
Supplementary Material for Lowell, Applegate, Fisher, and Lepper, What Caused the Low-Water Phase of Glacial Lake Agassiz?: Quaternary Research.  

This supplement describes the methods we used to reconstruct Lake Agassiz and its drainage basin, as well as our rationale for the model parameter ranges that we investigated.  We provide our model code at the end of this supplement.  

Basin reconstruction 

Our basin reconstruction procedure involved two steps.  We first estimated the position of the ice margin near the the level of the lowest shoreline (Upham, 1895), dated to ~13.5±0.3 ka (Lepper et al. 2007, 2011, 2013).  Next, we determined the basin and lake characteristics from the modern drainage basin geometry, v. 6.0 (Natural Resource Canada GeoGratis, 2008).  Although our modeling results are informed by this ice margin and lake reconstruction, we show elsewhere that our conclusions are highly insensitive to the particular values that we extract from it.  

To reconstruct the ice margin position, we used new information on the timing of deglaciation in the North American midcontinent (Fisher et al., 2009; Lowell et al., 2009), existing chronologic data (Dyke, 2004), and new geomorphic analysis. For the eastern portion of the basin, our reconstructed margin position is similar to the Dyke (2004) 11 ka 14C (12.9 cal ka BP) reconstruction. However, in the western portion of the basin, our margin lies southwest of the Dyke (2004) margin position.  

Previously-published data fixes the age of shorelines that are clearly pre-Younger Dryas in age. Lepper et al. (2007, 2011, 2013) provide new chronology for higher shorelines that predate the Tintah level, including the Herman (14.1 ± 0.3 ka), Norcross (13.6±0.2 ka) and Upham (13.5±0.1 ka), but dating of the Tintah has proved problematic. The even-lower Campbell shoreline has an age of 10.5 ± 0.3 ka, providing a very loose minimum bound on the age of the Tintah level.  
While acknowledging these chronologic uncertainties, we chose the Tintah shoreline for this exercise.  
We used GIS techniques to identify the lake area and volume bounded by the reconstructed ice margin position and the Tintah shoreline (Upham, 1895; Johnston, 1946).  GIS methods also allowed us to identify the basin area available to feed runoff into the lake, excluding the part of the modern basin covered by the 12.9 cal ka ice extent.  

The lower, Burnside level may represent the extent of Lake Agassiz at the nadir of the Moorhead Low.  We repeated our GIS exercise for this level.  This lake had a surface area of 132,861 km2 and a volume of 4,631 km3, with a bathymetry shown in Fig. S1b.  Future modeling exercises might consider the impact of increasing lake surface area but decreasing lake volume on the water budget.  

Parameter ranges

Our Monte Carlo sensitivity analysis requires us to select minimum and maximum bounds for all the uncertain parameters in our model.  In this section, we describe how we selected these bounds for each parameter. 

Basin parameters

The basin reconstruction described above yields estimates for the basin area, lake area, mean water depth along the ice margin where it is in contact with the water, the ice margin length in contact with the lake, the ice margin length in contact with the whole basin, and the lake volume.  These estimates are given in Table 1 of the main text.  

We assumed that each of these estimated values, except for the basin area and the lake volume, could be in error by up to 20% in either direction.  Thus, we multiplied the central estimates for most of the values by 0.8 to obtain a lower limit and by 1.2 for the upper limit.  
The basin area value given in Table 1 assumes that the parts of the drainage basin that today are internally drained were not part of the lake during Moorhead Low time.  To account for the possibility that some or all of these areas actually did form part of Lake Agassiz at this time, we used an upper bound of 1.5 times the central estimate for this parameter.  
For simplicity, we fixed the lake volume at our best estimate.  This value was not used as an input to the model; instead, it served as a normalizing factor to make the mass balance estimates from the model more comprehensible.  

