Supplementary Table 1 Assessment of possible aseismic mechanisms in glacial Lake Ojibway for event horizons H, G, and E.

Mechanism	Con	nments	Assessment
Grounding icebergs	_	Could mechanically trigger failures from higher surfaces of lake bottom.	May have caused isolated failures in
	-	Iceberg scour marks are present on bed of glacial Lake Ojibway, but are located over 90	study area, but unlikely to account
		km north of the study area (Dionne, 1977; Veillette and Paradis, 1996).	for the multi-landslide signatures of
	_	Near absence of ice-rafted debris in varve deposits in study area implies that few icebergs	horizons H, G, and E.
		were present during interval of Dasserat varve record.	
Overloading or	_	Failures could result from high sedimentation rates on the undulating slopes within general	May have caused isolated failures ir
oversteepening of		location of study area.	study area, but unlikely to account
slopes	_	Depositional setting is in deep water and distal with respect to sediment source implying	for the multi-landslide signatures of
		that there are no pockets of high localized sedimentation in study area.	horizons H, G, and E.
	_	Difficult to account for the shift in the locations of failures between horizons H and G, and	
		then the widespread failures occurring in horizon E, with this mechanism.	
	_	An obvious increase in the regional sedimentation rate occurred in the glacial lake	
		beginning at varve 1528, but this change post-dates horizons H, G, and E and there is no	
		multi-landslide horizon in the study area until after varve sedimentation began to wane	
		(horizon B).	

Wind-generated	_	Storms on glacial Lake Ojibway generated large waves during the interval of Dasserat	Unlikely to account for the multi-
waves		varve record.	landslide signatures of horizons H,
	-	Deep water conditions (minimum 30 to 50 m deep) over study area probably minimized	G, and E.
		influence of wave actions on lake bed.	
	_	Waves might have triggered failures along an eroding shoreline, however, the nearest	
		paleoshoreline in relevant period was located \sim 1.5 km to the south-southwest along the	
		northeastern tip of a narrow, elevated bedrock ridge.	
	-	If wind-generated waves are an important mechanism, then there should be a greater	
		number of event horizons with a relatively low rather than high number of landslide	
		deposits, reflecting the higher frequency of lower magnitude storm events, but this	
		opposite to what is observed.	
	-	Periods of 40 to 119 varve years between horizons H, G, F and E without any failures in	
		study area further suggest this is not an important mechanism because significant storms	
		almost certainly occurred more frequently than the duration of these periods.	
Rapid drawdown of	_	Could trigger failures due to generation of high pore pressure in poorly-draining, clay-silt	Unlikely to account for the multi-
lake level		deposits and loss of stabilizing influence of water pressure on slopes.	landslide signatures of horizons H,
	_	No known rapid drawdown events of glacial Lake Ojibway during interval of Dasserat	G, and E.
	_	varve record.	6, uid 2.
		varve record.	

Dionne, J.C., 1977. Relict iceberg furrows on the floor of glacial Lake Ojibway, Québec and Ontario. Atlantic Geology 13, 79-81.

Veillette, J.J., Paradis, S.J., 1996. Iceberg furrows as paleowind indicators and icebergs as erosion and sedimentation agents in Glacial Lake Ojibway, Abitibi, Québec. Open File 3031. Geological Survey of Canada, Ottawa. doi: 10.4095/205754.