcome mean: a categorical 
intercept for each sample material, a random categorical effect for laboratory ID, and a scaling 
parameter that adjusts the random laboratory ID effect based on whether the laboratory performs 
AMS or GPC/LSC measurements. We defined a four-parameter linear model for the outcome 
standard deviation. Parameters consist of a baseline intercept, a random categorical effect for 
laboratory ID, a linear effect for reported measurement error, and a categorical effect that 
accounts for whether laboratories perform AMS or GPC/LSC measurements. Section 3 describes 
this model in detail, including the model formula, prior distributions for model parameters, and a 
posterior predictive check. 

The simulation samples 10,000 sets of values from the posterior distributions of the LBM 
parameters, with a unique set of parameter values applied to each of the 10,000 simulation 
iterations (Figure S1.3). Therefore, uncertainty in the model parameters is distributed across 
iterations within each calendar year xE,i: 

1. A random offset from the target 14C value representing the mean observed value within 
each laboratory. The number of sampled offsets is determined by the number of 
laboratories that contributed to the reported 14C dataset (Table S1.6). 

2. A multiplier term that rescales the offset for GPC/LSC laboratories (Table S1.6). 
3. A random within-laboratory standard deviation that is rescaled by an additional 

multiplier value for GPC/LSC laboratories (σL). This standard deviation further varies 
by the error reported for each 14C measurement (Table S1.7). 

4. Values are then drawn from laboratory and sample specific distributions defined by 
N(Mean laboratory specific 14C, σL), representing 14C values that might be measured 
by each laboratory (Table S1.8). 

 

The standard deviation for expected within lab measured 14C variability depends on the 
reported error of the sample (σ). It takes the form, 

𝜎𝜎𝐿𝐿 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜎𝜎) ∗ 𝜎𝜎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 100.01. 
(Equation S1.1) 

Possible values for each effect are presented in Table S1.7. The 100.01 value to the right of the 
exponential transformation puts the result on the scale of 14C years (the LBM is fitted to 14C year 
z-scores, and therefore, the output of this linear model needs to be put back on the 14C year 
scale).  

The measured 14C values comprise an expected set of observations generated for a single 
iteration. The simulation records the standard deviation of these values, σ14C (69.80 for the toy 
dataset detailed here), as an expected measure of dispersion for a series of 14C measurements, 
given a synchronous event. This is completed over 10,000 iterations for each calendar year xE,i, 
yielding a distribution of simulated σ14C values given the number of labs, lab types (AMS or 
GPC/LSC), reported measurement errors, and potential “old wood” effects associated with a 
reported 14C dataset. For versions of the simulation that exclude the LBM, these σ14C values are 
calculated with the target 14C values rather than the measured 14C values (as calculated in Step 
2). 
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Figure S1.3. An example of five target 14C values being converted to measured 14C values via 
sampling from the LBM. Refer to Tables S1.6, S1.7, and S1.8 for the values depicted in this figure. 
Light red lines correspond to three calendar ages with “old wood” effects, and dark red lines 
correspond to two calendar ages that date the event of interest. Rotated normal distributions 
illustrate intra-laboratory sampling distributions for each measured 14C value; They correspond to 
the distribution of repeated measurements for a given laboratory at a given reported measurement 
error, centered on the mean laboratory specific 14C value for a target 14C value. Two normal 
distributions with empty fills and dark red outlines depict calendar ages that lack “old wood” 
effects, and three normal distributions with light red fills and no outlines show calendar ages with 
“old wood” effects. Note, the intra-laboratory sampling distributions for ABCD-0001 and EFGH-
0001 overlap nearly completely, and the values sampled for ABCD-002 and EFGH-0001 are very 
similar.  

 

Table S1.6. Obtaining mean laboratory offset values for measured 14C in a single simulation 
iteration. Here, the toy dataset is used as input for a simulation iteration at 12,000 cal yr BP. The 
reported 14C means have been removed, as these do not serve as input for the simulation. The 
laboratory offset and GPC/LSC multiplier values are sampled from the LBM parameters, which 
vary across the 10,000 simulation iterations. 
 Reported 14C 

Lab type 
Target 

14C 
Lab 

offset 
GPC|LSC 
multiplier 

Mean lab 
specific 14C Sample ID μ σ 

ABCD-0001 - 25 AMS 10,237 12.50 N/A 10,249.50 
ABCD-0002 - 35 AMS 10,221 12.50 N/A 10,233.50 
EFGH-0001 - 75 GPC 10,255 -5.80 1.1 10,248.60 
EFGH-0003 - 55 GPC 10,299 -5.80 1.1 10,292.60 
IJKLM-0001 - 40 AMS 10,367 22.00 N/A 10,389.00 
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Table S1.7. Parameters for sampling measured 14C values. Here, the toy dataset is used as input 
for a simulation iteration at 12,000 cal yr BP. The reported 14C means have been removed, as 
these do not serve as input for the simulation. Laboratory effects, GPC/LSC effects, and σ effects 
are sampled from the posterior distributions of the LBM parameters, which vary across the 10,000 
simulation iterations. 
 Reported 14C Lab 

type 
Mean lab 

specific 14C 
Within lab std. deviation (σL) parameters 

Sample ID μ σ Lab effect GPC|LSC effect σ effect 
ABCD-0001 - 25 AMS 10,249.50 -2.10 0 0.35 
ABCD-0002 - 35 AMS 10,233.50 -2.10 0 0.35 
EFGH-0001 - 75 GPC 10,248.60 -2.50 0.32 0.35 
EFGH-0003 - 55 GPC 10,292.60 -2.50 0.32 0.35 
IJKLM-0001 - 40 AMS 10,389.00 -1.90 0 0.35 

 
 
Table S1.8. Sampled measured 14C values. Here, the toy dataset is used as input for a simulation 
iteration at 12,000 cal yr BP. The reported means have been removed, as these do not serve as 
input for the simulation. Lab/sample deviations were calculated with the “Within lab std. deviation 
parameters” from Table S1.7 using Equation S1.1.  
 Reported 14C Lab 

type 
Within lab sampling parameters Measured 14C 

value Sample ID μ σ 14C μ Std. deviation (σL) 
ABCD-0001 - 25 AMS 10,249.50 18.40 10,241.20 
ABCD-0002 - 35 AMS 10,233.50 19.10 10,251.70 
EFGH-0001 - 75 GPC 10,248.60 18.90 10,250.80 
EFGH-0003 - 55 GPC 10,292.60 18.40 10,296.30 
IJKLM-0001 - 40 AMS 10,389.00 23.60 10,408.60 

 

 

1.4. Calibrated 14C Measurements 

The simulation then calibrates the measured 14C values using the errors described in the 
reported dataset, producing a probability density across calendar ages for each measurement 
(Table S1.9; Figure S1.4). This is accomplished with the IntCal13 curve using the calibrate 
function in the rcarbon R package (Bevan and Crema, 2018).  
 
 
Table S1.9. Sampled measured 14C values and the 95% highest density intervals (HDI) for their 
calibrated age densities. Here, the toy dataset is used as input for a simulation iteration at 12,000 
cal yr BP. The reported means have been removed, as these do not serve as input for the 
simulation. Note that the measured 14C values in the simulation are calibrated with σ values for 
the reported measurements. 
 Reported 14C  Measured 14C  
Sample ID μ σ  μ σ Cal yr BP (95% HDIs) 
ABCD-0001 - 25  10,241.20 25 12,111–11,921; 11,915–11,827 
ABCD-0002 - 35  10,251.70 35 12,130–11,826 
EFGH-0001 - 75  10,250.80 75 12,384–12,264; 12,246–11,711 
EFGH-0003 - 55  10,296.30 55 12,386–12,262; 12,249–11,929; 11,894–11,829 
IJKLM-0001 - 40  10,408.60 40 12,517–12,482; 12,424–12,085 

 



9 
 

 
Figure S1.4. Toy dataset: Five simulated 14C measurements (rotated normal distributions) 
calibrated with the IntCal13 calibration curve (white line with blue bands). The blue calibration 
curve bands show the 50% and 95% error regions and the white line depicts the mean curve 
value. Light red geometry corresponds to three samples with “old wood” effects, and dark red 
geometry corresponds to two overlapping samples that date the event of interest. The undulating 
distributions on the x-axis depict calibrated age densities, which are used to calculate dissimilarity 
values. 

Following calibration, dissimilarity values are then obtained by first calculating the Manhattan 
distance between each pair of age densities (Table S1.10): 

𝑀𝑀𝐿𝐿𝑀𝑀ℎ𝐿𝐿𝑒𝑒𝑒𝑒𝐿𝐿𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝐿𝐿𝑀𝑀𝑒𝑒𝑒𝑒 =  ∑ �𝐴𝐴𝑥𝑥,𝑖𝑖 − 𝐴𝐴𝑦𝑦,𝑖𝑖�𝑐𝑐
𝑖𝑖=1 , 

(Equation S1.2) 

where Ax,i indexes the proportion of age density Ax in calendar year i,  Ay,i indexes the proportion 
of age density Ay in calendar year i, and c is the length of a vector defined by the union of calendar 
ages shared by the pair of age densities. The expected dissimilarity value is then calculated by 
taking the mean of all pairwise Manhattan distances and dividing this mean by two. A value of 
exactly zero indicates that the age densities are identical, while a value of exactly one indicates 
that the set of age densities are completely nonoverlapping. Like the σ14C values calculated at 
the end of Step 3, 10,000 dissimilarity values are obtained for each year xE,i across the iterations. 