Hydrology parameters

One of our aims in this project was to determine how much precipitation, runoff, and (especially) evaporation must change, relative to the present, to produce a closed Lake Agassiz basin.  
Following Lewis et al. (2001), we used information from the Hydrological Atlas of Canada (CNCIHD, 1978) to determine modern values for the precipitation, runoff, and evaporation coefficients in the model. This reference includes regional maps for runoff, potential evaporation, and precipitation, showing both the amount and regional variations. Using our new reconstruction, we masked the basin or lake area on these maps and extracted the average values of the hydrologic parameters from grids 50 km on a side.  Note that the runoff coefficient applies over the area of the basin less the lake, whereas the precipitation and evaporation coefficients apply to the lake area itself.  
We assumed that these modern values (CNCIHD, 1978) could not have changed by more than a factor of two in either direction during the late-glacial.  That is, we multiplied each modern estimate by 0.5 to obtain the lower bound for each parameter, and by 2.0 to obtain the upper bound.  
Meltwater production parameters

The model’s climate parameters are perhaps the most difficult to estimate.  Modern mean June-July-August temperatures in this part of the world are about 20 OC (New et al., 1999).  We would expect late-glacial ablation season temperatures to have been less; 18 OC might be an upper bound.  We then assumed a 10-degree uncertainty range from this upper bound, giving a lower bound of 8 OC.  The lapse rate is usually taken to be 6.5 OC/km of elevation for modern studies, but this value varies geographically and seasonally.  We took the modern value and assumed a +/- 2 OC uncertainty range around it.  Finally, by analogy to modern high-latitude environments, we adopted an ablation season length between 0.5 and 3 months.  
As described in the text, our central estimate for the model’s calving parameter comes from an approximate line of best fit drawn through points showing calving velocity as a function of water depth for the glaciers calving into freshwater lakes in Haresign (2004)’s Figure 2.4 (see also Benn et al., 2007, their Fig. 2; note that the units on the y-axis in Benn et al.’s figure should be km/yr).  To estimate the uncertainty on this value, we multiplied the central estimate by 0.5 (lower bound) and 2.0 (upper bound).  This envelope includes most, if not all, of the freshwater-glacier points on Haresign (2004)’s plot.  

The positive degree-day factor range is based on Braithwaite (1995), who noted that positive degree-day factors in Greenland ranged from 8-20 mm/day/OC for bare ice surfaces (snow PDD factors are smaller).  To allow for the possibility that the southern Laurentide margin might have had a lower effective ice PDD factor during the late-glacial, we used a lower bound of 5 mm/day/ OC.  

Finally, the surface slope is based on two potential modern analogs.  The first of these analogs is the profile of the Greenland Ice Sheet near Rensselaer Bugt, in the northwestern sector of the ice sheet. Here, the ice sheet flows over sedimentary carbonates, mudstones and shales similar to the glacial Lake Agassiz basin.  This profile yielded a surface slope of 0.032 over a map distance of 25 km.  The second analog is the Malaspina Glacier, which has a surface slope of 0.019, as measured over the 20 km nearest the glacier toe.  Given these observed surface slopes, we took 
0.020 and 0.001 as the upper and lower limits for the ice surface slope in our experiment.  
Supplemental Figures and Table

Figure S1. Reconstructed extent and bathymetry of glacial Lake Agassiz at the Tintah level (a) and the  [image: image1.png]


Burnside level (b).  
Figure S2a-c.  Parameter combinations consistent with a closed basin, for all combinations of two parameters each.  All axes are scaled such that they lie on the [0 1] interval, where 0 corresponds to the smallest value investigated in the Monte Carlo sensitivity experiments and 1 corresponds to the largest investigated value (see Fig. 4 and Table 1 for these minimum and maximum values).  Scatterplots with only partial coverage by the successful parameter combinations indicate tradeoffs among parameters. Only the upper-left corner of the matrix is shown here; Figures S2b and S2c show other portions of the matrix.  See [image: image2.png]-
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Figure S2b.  As S2a, but the upper-right portion of the matrix.
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Figure S2c.  As S2a, but the lower-right portion of the matrix.  

Table S1.  Variability in runoff for four river basins in the former Lake Agassiz basin between two 10-year periods, 1930-1940 and 1965-1975. Data values from http://www.sage.wisc.edu/ riverdata/index.php?qual=256, accessed 12 Feb 2012.  