Table S1.10. Manhattan distances between each pair of the five calibrated age distributions in the 
toy dataset. The mean of these values is divided by two to obtain a measure of dissimilarity (0.508 
for this toy dataset). Here, the toy dataset is used as input for a simulation iteration at 12,000 cal 
yr BP. 

  ABCD-001 ABCD-002 EFGH-001 EFGH-003 IJKLM-001 
ABCD-001     
ABCD-002 0.19     
EFGH-001 0.71 0.62    
EFGH-003 0.95 0.80 0.63   
IJKLM-001 1.86 1.81 1.48 1.14   
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2. Guide to Running the Simulation 
This simulation consists of an R script that is designed to run on a cluster. Parallelization 

occurs across the range of 302 simulated years (151 years each for the LST and the YDB). 
Optimally, one year is assigned per available core, plus one additional core for the master 
process. If at least one core is available per year, execution time is mainly limited by the number 
of simulation iterations. The results in this paper were obtained by executing the R script on the 
ManeFrame II cluster at Southern Methodist University (SMU), utilizing one core per simulated 
year. Under these circumstances, a 10,000-iteration simulation completes in about 36 hours, a 
1000-iteration simulation completes in just under four hours, and 100 iterations completes in about 
0.5 hours. Simulations under 1000 iterations generally provide noisy output distributions of σ14C 
and dissimilarity values. If cores are limited and multiple years are run per core, execution time 
will increase dramatically depending on the core that is assigned the most years over which to 
simulate (henceforth, maximum-core-years). Estimated execution time is roughly maximum-core-
years multiplied by the above specified time estimates. For example, if maximum-core-years is 
three for a 10,000-iteration simulation on the ManeFrame II cluster, the expected time is 3*36 
hours. 

2.1. Requirements 

Stan: The LBM is fit via Hamiltonian Monte Carlo simulation in Stan (Stan Development Team, 
2018). Visit https://www.mc-stan.org for installation details. 

R packages: rstan (Stan Development Team, 2018), ggplot2 (Wickham, 2016), parallel (R Core 
Team, 2018), reshape2 (Wickham, 2007), rcarbon (Bevan and Crema, 2018), matrixStats 
(Bengtsson et al., 2018), patchwork (Pedersen, 2018), and rethinking (McElreath, 2017). The first 
six packages are available in the CRAN.  
patchwork is available at: https://github.com/thomasp85/patchwork 
rethinking is available at: https://github.com/rmcelreath/rethinking 
 
Data files: IRI.csv (table of reported 14C measurements from the Fifth International Radiocarbon 
Intercomparison), RCmeasurements.csv (table of dates reported for the Laacher See Tephra and 
Younger Dryas Boundary). 
 
The script must be executed on a cluster with cores distributed across nodes. The main file output 
(SimDat#.RData) for the 10,000-iteration simulation is 587 MB, and there are minor memory 
spikes during the simulation (intermediate R objects are created during the simulation that are not 
included in the main output file).  
 

2.2. Running the R Script 

Place the R script, IRI.csv, and RCmeasurements.csv in your working directory. Ensure that Stan 
and all required R packages are installed. Follow these steps: 

1. Adjust user-arguments for simulation. Navigate to the ‘USER ARGUMENTS’ block of code 
in the R script to adjust the simulation as appropriate (code lines ~220-305). This block 
contains variables that specify the number of nodes to be used, the number of cores per 
node, the number of simulation iterations, plotting options, the ranges of calendar years 
over which to simulate each event, OWM parameter values, and other variables of 
interest. Inline code comments further detail each variable. 

2. Source the R script. This will load the csv data files and prepare parameters for the 
simulation. On the first run, the script fits the LBM, which may take 5-15 minutes. After the 

https://www.mc-stan.org/
https://github.com/thomasp85/patchwork
https://github.com/rmcelreath/rethinking
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model is fitted, posterior parameter values are exported in RData file IRI#.RData (where 
‘#’ is the number of user-specified iterations for the simulation). If you leave this file in your 
working directory and you plan to run the simulation again in the future, the script will read 
IRI#.RData into the simulation rather than refit the model, saving run time. Every time a 
simulation is run with a new number of iterations (i.e., new ‘#’ values), the model will be 
refitted. As such, users can store multiple IRI#.RData files for running the simulation with 
different numbers of iterations. The correct file will be read automatically for each 
simulation if it has already been generated in the working directory. 
 

3. Monitor the working directory for intermediate output files. In addition to IRI#.RData, the 
script will output SimDatIntermediate.RData. This file contains simulation parameters to 
be read by each node. If you wish to delete this file, do not so until the simulation has 
initiated on every node (i.e., every node has imported the simulation parameters from 
SimDatIntermediate.RData). Immediately following the creation of SimDatIntermediate 
.RData, the main R script will create daughter R script files with the filename NodeSim#.R. 
The number of these scripts that is created corresponds to the number of user-specified 
nodes. After these scripts appear in the working directory, move to Step 4. 
 

4. Submit daughter scripts to the cluster. The main R script also outputs an sbatch array 
submit script that can be executed to request nodes for every daughter R script 
(nodesim.sh). This is formatted to run on the ManeFrame II cluster at SMU, but it can be 
easily edited to run on other clusters using a Slurm workload manager. Alternatively, you 
may submit the daughter scripts to nodes using your own method. 
 

5. Wait for results. After you submit the daughter scripts, the main R script waits for them to 
complete (it scans the working directory every 30 seconds for output from the daughter 
scripts). When a daughter script completes, it outputs NodeDat#.RData. After all daughter 
output files are present in the working directory, the main script automatically imports them, 
aggregates the results, and creates one output RData file (SimDat#.RData, where ‘#’ is 
the number of user specified simulation iterations).   
 

2.3. Results and Output Files 

Simulation results are contained in objects stored in SimDat#.RData. Comments in the script 
describe these objects. This file is automatically written to the working directory after the 
simulation completes. SimDat#.RData can be opened and explored in an interactive R session 
on a personal computer. Although the intermediate output files may be of interest (IRI#.RData, 
SimDatIntermediate.RData, NodeDat#.RData, NodeSim#.R, and nodesim.sh), they do not 
contain the primary results and may be deleted after the simulation is completed. 
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3. Laboratory Measurement Bias and Repeatability Model (LBM) 
This section has four parts: (1) a description of the Fifth International Radiocarbon 

Intercomparison (VIRI) dataset to which the LBM was fitted, (2) model formulas and prior 
distributions for parameters, (3) a description of the posterior parameter values, and (4) a 
description of Hamiltonian Monte Carlo (HMC) diagnostics with a posterior predictive check. The 
goal of this model is to estimate parameters that describe inter-lab variation in the measurement 
of the 14C content of a sample as well as intra-laboratory variation over repeated measurements 
of a sample. This involves estimating the distributions of mean 14C values and 14C standard 
deviations across laboratories. 

3.1. The VIRI Dataset 

To fit the model, we first aggregated data presented in the VIRI (Scott et al., 2010a, 2010b; 
Scott, Cook, Naysmith et al. 2007). These data included all 14C measurements across all sample 
materials for which 14C measurements were reported (samples B, D, F, G, H, and I). In total, this 
spans 420 measurements performed by 80 laboratories.  

We transformed these data in three steps. First, we centered all 14C measurements on the 
median value for each sample material. Second, we used these centered measurements to 
investigate the presence of outliers. Outliers were conservatively defined as measurements that 
fall at least six times the interquartile range (IQR) distance outside the first and third quartile within 
each set of 14C measurements for a sample material. The values identified as outliers may have 
resulted from unusually poor quality-control for some laboratories or from other anomalies in 
measurement. After outliers were identified, all measurements associated with the laboratory that 
produced an outlier were removed from the dataset (Figure S3.1). This reduced the number of 
laboratories from 80 to 68, and the number of 14C measurements from 420 to 361. Finally, these 
median-centered measurements were converted to z-scores (Figure S3.1). 

3.2. Model Formula and Prior Distributions for Parameters 

Each of the 361 median-centered 14C z-scores is associated with four additional variables: a 
categorical sample material ID (B, D, F, G, H, or I), a categorical laboratory ID, a dummy variable 
indicating whether than laboratory performed an AMS (0) or GPC/LSC measurement (1), and the 
reported measurement errors for 14C values. Although measurement errors should represent 
uncertainty in the reported means, laboratories calculate these errors in a variety of ways that 
may not be comparable (Scott, Cook, and Naysmith, 2007). As such, we treat them as predictor 
variables for the dispersion of reported 14C means, with the expectation that within-laboratory 14C 
measurement dispersion increases with larger reported errors. 

First, we defined the likelihood for median-centered 14C z-scores as 

𝐺𝐺14 ~𝑁𝑁(𝜇𝜇,𝜎𝜎). 
(Equation S3.1) 

Median-centered 14C z-scores are distributed Ν(μ, σ). We then modelled μ as a linear outcome of 
the 14C value of sample material i, Cs[sample i], and an offset from that sample material value that 
depends on the laboratory ID, Co[lab j]. The laboratory ID offset also varies based on the AMS vs 
GPC/LSC dummy variable, AMS, through parameter CAMS: 

𝜇𝜇 =  𝐺𝐺𝑠𝑠[𝑑𝑑𝐿𝐿𝑠𝑠𝑒𝑒𝑙𝑙𝑒𝑒 𝑑𝑑] + 𝐺𝐺𝑂𝑂[𝑙𝑙𝐿𝐿𝐿𝐿 𝑗𝑗] × (1 + (𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 − 1) × 𝐴𝐴𝑀𝑀𝐺𝐺). 
(Equation S3.2) 
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Since median-centered 14C z-scores likely approximate a true sample-specific value near zero, 
we use a prior distribution of N(0, 1) for each Cs[sample i]. We modelled Co[lab j] as distributed 
N(0, COσ), with the prior for COσ set to exp(2). CAMS may reduce or increase the effect of Co[lab j], 
but it does not affect the sign of Co[lab j], taking only positive values. Values less than 1 reduce 
the lab specific offset Co[lab j], while values greater than 1 increase the lab specific offset Co[lab 
j]. As such, for CAMS we use a gamma distribution with the mean centered on 1 as a prior: 
gamma(1, 0.5). The parameterization of this prior does not follow the base dgamma R function, 
but instead uses the dgamma2 parameterization included in the rethinking R package (McElreath, 
2017). 

 

 
Figure S3.1. Histograms of median-centered 14C z-scores for samples B, D, F, G, H, and I. Left 
panels show all available measurements (n = 420), and right panels show only those 
measurements that originate from laboratories that did not produce outlier values (n = 361). The 
values in the right panels were used to fit the LBM. 

σ can then be interpreted as intra-laboratory variation in median-centered 14C z-scores. We 
modelled σ as the linear outcome of a baseline parameter shared by all laboratories, σl, a 
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laboratory ID specific offset parameter, σlab[lab j], the log reported measurement error (log(ME)) 
multiplied by parameter σME, and a parameter that is expressed only for GPC/LSC laboratories 
(σAMS). As such, the dispersion of repeated intra-laboratory 14C z-scores depends on laboratory 
specific variation in repeatability, the reported measurement error associated with those 
measurements, and whether the measurement was obtained via AMS or GPC/LSC. Laboratory 
specific variation depends on each reported 14C measurement error, which can vary from value 
to value within a single laboratory. To constrain σ on the positive scale, we used a log link function: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) =  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙[𝑙𝑙𝐿𝐿𝐿𝐿 𝑗𝑗] + 𝜎𝜎𝑙𝑙 + 𝜎𝜎𝐴𝐴𝑀𝑀 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀) + 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐴𝐴𝑀𝑀𝐺𝐺. 
(Equation S3.3) 

We assigned the same informative normal prior distribution to σl, σl, and σAMS: N(0, 1). We 
modelled σlab[lab j] as distributed N(0, σlabσ), with the prior for σlabσ set to exp(2). Readers may 
note that we have not modelled covariance between the random laboratory parameters, Co[lab j] 
and σlab[lab j]. For the simulation, the practical implication of this decision is that these parameter 
values are sampled independently for simulated laboratories rather than from a multivariate 
distribution. Such covariance is often modelled as multivariate normal, which would be 
inappropriate here, as σlab should vary with only the magnitude of CO rather than the magnitude 
and sign of CO (i.e., a parabolic rather than monotonic relationship). In other words, we might 
expect within-laboratory dispersion to vary with absolute laboratory ID offset, regardless of 
whether the laboratory ID offset is above or below the target 14C value (Figure S3.2). For the sake 
of model simplicity and interpretability, we did not attempt to model a parabolic relationship 
between these parameters. 

 

 
Figure S3.2. (a) Example relationships that might be expected if laboratory parameters covaried 
monotonically. (b) Example relationships that might be expected given a parabolic relationship 
between parameters. Given the lack of a covariance component in the model, laboratory 
parameters were estimated independently, conforming to the horizontal grey relationship in each 
panel (i.e., no covariance). 

 

 This model assumes that systematic offsets between mean laboratory measurements and 
target 14C values are maintained across any sample materials that a laboratory might measure. 
For example, consider a laboratory faced with measuring three different sample materials: A, B, 
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and C. If the laboratory takes measurements that are on-average -10 14C years from the target 
value of sample A, this mean offset will be also be present when the same laboratory measures 
the 14C values of sample materials B and C. If the systematic offset varies between sample 
materials A, B, and C, this cannot be captured by the model. This model also assumes that within-
laboratory repeatability is uniform across sample materials A, B, and C. In reality, different sample 
material types (e.g., bone, wood, grass seeds) and variability in target 14C values may affect both 
systematic offsets and within-laboratory repeatability. Unfortunately, the available VIRI dataset is 
insufficient to explore these issues in detail with this model.  

The LBM was specified using the map2stan function in the rethinking R package (McElreath, 
2017) and fitted through Hamiltonian Monte Carlo (HMC) simulation in rstan (Stan Development 
Team, 2018). The model was fitted with four chains, each of which performed 5000 warmup and 
2500 sampling iterations (10,000 total sampling iterations).  

 

3.3. Posterior Parameter Values 

Posterior estimates for each sample material 14C value are close to each material’s observed 
sample median (Figure S3.3a). Each posterior distribution for these sample materials includes its 
respective observed median value in a high-density region (since sample values are median 
centered, the observed median value is 0 for each distribution). The posterior distribution for CAMS 
has a mean of 1.26, indicating that GPC/LSC laboratories generally have larger mean offsets from 
target 14C values than do AMS laboratories (Figure S3.3b). However, this posterior is fairly 
dispersed, with 36.6% of the distribution falling below 1. Values below 1 correspond to a scenario 
where GPC/LSC laboratories have smaller mean offsets than those mean offsets associated with 
AMS laboratories. 

The modelled laboratory offset parameters, CO[lab i], have mean posterior parameter values 
ranging from -29.0 to 26.3 14C years across the 68 laboratories (Table S3.1; Figure S3.4a). These 
posteriors show high overlap. At first glance, laboratory offset posteriors appear to show that 
between-laboratory variability is much higher than within-laboratory variability (Figure S3.4). 
However, this is only in the hypothetical scenario where a laboratory reports 0 measurement error. 
When measurement error is included, modelled within laboratory σ values increase rapidly and 
exceed the mean laboratory offsets (Figure S3.5; Figure S3.3e). 

Posterior distributions for σ parameters are expressed on the log scale (Figure S3.5c–e). The 
posterior for the global parameter for σ, σl, has a mean value of 2.8 when this distribution is 
exponentiated and transformed back into the scale of 14C years (95% HPDI: 0.7–5.6). This 
represents within-laboratory measurement repeatability for the average AMS laboratory when 
reported 14C measurement error is zero. When σlab distributions are added to this average value, 
within-laboratory repeatability varies between laboratories. For the 68 labs in this dataset, the 
mean posterior σ value ranges from 1.53 to 9.92 14C years (Table S3.1). However, these posterior 
distributions are dispersed and show considerable overlap. In general, the effect of σAMS causes 
GPC/LSC laboratories to have higher within-laboratory variability than AMS laboratories (Figure 
S3.3d; Figure S3.4b; Figure S3.5). 

The generative aspect of this model allows one to simulate hypothetical pairs of laboratory 
parameters (Figure S3.6). As expected, GPC/LSC laboratories have generally larger mean offsets 
and within-laboratory σ values than AMS laboratories. 
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Figure S3.3. Posterior densities, posterior means (dots), and 95% highest posterior density 
intervals (HPDI) for model parameters. (a) Posteriors for each median-centered sample material. 
The sample medians are displayed to the right of each density to indicate over which 14C years 
the non-centered distributions fall. (b) Posterior distribution for CAMS, which adjusts mean 
laboratory offsets if they are GPC/LSC measurements. Note, most of the density sits above 1, 
indicating that GPC/LSC laboratory offsets are probably more dispersed than their AMS 
counterparts. (c–d) Posterior distributions for the standard deviation parameters (σl, σAMS, and 
σME), which are displayed on the log scale. (f–g) Posterior distributions for the standard deviations 
of the distributions of each laboratory specific parameter, σOσ and σlabσ (i.e., mean laboratory-
specific offsets and laboratory-specific standard deviations). 
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Figure S3.4. Posterior distributions for (a) mean laboratory offsets and (b) within-laboratory 
standard deviations. Gold densities show AMS laboratories and purple densities show GPC/LSC 
laboratories. GPC/LSC effects on laboratory offsets and within laboratory standard deviation 
values are included in these posterior distributions. Black dots mark the medians of each 
distribution. Note, within-laboratory standard deviations (b) assume 0 reported measurement 
error, and, in practice, these values become larger (see Figure S3.5). X-axes are on the 14C year 
scale. 
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Figure S3.5. Three examples showing how reported measurement error (ME) affects within-laboratory standard deviations: (a) ME = 25 14C years, 
(b) ME = 50 14C years, and (c) ME = 100 14C years. Vertical blue lines mark the reported error values. Gold posterior densities are AMS laboratories 
and purple posterior densities are GPC/LSC laboratories. Black dots mark median values in each posterior density. GPC/LSC effects on within-
laboratory standard deviations are included in these posterior distributions. X-axes are on the 14C year scale. 
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Figure S3.6. Laboratory parameters for (a) AMS and (b) GPC/LSC laboratories. Blue dots show 
1000 simulated laboratories and red dots show mean posterior values for laboratories in the VIRI 
dataset. Both axes are displayed on the 14C year scale. 

 
Table S3.1. Posterior means and 95% highest posterior density intervals (HPDI) for VIRI 
laboratory parameters. The effects of GPC/LSC measurement methods are excluded here. In 
other words, all laboratories are treated here as AMS laboratories to express variability that is due 
to laboratory identity exclusive of 14C measurement method. 