	River
	Station
	Area (km2)
	Average discharge, 1930-1940 (m3/s)
	Average discharge, 1965-1975 (m3/s)
	Runoff, 1930-1940 

(mm/yr)
	Runoff, 1965-1975 

(mm/yr)
	Runoff ratio, 1965-1975/ 1930-1940

	Red
	Emerson
	104000
	26.6±10.3
	159±55
	8
	48
	5.98

	Assiniboine
	Headingley
	153000
	21.3±10.4
	57.9±29.1
	4
	12
	2.72

	North Saskatchewan
	Prince Albert
	131000
	204±31
	260±70
	49
	63
	1.27

	South Saskatchewan
	Saskatoon
	141000
	203±45
	255±61
	45
	57
	1.26
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Model Code

We used the following Octave code to conduct the experiments described here.  GNU Octave is a freeware clone of The MathWorks’ Matlab, so this code may run under Matlab after some adjustment.  The main code, agassiz_mc_v5.m, calls  unit_conversion.m, mc_setup.m, lake_balance.m, and plots.m.  

% agassiz_mc_v5.m
% Code by P. Applegate, patrick.applegate@psu.edu
% with contributions from T. Lowell, thomas.lowell@uc.edu
% Written for use with Octave 3.4 
% (http://www.gnu.org/software/octave/index.html).  May work with Matlab after 
% some adjustment.  Although the code has been carefully written and checked for 
% obvious errors, we do not guarantee its correctness.  The results should not 
% be trusted without extensive testing.  
% If you use this code in your own work or teaching, reference the 
% article that it belongs with.  Please don't steal.  
% Could evaporation from Lake Agassiz have equaled or exceeded inputs to the 
% lake during Younger Dryas time?  This script evaluates this hypothesis by 
% looking for model parameter values that produce a zero-or-negative mass 
% balance for the lake.  If such combinations exist, we consider that the 
% hypothesis deserves further investigation.  
% If the file_output flag is set to 1, this script produces two output files.  
% One file contains the output matrix, as defined and used in the code below.  
% The second file contains the ranges of input parameter values that are 
% consistent with the lake evaporation hypothesis.  
% Contents of the output matrix by column: 
% 1, lake area (m^2)
% 2, basin area (m^2)
% 3, length of ice margin in contact with the lake water (m)
% 4, length of ice margin in contact with the whole basin (m)
% 5, mean depth of lake at ice margin (m)
% 6, potential evaporation per unit area (m/yr)
% 7, runoff per unit area (m/yr)
% 8, precipitation per unit area (m/yr)
% 9, calving parameter (1/yr)
% 10, length of ablation season (yr)
% 11, positive degree-day factor (m water equivalent/yr/deg. C)
% 12, mean ablation season temperature (deg. C)
% 13, atmospheric lapse rate (deg. C/m)
% 14, slope of ice surface (d'less)
% 15, ice melt contribution to the lake, normalized by lake volume (1/yr)
% 16, calving contribution, normalized (1/yr)
% 17, precipitation contribution, normalized (1/yr)
% 18, runoff contribution, normalized (1/yr)
% 19, evaporation loss from lake, normalized (1/yr)
% 20, net balance of lake, normalized (1/yr)
% 21, fraction of total positive mass balance components due to ice melt and 
%   calving (d'less)
% 22, consistent with hypothesis or not?  (1, yes; 0, no)
% /----- Initial setup -----/
% Mise en place.  
clear all
close all
clc
% Set the number of Monte Carlo realizations.  
n = 3* 10^7; 
% Write output files?  (1, yes; 0, no)
file_output = 1; 
% /----- Set model parameter values -----/
% Load in the "data-based" values.  
data_values
% Set the Monte Carlo parameter ranges.  
param_ranges
% Convert everything to consistent units, with distances in meters and times in 
% years.  
unit_conversion
% /----- Set up Monte Carlo experiment -----/
% Initialize the output matrix.  See above for the contents of this matrix by 
% column.  
output = zeros(n, 22); 
% Based on the parameter ranges and the "data-based" parameters, set up 
% columns 1-14 in output with randomly chosen input values.  
mc_setup
% /----- Calculate mass balance terms -----/
lake_balance
% Write the number of successful runs to the screen.  
fprintf('%d of %d evaluations are consistent with the lake evaporation hypothesis!\n', sum(output(:, 22)), n)
% /----- Output parameter ranges that are consistent with a closed basin -----/
yn = output(:, 22); 
yn(yn == 0) = NaN; 
for i = 1: 1: 14; 
    foo = output(:, i).* yn; 
    ranges(i, 1: 2) = [nanmin(foo) nanmax(foo)]; 
end
%ranges
% /----- Plot results -----/
plots
% /----- Write results to files -----/
if file_output == 1
    dlmwrite('agassiz_output.csv', output, ',')
    dlmwrite('agassiz_ranges.csv', ranges, ',')
end
% data_values.m
% Loads crucial variables into memory.  These values are based on "real data," 
% either geological inferences or modern observations.  
% Values related to volume of Tintah-level Lake Agassiz (source: T. Lowell, 20 
% Nov 2011)
V_lake = 6088;  % km^3; volume of lake (default, 6088; modern is 294 km^3; 
                % Wikipedia, http://en.wikipedia.org/wiki/Lake_winnipeg, 
                % accessed 17 Dec 2011)
A_lake = 111163;    % km^2; area of lake (default, 111163; modern L. Winnipeg is 
                % 24400 km^2; Lewis et al., 2001)
A_basin = 604712;   % km^2; area of drainage basin (default, 604712; compare 
                % Lewis et al. 2001's value of 959130 km^2 for modern L. 
                % Winnipeg)
% Values related to ice margin contact with the paleo-lake (source: T. Lowell, 
% 20 Nov 2011 and 17 Dec 2011)
L_lake = 360;       % km; length of margin in contact with the water (default, 
                % 360)
L_basin = 2465;     % km; length of margin in contact with the whole drainage 
                % basin (default, 2465)
D_lake = 108;       % m; mean water depth where ice margin is touching the water
                % (default, 108)
% Values related to the "modern" hydrologic characteristics of the Lake Winnipeg 
% basin (source: Lewis et al., 2001)
% e_p = 700;        % mm/yr; potential evaporation (700 for both modern avg and 
%               % Grassland Border cases from Lewis et al., 2001)
% q = 145;      % mm/yr; runoff (145 for modern, 15 for grassland)
% p = 550;      % mm/yr; precipitation (550 for modern, 380 for grassland)
% Values derived from reanalysis of maps in the Hydrologic Atlas of Canada 
% (1978)
e_p = 688;      % mm/yr; potential evaporation (746 over the entire basin; 
                % 688 over just the former lake area)
q = 89;             % mm/yr; runoff (default, 89)
p = 450;            % mm/yr; precipitation (default, 450)
% Values related to the calving parameterization (source: our linear fit to 
% non-tidewater glaciers from Haresign, 2004, her Fig. 2.4; see also Benn et 
% al., 2007, their Fig. 2).  
m_calv = 2.5;       % 1/yr; calving velocity per meter water depth (default, 
                % 2.5)
% lake_balance.m
% Calculates the mass balance of the lake, given the foregoing subscripts called 
% by agassiz_mc_v5.m.  Writes the individual mass balance components into the 
% output matrix as lake volumes per year.  
% Positive terms (water inputs into the lake)
melt = 0.5* ((output(:, 11).* output(:, 12).^ 2)./ ...
(2* output(:, 13).* output(:, 14))).* output(:, 10).* output(:, 4); 
    % fudge factor to convert square wave to sine wave* ((PDD factor* ...
    % ablation season temperature^2)/ (2* lapse rate* ice slope))* ...
    % length of ablation season* length of margin 
    % in contact with basin
calv = output(:, 9).* output(:, 5).^ 2.* output(:, 3); 