Lab. ID [j] 
Laboratory mean offset (14C 

years) CO[lab j] 
Intra-laboratory standard deviation (14C years) 

exp(σlab[lab j] + σl) 
1 1.27 (-48.45 – 47.78) 3.54 (0.41 – 8.77) 
2 14.87 (-38.29 – 71.87) 7.89 (1.44 – 17.99) 
3 21.31 (-8.09 – 56.94) 2.88 (0.65 – 6.11) 
4 -14.20 (-42.09 – 13.91) 2.32 (0.47 – 5.08) 
5 -7.52 (-29.32 – 14.78) 2.09 (0.47 – 4.42) 
6 11.97 (-18.54 – 41.52) 2.62 (0.41 – 6.40) 
7 7.09 (-31.19 – 49.82) 2.85 (0.48 – 6.37) 
8 11.62 (-25.75 – 47.68) 4.54 (0.94 – 9.87) 
9 8.95 (-30.30 – 49.86) 2.18 (0.24 – 5.52) 
10 9.47 (-27.11 – 45.79) 2.32 (0.25 – 5.59) 
12 21.16 (-27.98 – 77.48) 9.92 (2.11 – 21.35) 
13 5.61 (-31.05 – 41.74) 5.30 (1.25 – 11.18) 
14 -12.61 (-65.43 – 37.58) 3.70 (0.53 – 8.91) 
15 -16.92 (-52.35 – 17.87) 2.44 (0.42 – 5.30) 
16 7.74 (-10.95 – 26.83) 1.82 (0.35 – 3.92) 
17 -1.70 (-51.05 – 46.33) 3.49 (0.41 – 8.72) 
20 -8.79 (-44.27 – 26.74) 2.24 (0.19 – 5.50) 
21 11.63 (-24.49 – 43.44) 2.19 (0.18 – 5.57) 
22 18.04 (-6.20 – 42.05) 3.03 (0.76 – 6.40) 
23 -0.60 (-23.73 – 22.72) 1.53 (0.24 – 3.42) 
24 2.00 (-38.73 – 45.11) 2.21 (0.20 – 5.35) 
25 7.93 (-4.37 – 20.12) 1.60 (0.49 – 3.10) 
26 21.80 (-8.74 – 50.63) 2.65 (0.58 – 5.81) 
27 10.90 (-17.98 – 41.21) 1.92 (0.37 – 4.29) 
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28 -9.63 (-58.45 – 39.77) 4.14 (0.78 – 9.69) 
29 -6.62 (-55.05 – 43.62) 2.42 (0.22 – 6.21) 
30 9.20 (-35.61 – 55.32) 4.28 (0.69 – 9.66) 
31 11.28 (-33.59 – 57.48) 4.85 (0.84 – 10.67) 
32 -18.65 (-73.86 – 29.13) 3.62 (0.47 – 8.45) 
33 -15.23 (-59.45 – 28.70) 2.42 (0.27 – 6.03) 
34 -21.21 (-73.84 – 29.64) 3.47 (0.30 – 8.31) 
35 23.47 (-17.02 – 63.13) 3.03 (0.33 – 7.25) 
36 -10.87 (-54.42 – 29.74) 2.47 (0.33 – 6.01) 
37 -15.38 (-45.41 – 15.47) 4.73 (1.16 – 9.54) 
39 -29.02 (-84.32 – 20.78) 5.36 (0.81 – 11.78) 
42 -11.70 (-46.12 – 24.47) 1.80 (0.26 – 4.24) 
43 -11.68 (-32.10 – 9.40) 2.02 (0.44 – 4.22) 
44 13.21 (-20.36 – 44.39) 3.24 (0.59 – 7.06) 
45 -25.20 (-52.19 – 2.26) 3.59 (0.82 – 7.41) 
46 19.72 (-0.37 – 39.30) 1.95 (0.45 – 4.03) 
47 26.32 (-1.93 – 52.93) 2.53 (0.53 – 5.38) 
48 -8.16 (-59.22 – 40.86) 5.93 (0.94 – 13.58) 
50 -18.49 (-51.68 – 12.90) 1.58 (0.20 – 3.61) 
53 2.49 (-21.70 – 24.94) 1.82 (0.34 – 3.93) 
54 -8.95 (-48.71 – 30.48) 2.26 (0.25 – 5.58) 
55 -5.29 (-34.24 – 22.08) 1.67 (0.14 – 4.15) 
56 9.84 (-21.37 – 39.56) 1.79 (0.30 – 4.04) 
58 -3.11 (-32.11 – 28.43) 2.14 (0.17 – 5.16) 
59 11.95 (-35.21 – 61.90) 2.84 (0.29 – 6.99) 
60 -26.96 (-53.13 – 0.31) 2.10 (0.37 – 4.65) 
61 -9.55 (-58.01 – 39.37) 4.40 (0.62 – 10.24) 
62 -6.03 (-38.43 – 26.03) 6.26 (1.31 – 13.27) 
63 -14.42 (-60.64 – 27.33) 5.83 (1.07 – 12.76) 
64 -28.35 (-60.61 – 6.38) 2.55 (0.44 – 5.71) 
65 6.83 (-29.71 – 45.51) 2.62 (0.35 – 6.23) 
66 13.15 (-21.49 – 52.30) 3.26 (0.54 – 7.00) 
67 10.71 (-34.82 – 57.40) 3.77 (0.62 – 8.79) 
69 13.29 (-30.11 – 60.55) 3.29 (0.50 – 7.46) 
70 15.81 (-17.36 – 51.36) 3.53 (0.74 – 7.60) 
71 -11.08 (-55.76 – 34.09) 2.24 (0.22 – 5.64) 
72 -12.08 (-65.29 – 41.20) 4.21 (0.56 – 10.05) 
73 -22.75 (-50.96 – 6.54) 1.92 (0.28 – 4.38) 
74 12.59 (-38.32 – 67.89) 4.98 (0.68 – 11.78) 
76 23.24 (0.83 – 44.15) 1.98 (0.34 – 4.50) 
77 -3.51 (-51.84 – 47.22) 3.24 (0.34 – 8.18) 
78 -13.89 (-60.91 – 29.29) 4.11 (0.60 – 9.37) 
79 -6.77 (-42.76 – 29.40) 2.61 (0.32 – 6.37) 
82 15.92 (-33.75 – 69.33) 3.67 (0.40 – 9.18) 
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3.4. HMC Diagnostics and Posterior Predictive Checks 

To ensure convergence of HMC chains, we examined trace plots, R-hat values, and effective 
sample sizes. Trace plots indicate convergence of HMC chains for all parameters. All R-hat values  
are below 1.01. Effective sample sizes close to 10,000 indicate efficient sampling of posterior 
parameter spaces. Of the 148 parameters, 101 have effective sample sizes of 10,000. The 
median effective sample size is also 10,000, the mean is 8362, and the minimum is 1056.4 (Figure 
S3.7). 

We also performed a posterior predictive check by simulating data from the model and plotting 
these simulated data against the VIRI 14C measurements (Figure S3.8). For simplicity, where a 
laboratory contributed multiple 14C measurements for a given sample material, we used the 
average reported measurement error for that laboratory ID and sample (for example, laboratories 
5 and 22 in the panel for Sample G). In all but nine of the 361 VIRI 14C measurements (97.5%), 
the 95% prediction intervals overlap the observed values. This indicates that the LBM does a 
reasonable job recovering the observed values. 

 

 
Figure S3.7. Distribution of effective sample sizes across parameters. Parenthetical values show 
the number of parameter distributions that were sampled for each parameter type. 
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Figure S3.8. Posterior predictive check for the LBM. Each panel is a sample material reported in the VIRI study (Scott et al. 2010a,b; Scott, Cook, 
Naysmith et al., 2007). Laboratory IDs are listed along the y-axes. Reported 14C measurements and their associated errors (1 σ) are indicated by 
vertical and horizontal black segments, respectively. Horizontal gold and purple bars show the 95% posterior prediction intervals for AMS and 
GPC/LSC laboratories, respectively. The dashed red lines and bands indicate the mean and 95% highest posterior density intervals for the 14C value 
of each sample material. 
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4. Site and 14C Sample Selection for the YDB and LST 
Our simulations included only those 14C measurements that are associated with samples from 

materials located within the YDB or LST stratigraphic layers. In this section, we list the sites with 
14C measurements taken on samples from these layers and describe those samples. Where 
applicable, we detail why certain sites or samples were excluded from the simulations.  

4.1. YDB Sites and 14C Samples  

We compiled a preliminary list of 14C measurements for the YDB based on those samples that 
Kennett et al. (2015) present as originating from within a YDB layer. From there, we assessed 
each primary source to ensure the accuracy of each measurement and its provenience. The table 
below outlines the decisions made for each sample. Two samples that Kennett et al. (2015) 
identified as originating from the YDB, yet were excluded in our simulations, are described in rows 
highlighted in orange. Twenty-one rows highlighted in blue describe samples that other 
publications describe as associated with a YDB layer while Kennett et al. (2015) indicate 
otherwise. We did not include these samples in our simulations. 