    % calving parameter* mean water depth* mean water depth* length of margin 
    % in contact with lake
prec = output(:, 1).* output(:, 8); 
    % lake area* precip per unit area
runoff = (output(:, 2)- output(:, 1)+ output(:, 4).* output(:, 12)./ output(:, 13).* (output(:, 14))).* output(:, 7); 
    % (basin area- lake area+ length of margin in contact with basin* ...
    % ablation season temperature/ (lapse rate* ice slope))* runoff per unit area
% Negative term (water removal from the lake)
evap = output(:, 1).* output(:, 6); 
    % lake area* evaporation per unit area
% Calculate the total lake balance.  
net_bal = melt+ calv+ prec+ runoff- evap; 
% Write the mass balance components, plus some derived quantities, to the output 
% matrix.  
% 15, ice melt contribution to the lake, normalized by lake volume (1/yr)
output(:, 15) = melt/ V_lake; 
% 16, calving contribution, normalized (1/yr)
output(:, 16) = calv/ V_lake; 
% 17, precipitation contribution, normalized (1/yr)
output(:, 17) = prec/ V_lake; 
% 18, runoff contribution, normalized (1/yr)
output(:, 18) = runoff/ V_lake; 
% 19, evaporation loss from lake, normalized (1/yr)
output(:, 19) = evap/ V_lake; 
% 20, net balance of lake, normalized (1/yr)
output(:, 20) = net_bal/ V_lake; 
% 21, fraction of positive mass contribution from the ice sheet
output(:, 21) = (melt+ calv)./ (melt+ calv+ prec+ runoff); 
% 22, consistent with hypothesis or not?  (1, yes; 0, no)
output(:, 22) = output(:, 20) <= 0; 
% mc_setup.m
% Assigns randomly selected values to the input-parameter columns of the output 
% matrix.  
% Contents of the output matrix by column: 
% 1, lake area (m^2)
foo = r_Al* A_lake; 
output(:, 1) = unifrnd(foo(1), foo(2), n, 1); 
% 2, basin area (m^2)
foo = r_Ab* A_basin; 
output(:, 2) = unifrnd(foo(1), foo(2), n, 1); 
% 3, length of ice margin in contact with the lake water (m)
foo = r_Ll* L_lake; 
output(:, 3) = unifrnd(foo(1), foo(2), n, 1); 
% 4, length of ice margin in contact with the whole basin (m)
foo = r_Lb* L_basin; 
output(:, 4) = unifrnd(foo(1), foo(2), n, 1); 
% 5, mean depth of lake (m)
foo = r_Dl* D_lake; 
output(:, 5) = unifrnd(foo(1), foo(2), n, 1); 
% 6, potential evaporation per unit area (m/yr)
foo = i_e* e_p; 
output(:, 6) = unifrnd(foo(1), foo(2), n, 1); 
% 7, runoff per unit area (m/yr)
foo = i_w* q; 
output(:, 7) = unifrnd(foo(1), foo(2), n, 1); 
% 8, precipitation per unit area (m/yr)
foo = i_w* p; 
output(:, 8) = unifrnd(foo(1), foo(2), n, 1); 
% 9, calving parameter (1/yr)
foo = r_mc* m_calv; 
output(:, 9) = unifrnd(foo(1), foo(2), n, 1); 
% 10, length of ablation season (yr)
foo = t_sum; 
output(:, 10) = unifrnd(foo(1), foo(2), n, 1); 
% 11, positive degree-day factor (m water equivalent/yr/deg. C)
foo = f_pdd; 
output(:, 11) = unifrnd(foo(1), foo(2), n, 1); 
% 12, mean ablation season temperature (deg. C)
foo = T_abl; 
output(:, 12) = unifrnd(foo(1), foo(2), n, 1); 
% 13, atmospheric lapse rate (deg. C/m)
foo = gamma; 
output(:, 13) = unifrnd(foo(1), foo(2), n, 1); 
% 14, slope of ice surface (d'less)
foo = slope; 
output(:, 14) = unifrnd(foo(1), foo(2), n, 1); 
% param_ranges.m
% Sets the parameter ranges used in the Monte Carlo simulations.  Parameters 
% beginning with "r" or "i" indicate dimensionless modifiers to values in the 
% data_values.m file.  Conversion to consistent dimensions (m for distances, yr 
% for times) is handled in unit_conversion.m.  
% /----- Modifier ranges -----/
r_Al = [0.8, 1.2]; 
    % lake area ratio (d'less)
r_Ab = [0.8, 1.5]; 
    % basin area ratio (d'less)
r_Lb = [0.8, 1.2]; 
    % ratio for length of margin in contact with the whole basin
r_Ll = [0.8, 1.2]; 
    % ratio for length of margin in contact with the lake
r_Dl = [0.8, 1.2]; 