Lab Number Reported 14C Material References 
μ σ   

Abu Hureyra, Syria 
UCIAMS-105429 11,070 40 Charcoal Bunch et al., 2012; Wittke et al., 2013 
OxA-172 10,900 200 Charred Seed Bunch et al., 2012; Moore et al., 2000; 

Wittke et al., 2013 

OxA-430 11,020 150 Charred bone Bunch et al., 2012; Moore et al., 2000; 
Wittke et al., 2013 

OxA-468 11,090 150 Charred bone Bunch et al., 2012; Moore et al., 2000; 
Wittke et al., 2013 

BM-1718R 11,140 140 Charcoal Bunch et al., 2012; Moore et al., 2000; 
Wittke et al., 2013 

Discussion 
UCIAMS-105429 is the only sample that Kennett et al. (2015) report as directly associated with the YDB 
layer at Abu Hureyra. However, Wittke et al. (2013) indicate that this sample is not associated with the 
YDB layer. Sample OxA-172  (Moore et al., 2000) was originally interpreted by Wittke et al. (2013) as 
being located within the YDB layer at Abu Hureyra. However, Kennett et al. (2015, SI8) state that OxA-
172 is “adjacent” to sample UCIAMS-105429, but not within the YDB layer. We default to Kennett et al. 
(2015) regarding the provenience of these samples and have included sample UCIAMS-105429 but not 
sample OxA-172 in our simulations. 
 
Bunch et al. (2012) identified samples OxA-430, OxA-468, and BM-1718R as close to the YDB layer via 
an age-depth model, although it is not clear that these samples were located within the YDB layer. Given 
their unsecure spatial relationship to the Abu Hureyra YDB layer, we deferred to Wittke et al. (2013) and 
Kennett et al. (2015) and excluded these samples from our simulations. 
Arlington Canyon, California, United States 
UCIAMS-47239 11,105 30 Charcoal Kennett et al., 2008 
UCIAMS-36308 11,095 25 Wood Kennett et al., 2008 
UCIAMS-42816 11,095 25 Wood Kennett et al., 2008 
UCIAMS-36307 11,070 25 Wood Kennett et al., 2008 
UCIAMS-36961 11,440 90 Carbon elongate Kennett et al., 2008 
UCIAMS-36960 11,185 30 Carbon spherule Kennett et al., 2008 
UCIAMS-36962 11,110 35 Wood Kennett et al., 2008 
UCIAMS-36959 11,075 30 Glassy carbon Kennett et al., 2008 
Beta-161032 10,860 70 Charcoal Kennett et al., 2008 
UCIAMS-36306 11,375 25 Wood Kennett et al., 2008 



24 
 

UCIAMS-36305 11,235 25 Wood Kennett et al., 2008 
UCIAMS-36304 11,105 30 Wood Kennett et al., 2008 
Discussion 
Kennett et al. (2015) indicate that all 12 of these samples are associated with the YDB at Arlington 
Canyon. We have included all 12 measurements in our simulations. 
Barber Creek, North Carolina, United States 
No sources report 14C measurements on samples recovered from the YDB layer. 
Big Eddy, Missouri, United States 
AA-27486 11,900 80 Charcoal Hajic et al., 2007 
AA-26654 10,710 85 Charcoal Lopinot et al., 1998; Wittke et al., 2013 
AA-25778 10,260 85 Wood charcoal Hajic et al., 2007 
AA-72612 10,959 54 Charcoal Lopinot et al., 2000; Wittke et al., 2013 
Discussion 
Kennett et al. (2015) designated two samples as associated with the YDB, AA-27486 and AA-26654. 
Wittke et al. (2013) identified a peak in nanodiamonds between 327 and 335 cm below surface, leading 
Kennett et al. (2015) to differentiate samples within these depths from samples taken at other depths 
within the same stratum. In contrast, Hajic et al.  (Hajic et al., 2007)  do not distinguish these two samples 
from an additional four samples within that stratum. Although located within the YDB layer, Kennett et al. 
(2015) rejected AA-25778 as an outlier based on an OxCal age-sequence model and we have thus 
excluded it from our simulations.  
 
Wittke et al. (2013) identify AA-72612 as associated with the YDB, although Kennett et al. (2015) indicate 
that this sample is from a context stratigraphically above the YDB. We excluded AA-72612 from our 
simulations. 
Blackwater Draw, New Mexico, United States 
SMU-1880 10,780 110 Soil humate Johnson and Holliday, 1997; Wittke et al., 

2013 
Discussion 
Wittke et al. (2013) report that sample SMU-1880 is located within the YDB at Blackwater Draw 
(measurement originally reported by Johnson & Holliday (1997)). However, Kennett et al. (2015) do not 
include this sample in their narrative description, figures, or tables. Their supplemental OxCal code 
indicates that this sample was incorporated into an age-sequence model as a potential outlier. No other 
potential YDB samples are reported in the literature. Since Kennett et al. (2015) do not explicitly identify 
SMU-1880 as associated with the YDB, we do not include this measurement in our simulations. 
Blackville, South Carolina, United States 
No sources report 14C measurements on samples recovered from the YDB layer.  
Bull Creek, Oklahoma, United States 
Beta-184854 11,070 60 Sediment 

organics Bement et al., 2014 
Discussion 
Bement et al. (2014) identified a Late Holocene peak in nanodiamonds not associated with the YDB. 
Daisy Cave, California, United States 
No sources report 14C measurements on samples recovered from the YDB layer. 
Geldrop-Aalsterhut (Aalsterhut), Netherlands 
GrA-49524 10,840 75 Charcoal van Hoesel et al., 2012 
GrA-49509 10,865 55 Charcoal van Hoesel et al., 2012 
GrA-49515 11,020 75 Charcoal van Hoesel et al., 2012 
GrA-49570 10,735 45 Charcoal van Hoesel et al., 2012 
GrA-49521 10,765 50 Charcoal van Hoesel et al., 2012 
GrA-49516 10,765 50 Charcoal van Hoesel et al., 2012 
GrA-49507 10,920 50 Charcoal van Hoesel et al., 2012 
GrA-49527 10,960 60 Charcoal van Hoesel et al., 2012 
GrA-49529 10,755 55 Charcoal van Hoesel et al., 2012 
GrA-49573 10,860 45 Charcoal van Hoesel et al., 2012 
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GrA-49574 10,845 45 Charcoal van Hoesel et al., 2012 
GrA-49569 10,895 45 Charcoal van Hoesel et al., 2012 
GrA-49514 10,880 110 Charcoal van Hoesel et al., 2012 
GrA-49575 10,900 50 Charcoal van Hoesel et al., 2012 
Discussion 
van Hoesel et al. (2012) report 14 14C sample measurements from the charcoal-rich Usselo Horizon, 
which they identify as a stratigraphic marker with the potential to evaluate the Younger Dryas Impact 
hypothesis. Kennett et al. (2015) exclude 11 of these sample measurements on the basis that they 
originate from the upper portion of the Usselo Horizon, which does not have nanodiamond markers. In 
their OxCal age-sequence model, Kennett et al. (2015) placed these three YDB samples stratigraphically 
below the remaining 11 samples. In our simulations, we only included 14C measurements from these 
three samples. 
Indian Creek, Montana, United States 
No sources report 14C measurements on samples recovered from the YDB layer. 
Lake Cuitzeo, Michoacán, Mexico 
No sources report 14C measurements on samples recovered from the YDB layer. 
Lake Hind, Manitoba, Canada 
UCIAMS-29317 10,610 25 Charcoal Firestone et al., 2007 
Discussion 
Kennett et al. (2015) indicate that the single YDB 14C sample is located below a peat layer, citing 
Firestone et al. (2007). Firestone et al. (2007), however, do not describe the sample used for the 14C 
measurement. Firestone et al. (2007) describe black mats, microspherules, glass-like carbon, and 
magnetic grains associated with the YDB, but they do not describe the context of the sample. 
Lindenmeier, Colorado, United States 
I-141 10,780 135 Charcoal Haynes and Agogino, 1960; Kinzie et al., 

2014; Walton et al., 1961 

Discussion 
Kinzie et al. (2014) state that there were no 14C samples obtained from the nanodiamond rich layer that 
they define as the YDB. They indicate that sample I-141 is stratigraphically directly above the YDB (Kinzie 
et al., 2014). We follow Kennett et al. (2015), who indicate that this sample dates the YDB layer, and 
have included it in our simulations. 
 
I-141 was first published as 10,780±375 14C yr BP (Haynes and Agogino, 1960) and later corrected to 
10,780±135 14C yr BP (Walton et al., 1961). Like Kennett et al. (2015), we use the corrected error term. 
Lingen, Lower Saxony, Germany 
Beta-369246 10,870 40 Charcoal Kennett et al., 2015 
Discussion 
Wittke et al. (2013) identify the YDB layer at 42–45cmbs by an abundance of charcoal combined with 
the presence of impact-related spherules. Kennett et al. (2015) rely on this identification for their 
association of this sample with the YDB. 
Lommel, Belgium 
UCIAMS-46303 11,480 100 Charcoal Wittke et al., 2013 
N/A 10,950 50 N/A van Geel et al., 1989; Wittke et al., 2013 
Discussion 
Kennett et al. (2015) do not identify any 14C samples from within the YDB, conflicting with a previous 
publication. Wittke et al. (2013) report an AMS measurement on charcoal from the Lommel YDB layer 
(UCIAMS-46303). They also include an AMS measurement on charcoal of 10,950±50 14C yr BP, although 
it lacks provenience information or a laboratory ID (Wittke et al., 2013). Wittke et al. (2013) cite van Geel 
et al. (1989) as the source for this measurement. However, van Geel et al. (1989) appear to have 
estimated the 14C age of the onset of the Younger Dryas rather than report a 14C measurement on a 
sample material. This likely explains why this value is not associated with a provenience or laboratory 
ID, it is not a 14C measurement.  
 
Kennett et al. (2015) indicate that UCIAMS-46303 is stratigraphically below the YDB, and they do not 
include the latter 14C estimate. No explanation is provided for these discrepancies with Wittke et al. 
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(2013). Due to the uncertain provenience of these 14C samples, we followed Kennett et al. (2015), and 
did not include any 14C samples for the Lommel YDB in our simulations. 
Melrose, Pennsylvania, United States 
No sources report 14C measurements on samples recovered from the YDB layer. 
Mucuñuque, Venezuela 
No sources report 14C measurements on samples recovered from the YDB layer. 
Murray Springs, Arizona, United States 
A-1045 10,760 100 Charcoal + F2 Haynes, 2007; Wittke et al., 2013 
TX-1045 10,260 140 Humates + F2 Haynes, 2007 
TX-1044 12,600 2440 Charcoal + F2 Haynes, 2007 
TX-1462 10,930 170 Charcoal Haynes, 2007; Wittke et al., 2013 
Discussion 
Wittke et al. (2013) indicate that charcoal sample TX-1462 dates the YDB, but this sample is missing 
entirely from the narrative, figures, and tables in Kennett et al. (2015). An additional conflict is that TX-
1462 is apparently included in their OxCal age-sequence model for Murray Springs (Kennett et al., 2015), 
despite being absent elsewhere in the text. Further confusion arises from the fact that Wittke et al. (2013) 
did not include TX-1045 or TX-1044 in their age estimations of the YDB. Of note are several Murray 
Springs 14C measurements that are incorrectly listed as OSL ages in Wittke et al. (2013): Table S1 (AA-
26212, A-1045, and TX-1462). We suspect that this is a typographic error that did not impact their 
analyses. 
 
We deferred to Kennett et al.’s (2015) list of YDB 14C samples for Murray Springs, thereby excluding TX-
1462. Given the extreme 14C measurement error for TX-1044, we also excluded this sample in the 
simulations presented in our main paper. We did, however, include this sample in simulations of an 
alternative dataset presented in Section 5. 
Ommen, Netherlands 
UCIAMS-46307 11,440 35 Charcoal Wittke et al., 2013 
Discussion 
Kennett et al. (2015) report that no 14C samples were recovered from the Ommen YDB. This conflicts 
with Wittke et al. (2013), who report that AMS sample UCIAMS-46307 was recovered directly from 
charcoal in the YDB. Kennett et al. (2015) report that this sample originates from a context 
stratigraphically below the YDB. For our simulations, we deferred to Kennett et al. (2015) and did not 
include any samples from Ommen. 
Santa Maira, Spain 
Beta-75225 11,020 140 Charcoal Aura Tortosa et al., 2008 
Discussion 
We followed Kennett et al. (2015) and included this single sample for the Santa Maira YDB. 
Sheriden Cave, Ohio, United States 
UCI-38249-(C) 10,915 30 Bone Clovis point Waters et al., 2009 
Beta-127909 10,840 80 Wood charcoal Tankersley and Redmond, 1999 
Beta-127910 10,960 60 Wood charcoal Tankersley and Redmond, 1999 
Discussion 
Kennett et al. (2015) indicate that all 3 of these samples are associated with the YDB at Sheriden Cave, 
which is visible as a discontinuous ash layer. We have included all 3 measurements in our simulations. 
Talega, California, United States 
Beta-196150 11,070 50 Charcoal Bergin, 2011 in Kennett et al., 2015; Wittke 

et al., 2013 

Discussion 
We followed Kennett et al. (2015) and included this single sample for the Talega YDB. 
Topper, South Carolina, United States 
AA-100294 10,958 65 Charcoal Goodyear, 2013 
Goodyear (2013) provides one 14C sample from charcoal associated with the Clovis layer at Topper. 
Wittke et al. (2013) define the YDB as immediately above the Clovis layer from which this date derived. 
We deferred to Kennett et al. (2015) and included this 14C sample in our simulations. 
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4.2. LST Sites and 14C Samples 

Many of the samples described here were originally summarized in Baales et al. (2002). Three 
rows highlighted in orange describe 14C samples recovered from within the LST and summarized 
by Baales et al. (2002) yet excluded in our simulations for reasons specified in the associated 
discussion paragraphs. Ten rows highlighted in blue describe 14C samples recovered from 
stratigraphic contexts near the LST, but not from within it. Since these samples likely do not date 
the Laacher See volcanic eruption, we excluded them from our simulations. 

Laboratory 
Number 

Reported 14C Material Original Reference 
μ σ 

Brohl Valley 
HV-11774 11,075 185 Plant remains Heine, 1993 
HD-17900 11,277 26 Tree 1/4, rings 1–38 Kromer et al., 1998 
KN-3800 11,240 100 Populus Street, 1993 
KN-3801 11,260 95 Populus Street, 1993 
KN-3802 11,280 100 Populus Street, 1993 
KN-3803 11,510 90 Populus Street, 1993 
Unknown 11,085 90 Charcoal Frechen, 1952; 

Schweitzer, 1958 

HD-17100 11,206 20 1a ca. 50 rings Kromer et al., 1998 
HD-17145 11,223 22 3a ca. 50 rings Kromer et al., 1998 
HD-17101 11,121 28 5b ca. 50 rings Kromer et al., 1998 
Discussion 
Neither Frechen (1952) nor Schweitzer (1958) report the laboratory number for the unknown sample. 
Glees 
GrA-? 10,680 85 Charcoal Frechen, 1959; 

Schweitzer, 1958 

Discussion 
Originally reported by Schweitzer (1958). Frechen (1959) provides the laboratory but not the sample 
number. 
Kruft 
HD-19098 11,063 30 Populus 9 rings 1-20 Baales et al., 1998; 

Kromer et al., 1998 

HD-18438 11,065 22 Populus 8 outer rings Baales et al., 1998; 
Kromer et al., 1998 

HD-19092 11,066 28 Populus 9 rings 21-30 Baales et al., 1998; 
Kromer et al., 1998 

HD-18622 11,073 33 Populus 9 rings 31-40 Baales et al., 1998; 
Kromer et al., 1998 

HD-19037 11,075 28 Populus 9 rings 41-50 Baales et al., 1998; 
Kromer et al., 1998 

HD-18648 11,037 27 Populus 1 rings 31-40 Baales et al., 1998; 
Kromer et al., 1998 

Discussion 
Four of these measurements (HD-19098, HD-19092, HD-18622, and HD-19037) originate from the same 
tree (Populus 9). For this reason, we only included the sample corresponding to rings 1-20 (HD-19098) 
in our simulation. This sample logically corresponds to the only Populus 9 measurement that could 
plausibly date the calendar year of the Laacher See eruption. The other three samples must precede the 
eruption it in the order indicated by their ring sequences.  
Miesenhein IV 
OxA-3584 11,190 90 Alces alces bone Hedges et al., 1993 
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OxA-3585 11,310 95 Alces alces bone Hedges et al., 1993 
OxA-3586 11,190 100 Alces alces bone Hedges et al., 1993 
Discussion 
Hedges et al. (1993) note that the Alces remains predate the Laacher See eruption as there was time 
for moss accumulation prior to deposition of the LST. While not enough time elapsed to fully surround 
the remains in the pre-LST layer, the event must necessarily have followed the death of the animal, and 
we have therefore excluded these measurements.  
Nette Valley 
W-525 10,800 300 Charcoal Frechen, 1959 

N/A 10,880 95 Charcoal van den Bogaard and 
Schmincke, 1985 

Discussion 
In their supplementary data, van den Bogaard & Schmincke (1985) note that the second 14C 
measurement is from a personal communication with Geyh in 1976. 
Soppensee 
ETH-5290 10,760 80 Macrofossils Hajdas et al., 1993, 1995 
ETH-6930 11,190 80 Macrofossils Hajdas et al., 1993, 1995 
ETH-6932 10,540 150 Macrofossils Hajdas et al., 1993, 1995 
ETH-12617 11,040 90 Macrofossils and wood/bark Hajdas et al., 1995 
ETH-12615 11,370 90 Macrofossils and wood/bark Hajdas et al., 1995 
ETH-12613 11,220 90 Macrofossils and wood/bark Hajdas et al., 1995 
ETH-12610 11,180 100 Macrofossils and wood/bark Hajdas et al., 1995 
Discussion 
Hajdas et al. (1995) report the bottom four 14C measurements on samples from 1-2 cm sediment slices 
that also contain ash from the Laacher See eruption. However, the relationship between the sample 
materials and the ash within each slice is unknown. ETH-5290 and ETH-6930 are from materials 
“stratigraphically close” to Laacher See ash (Hajdas et al., 1993), although it is unclear how close the 
ash is to each sample or if the samples originate from within ash. Hajdas et al. (1995) subsequently 
estimated that ETH-5290 postdates the LST by 20 14C years and ETH-6930 predates the LST by 60 14C 
years. ETH-6932 was originally reported by Hajdas et al. (1993), but they did not describe this sample 
as associated with Laacher See ash. Hajdas et al. (1995) later estimated that this sample predates the 
LST by 140 14C years. 
 
Although these measurements all appear to originate from sample organisms that died chronologically 
near the Laacher See eruption, the exact chronological relationships between each sample and 
deposition of the LST are unclear. In some cases, samples appear to postdate the LST, which is an issue 
that our simulations do not account for. As such, we excluded these measurements from our simulations. 
Thelenberg 
HD-? 10,950 190 Charcoal Frechen, 1959 

Discussion 
Frechen (1959) provides the laboratory but not the sample number. 
Tönnisstein 
W-528 11,150 200 Charcoal Rubin and Alexander, 

1960; Street et al., 1994 
GrA-? 11,025 90 Charcoal Frechen, 1959 
Discussion 
Frechen (1959) provides the laboratory but not the sample number for the latter sample. 
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5. Simulations of Alternative LSTObs and YDBObs 
In total, this “multiverse analysis” entailed 42 separate simulations over six different 

parameterizations (A1–C1 and A2–C2) and across seven different observed datasets (the main 
text dataset scored as all AMS measurements, as well as the three alternative datasets, each run 
both with the reported AMS/GPC/LSC distinctions and with all measurements scored as AMS). 
When describing the results for each alternative, we focus on simulation C2, much like the results 
described in the main paper. We focus on simulation C2 because it contains the most sources of 
variability, which likely most closely approximates the large number of sources that must affect 
real 14C datasets (i.e., C2 is characterized the most realism of the six simulations). The remaining 
five simulations show expectations when these sources of variability are excluded (or their effects 
are relaxed, as is the case for the OWM simulations with λ set to 0.04). 

5.1. Alternative 1 

The Alternative 1 dataset includes the five measurements that were excluded from simulations 
in the main text. The σ14C and dissimilarity values for both YDBObs and LSTObs become a more 
probable outcome across simulations for Alternative 1 (Figure S5.1). However, this change is 
modest for YDBObs, which remains a highly improbable event, with less than 0.1% of simulated 
σ14C and dissimilarity values exceeding the observed σ14C and dissimilarity values in any given 
simulation. 

Treating all Alternative 1 measurements as AMS decreases the probability of observing a 
dataset with σ14C and dissimilarity values as large as those in either observed dataset. This 
decrease is largest for LSTObs, which is dominated by non-AMS measurements. Despite the 
decrease having a disproportionately large effect on the probability of observing σ14C and 
dissimilarity values for LSTObs, the dispersion statistics associated with LSTObs remain orders of 
magnitude more probable than those associated with YDBObs. 

5.2. Alternative 2 

Alternative 2 excludes three YDBObs measurements with potential reliability issues, which may 
have artificially increased dispersion in YDBObs. LSTObs retains all 19 measurements used in the 
main text for this event. This alternative was designed to be favorable to the Younger Dryas Impact 
Hypothesis by reducing dispersion in the observed dataset 14C measurements. 

While simulated datasets as dispersed as YDBObs do become more probable when these three 
measurements are excluded, YDBObs σ14C and dissimilarity values remain highly improbable, with 
less than 0.5% of iterations producing σ14C and dissimilarity values greater than those values for 
YDBObs in any simulation (Figure S5.1). The minor LST results differences between the main text 
and the results presented here are due to simulation variance, given that both simulations used 
the same set of LSTObs measurements. 

Much like Alternative 1, scoring all Alternative 2 measurements as AMS reduces the 
probability of observing σ14C and dissimilarity values as large as those in either observed dataset. 
However, this reduction is slight for YDBObs. Although simulated LST σ14C and dissimilarity values 
are more greatly affected by scoring all observed measurements as AMS, the LSTObs σ14C and 
dissimilarity values remain probable relative to the YDBObs values, in the context of the simulation. 

5.3. Alternative 3 

The Alternative 3 dataset excludes 22 measurements from sites that make up a 
disproportionately large share of YDBObs and LSTObs. For YDBObs, these excluded measurements 
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are the samples from Arlington Canyon (n = 12), and for LSTObs, these measurements are the 
samples from Brohl Valley (n = 10). 

YDBSim σ14C and dissimilarity values exceed YDBObs σ14C and dissimilarity values more often 
for Alternative 3 than they do for the observed dataset used in the main text, but this gain is slight 
(Figure S5.1). Even when these Arlington Canyon samples are excluded, simulations produced 
σ14C and dissimilarity values exceeding those values for YDBObs in no more than 0.1% of 
iterations. In contrast, when the Brohl Valley measurements are excluded from LSTObs, LSTSim 
σ14C and dissimilarity values more often exceed LSTObs σ14C and dissimilarity values. In those 
simulations that include the LBM, this ranges from 7.5–28.3% of simulated σ14C values and 10.0–
43.6% of dissimilarity values. 

Scoring all Alternative 3 measurements as AMS reduces the number of YDBSim and LSTSim 
datasets with σ14C and dissimilarity values that exceed those values for YDBObs and LSTObs. This 
reduction is greatest for LST measurements in Alternative 3, but even with this larger reduction, 
the LSTObs σ14C and dissimilarity values remain much more probable than do the YDBObs σ14C 
and dissimilarity values, given simulated expectations for those values. 

5.4. Main text LSTObs and YDBObs measurements scored as entirely AMS 

As with the alternative datasets, we also completed the simulation for the main text dataset 
with all measurements scored as AMS (Figure S5.1). YDBSim σ14C values exceed YDBObs σ14C 
values slightly more often when all measurements are scored as AMS, while simulated 
dissimilarity values exceed observed dissimilarity values less often. In all cases, the all-AMS YDB 
simulations produce σ14C or dissimilarity values that exceed the observed values in no more than 
0.1% of iterations. The number of LSTSim iterations that produced σ14C or dissimilarity values 
exceeding the LSTObs σ14C and dissimilarity values decreased as a result of scoring all 
measurements as AMS, but even with this decrease, the LSTObs σ14C and dissimilarity values 
remain much more probable in the context of the simulation than do the YDBObs σ14C and 
dissimilarity values. 

5.5. Discussion 

The alternative simulations demonstrate that inferences from our simulations vary with data 
inclusion decisions, although the variation that we investigated here does not substantially alter 
the qualitative inferences presented in the main text: The amount of dispersion in the YDBObs 14C 
measurements is highly improbable, given a synchronous event. In contrast, dispersion in the 
LSTObs 14C measurements, while not highly probable, is orders of magnitude more probable than 
the dispersion in the YDBObs measurements, given a synchronous event. This difference is 
especially interesting for Alternative 2, in which the YDBObs dissimilarity value is only 0.01 greater 
than the LSTObs dissimilarity value, and the YDBObs σ14C value falls below the LSTObs σ14C value. 
This highlights the context-dependent aspect of these simulations—the degree of clustering in 
14C measurements that should be expected depends on many variables associated with those 
measurements, including their reported measurement error, the number of possible “old wood” 
samples, the number of laboratories that contributed measurements, and the measurement 
methods employed by those laboratories. Although the observed σ14C and dissimilarity values for 
Alternative 2 might suggest that the YDBObs measurements are more consistent with synchroneity 
than are the LSTObs measurements, aspects of YDBObs strongly suggest that they should be much 
more clustered than this if these measurements are associated with a synchronous event. 

Inferences also necessarily change given different choices about simulation design, which are 
theoretically infinite. We designed the simulations to include those variables that should have the 
largest effects on the dispersion of 14C measurements, but it is possible to imagine arguments for 
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other variables that we excluded, or arguments for different effects associated with the variables 
that we did include (e.g., the OWM entails choices about which value to specify for λ, as well as 
the choice to model “old wood” effects with an exponential distribution. See SI Section 6 for further 
discussion). We aimed to demonstrate a range of inferences given different simulation 
assumptions, but this range could be further extended with other simulation designs. An important 
observation for these simulations is that the expected dispersion within a set of synchronous 14C 
measurements generally declines when fewer sources of variability are considered. This is 
especially true of the laboratory variability described in the LBM. As such, we largely ignored the 
implications of the simulations that excluded the LBM, as it is unrealistic to expect a variety of 
laboratories with different protocols to measure 14C with perfect precision and accuracy. Such a 
scenario would necessarily underestimate the amount of dispersion expected in set of 14C 
measurements. This expectation is supported by multiple inter-laboratory 14C measurement 
studies (Boaretto et al., 2003; International Study Group,1982; Scott et al., 1990, 1998, 2010a; 
Scott, Cook, Naysmith et al. 2007). We displayed the results from simulations that excluded the 
LBM to illustrate underestimation effects on σ14C and dissimilarity values when this variability is 
ignored. 

In addition to the inclusion or exclusion of the LBM, there is also the issue of choices in 
specifying the LBM (described in SI Section 3). Much like simulation design choices, the LBM 
would characterize inter- and intra-laboratory measurement variability differently under alternative 
specifications. We aimed to include those variables most likely to affect the dispersion of 14C 
values in this context, although other choices might plausibly be made. For example, rather than 
model the effect of AMS vs GPC/LSC measurements, one could model the effects of AMS vs 
GPC vs LSC measurements. We lumped the latter two measurement methods together since 
there are few data within each measurement method group when GPC/LSC measurements are 
subdivided into GPC and LSC measurements. A primary measurement distinction commonly 
drawn by researchers working with 14C datasets is that of AMS compared to earlier counting 
methods, such as GPC and LSC. As such, we incorporated this distinction into our model. 
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Figure S5.1. Results of simulations over the three alternative datasets, the three alternative datasets 
scored as all AMS measurements, and the main dataset scored as all AMS measurements. Blue 
geometry corresponds to LST simulations, and red geometry corresponds to YDB simulations. Refer to 
Fig. 4 (main text) for interpreting the segments and bands in each panel. 
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6. Simulations with Alternative Old Wood Model λ Values 
In the main paper, simulations were run with old wood offsets drawn from exponential 

distributions with λ set to 0.04 and 0.01 (mean respective offsets, 25 and 100 years; 95% of 
respective expected offsets, 0–75 years and 0–300 years) as well as simulations that lacked old 
wood offsets. Reducing λ allows for larger offsets, increasing dispersion in simulated datasets. In 
the main paper, we selected λ values with the goal of bounding realistic old wood effects in each 
context of interest. However, λ values could theoretically be decreased until simulations generate 
datasets matching or exceeding dispersion in the observed datasets. 

We ran additional simulations with reduced λ values to examine what degree of old wood age 
offsetting would be necessary to obtain the level of dispersion in YDBObs. These additional 
simulations set λ to 5.0e-3 and 2.5e-3. For the former λ value, the mean expected age offset is 
200 years, with 95% of expected offsets falling within 0–600 years. For the latter λ value, the 
mean expected age offset is 400 years, with 95% of expected offsets falling within 0–1200 years. 
These offsets are generally large given the tree species identified in each dataset, and they likely 
overestimate old wood effects. For these alternative simulations, we used the observed datasets 
presented in the main paper rather than the various alternative datasets. 

At λ = 5.0e-3, simulated dissimilarity and σ14C values indicate less dispersion in YDBSim 
datasets than in YDBObs (Figures S6.1 and S6.2). In contrast, LSTSim are roughly as dispersed as 
LSTObs, suggesting that this magnitude of old wood effects is consistent with a known synchronous 
event when the average old wood offset is at 200 calendar years. YDBSim datasets resemble or 
are more dispersed than YDBObs when λ = 2.5e-3, although LSTSim datasets are much too 
dispersed relative to LSTObs (Figures S6.3 and S6.4). This suggests that an average old wood 
offset between 200 and 400 years is required to produce dispersion in YDBSim datasets that is 
comparable to those in YDBObs. 

The effects of old wood offsets begin to swamp those of the LBM as λ decreases, suggesting 
that laboratory error and repeatability has little explanatory power if YDBObs truly results from a 
synchronous event. When λ reaches 2.5e-3, dispersion in YDBObs falls within two z-scores of the 
mean dispersion in the simulated datasets, regardless of whether than LBM is included (Figures 
S6.3 and S6.4). As such, old wood effects must be a proportionally large source of variability in 
14C measurements to account for the dispersion in YDBObs. We find it unrealistic to assume that 
the “old wood” measurements in this dataset precede the event of interest by an average of 400 
years. Rather, a more conservative assumption, given the results, is that a single event was not 
responsible for YDBObs. 
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Figure S6.1. Results of simulations with λ = 
5.0e-3 and no LBM. Blue geometry 
corresponds to LST simulations, and red 
geometry corresponds to YDB simulations. 
Refer to Fig. 4 (main text) for interpreting the 
segments and bands in each panel. 

 
Figure S6.2. Results of simulations with λ = 
5.0e-3 and the LBM. Blue geometry 
corresponds to LST simulations, and red 
geometry corresponds to YDB simulations. 
Refer to Fig. 4 (main text) for interpreting the 
segments and bands in each panel. 

 
Figure S6.3. Results of simulations with λ = 
2.5e-3 and no LBM. Blue geometry 
corresponds to LST simulations, and red 
geometry corresponds to YDB simulations. 
Refer to Fig. 4 (main text) for interpreting the 
segments and bands in each panel. 

 
Figure S6.4. Results of simulations with λ = 
2.5e-3 and the LBM. Blue geometry 
corresponds to LST simulations, and red 
geometry corresponds to YDB simulations. 
Refer to Fig. 4 (main text) for interpreting the 
segments and bands in each panel. 
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7. Sample Size Differences Between YDBObs and LSTObs 
One feature that differs between YDBObs and LSTObs is the number of measurements in each 

dataset. There are 30 measurements in YDBObs, while LSTObs contains only 19 measurements. 
This raises the question of whether YDBObs could be more consistent with synchroneity if it was 
reduced to 19 measurements. Depending on which 19 measurements are subsampled from 
YDBObs, a reduced dataset of 19 measurements could be more or less dispersed than the full 
dataset of 30 measurements. 

To understand the implications of differences in sample size, we ran the simulation using three 
subsampled datasets of 19 YDBObs measurements. To create these datasets, we first generated 
10,000 randomly subsampled datasets from the 30 YDBObs measurements. We calculated σ14C 
for each dataset, resulting in a distribution of 10,000 σ14C values. Next, we selected the datasets 
associated with the 2.5%, 50.0%, and 97.5% percentile values in the σ14C distribution. These 
represent plausible observed datasets of 19 measurements with low, medium, and high 
dispersion, given the known dataset of 30 YDBObs measurements (Tables S7.1 and S7.2).  

The subsampled YDBObs dataset with low dispersion has a dissimilarity value comparable to 
the dissimilarity value for LSTObs. The YDBObs σ14C value is ~24.5 lower than the σ14C value for 
LSTObs, suggesting an observed YDB dataset that is potentially more consistent with synchroneity 
than is the observed LST dataset. Despite this, the observed statistics for the low dispersion 
subsample of YDBObs are still more dispersed than those expected from the simulations (Figure 
S7.1). In nearly all versions of the simulation, less than 0.1% of YDBSim dissimilarity and σ14C 
values are greater than the dissimilarity and σ14C values for YDBObs. The exceptions to this are 
the σ14C values of the C simulations, which have the larger old wood offset (λ = 0.01). In simulation 
C1, which excludes the LBM, 1.6% of YDBSim σ14C values exceed the YDBObs σ14C value (Figure 
S7.1). In simulation C2, which includes the LBM, 2% of YDBSim σ14C values exceed the YDBObs 
σ14C value. Although these percentages are larger than those obtained from using the full 30 
measurements in YDBObs, they are still low, especially compared to the LST simulations.  

The subsampled YDBObs dataset with medium dispersion has dissimilarity and σ14C values 
similar to those obtained for the YDBObs dataset with the full 30 measurements. As such, the 
simulated results resemble those presented for the full dataset in the main text (Figure S7.1). As 
expected, the subsampled YDBObs dataset with high dispersion is extremely inconsistent with the 
simulated datasets (Figure S7.1). 

Results demonstrate that despite the sample size differences between LSTObs (n = 19) and 
YDBObs (n = 30), it is highly improbable that a YDBObs dataset that has been rarefied to 19 
measurements would be consistent with synchroneity. Although the low dispersion subsample is 
more consistent with synchroneity than is the full YDBObs dataset of 30 measurements, it remains 
a highly improbable outcome, given a synchronous event. 

 

Table S7.1. Dispersion in subsampled YDBObs measurements. 
 Dispersion in subsampled YDBObs datasets 
 Low Medium High 
σ14C 172.45 277.78 343.85 
Dissimilarity 0.71 0.73 0.83 

 



36 
 

Table S7.2. YDBObs measurements retained in each subsample (marked with ‘X’s). Alphabetical 
site IDs correspond to Fig. 1 and Table 1 in the main text. 

Site ID: 14C Measurement Material AMS 
OWM 

sample 
YDBObs dispersion 
Low Med. High 

G: 11,070 ± 40 (UCIAMS-105429) Charcoal 1 1   X 
H: 11,105 ± 30 (UCIAMS-47239) Charcoal 1 1 X  X 
H: 11,095 ± 25 (UCIAMS-36308) Wood 1 1  X X 
H: 11,095 ± 25 (UCIAMS-42816) Wood 1 1 X X  
H: 11,070 ± 25 (UCIAMS-36307) Wood 1 1 X X  
H: 11,440 ± 90 (UCIAMS-36961) Carbon elongate 1 0  X X 
H: 11,185 ± 30 (UCIAMS-36960) Carbon spherule 1 0 X  X 
H: 11,110 ± 35 (UCIAMS-36962) Wood 1 1 X  X 
H: 11,075 ± 30 (UCIAMS-36959) Glassy carbon 1 0 X   
H: 10,860 ± 70 (Beta-161032) Charcoal 1 1 X X  
H: 11,375 ± 25 (UCIAMS-36306) Wood 1 1   X 
H: 11,235 ± 25 (UCIAMS-36305) Wood 1 1 X X X 
H: 11,020 ± 25 (UCIAMS-36304) Wood 1 1   X 
K: 10,840 ± 75 (GrA-49524) Charcoal 1 1 X X  
K: 10,865 ± 55 (GrA-49509) Charcoal 1 1 X X  
K: 11,020 ± 75 (GrA-49515) Charcoal 1 1  X  
I: 11,900 ± 80 (AA-27486) Charcoal 1 1  X X 
I: 10,710 ± 85 (AA-26654) Charcoal 1 1 X X X 
J: 11,070 ± 60 (Beta-184854) Sed. organics 1 0 X X X 
O: 10,760 ± 100 (A-1045) Charcoal 0 1 X X X 
O: 10,260 ± 140 (TX-1045) Humates 0 0   X 
Q: 10,915 ± 30 (UCI-38249) Bone Clovis point 1 0 X X X 
Q: 10,840 ± 80 (Beta-127909) Wood charcoal 1 1 X X X 
Q: 10,960 ± 60 (Beta-127910) Wood charcoal 1 1 X   
L: 10,610 ± 25 (UCIAMS-29317) Charcoal 1 1 X  X 
M: 10,780 ± 135 (I-141) Charcoal 0 1 X X  
N: 10,870 ± 40 (Beta-369246) Charcoal 1 1  X  
R: 11,070 ± 50 (Beta-196150) Charcoal 1 1  X  
S: 10,958 ± 65 (AA-100294) Charcoal 1 1  X X 
P: 11,020 ± 140 (Beta-75225) charcoal 1 1 X  X 
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Figure S7.1. Results of simulations with YDBObs subsampled to 19 measurements. Blue geometry corresponds to LST simulations, and red geometry 
corresponds to YDB simulations. Refer to Fig. 4 (main text) for interpreting the segments and bands in each panel.
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