    % ratio for mean depth of lake along the ice margin
i_e = [0.5, 2]; 
    % evaporation index (d'less)
i_w = [0.5, 2]; 
    % wetness index (d'less)
r_mc = [0.5, 2]; 
    % ratio for slope of calving relationship
% /----- Other parameter ranges -----/
t_sum = [0.5, 3]; 
    % length of ablation season (months) <- OBS!  units  
f_pdd = [5, 20]; 
    % PDD factor (mm water equivalent/day/deg. C) <- OBS!  units
T_abl = [8, 18]; 
    % mean ablation season temperature (deg. C)
gamma = [4.5, 8.5]; 
    % lapse rate (deg. C/km rise) <- OBS!  units  
slope = [0.001, 0.02]; 
    % slope of ice margin (d'le
% plots.m
% Makes the plots for the Lake Agassiz project (Lowell et al.)
% Plot #1: Box plots showing the total mass balance and its individual 
% components, for all runs (top panel) and only those runs that are consistent 
% with the closed-basin hypothesis (bottom panel).  
% Within each box plot, on the y-axis, 
% 1, total mass balance 
% 2, evaporation
% 3, runoff
% 4, precipitation
% 5, calving
% 6, ice melt
% (All terms are in lake equivalents per year.)
% Note: these are components of Figures 4,5, and 6, but there is not a
% direct correspondance between figure numbers
all_box = output(:, 15: 20); 
all_box(:, 5) = -1* all_box(:, 5); 
all_box = fliplr(all_box); 
yes_box = output(output(:, 22) == 1, 15: 20);
yes_box(:, 5) = -1* yes_box(:, 5); 
yes_box = fliplr(yes_box); 
frac_box(:, 1) = output(:, 21); 
frac_box(:, 2) = frac_box(:, 1); 
frac_box(output(:, 22) == 0, 2) = NaN; 
frac_box = fliplr(frac_box); 
figure
subplot(2, 1, 1)
boxplot(all_box, 0, '+', 0, 1000); 
hold on
plot([0 0], [0 7])
axis([-0.04, 0.1, 0, 7])
subplot(2, 1, 2)
boxplot(yes_box, 0, '+', 0, 1000); 
axis([-0.035, 0.025, 0, 7])
hold on
plot([0 0], [0 7])
x_limits = get(gca, 'XLim'); 
% subplot(2, 1, 2)
% boxplot(frac_box, 0, '+', 0, 1000); 
% axis([0 1 0 4])
% in the top panel, draw vertical lines indicating x-limits of lower panel
subplot(2, 1, 1)
hold on
plot([x_limits(1) x_limits(1)], [0 7], 'k-')
plot([x_limits(2) x_limits(2)], [0 7], 'k-')
% generate another panel (need to assemble this separately) for the first 
% figure, showing the ratio of ice contributions to the total of all positive 
% mass balance terms
figure
% all runs
subplot(2, 1, 1)
boxplot(output(:, 21), 0, '+', 0, 1000); 
axis([0 1 0 7])
% just those runs that are consistent with the closed-basin hypothesis
subplot(2, 1, 2)
boxplot(output(output(:, 22) == 1, 21), 0, '+', 0, 1000); 
axis([0 1 0 7])
% Plot #2: Generate box plots showing where the successful parameter 
% values lie within the range of evaluated possibilities.  
figure
y_ext = [0 4]; 
y_ext_line = [0 1.5]; 
% Lake area, 1000 km^2
subplot(5, 3, 1)
adj = 10^-9; 
data = output(output(:, 22) == 1, 1)* adj; 
range = (r_Al* A_lake)* adj; 
best_val = A_lake* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Basin area, 1000 km^2
subplot(5, 3, 4)
adj = 10^-9; 
data = output(output(:, 22) == 1, 2)* adj; 
range = (r_Ab* A_basin)* adj; 
best_val = A_basin* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Margin length in contact with the water, km
subplot(5, 3, 7)
adj = 10^-3; 
data = output(output(:, 22) == 1, 3)* adj; 
range = (r_Ll* L_lake)* adj; 
best_val = L_lake* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Margin length in contact with the basin, km
subplot(5, 3, 10)
adj = 10^-3; 
data = output(output(:, 22) == 1, 4)* adj; 
range = (r_Lb* L_basin)* adj; 
best_val = L_basin* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Lake depth, m
subplot(5, 3, 13)
adj = 1; 
data = output(output(:, 22) == 1, 5)* adj; 
range = (r_Dl* D_lake)* adj; 
best_val = D_lake* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Potential evaporation, mm/yr
subplot(5, 3, 2)
adj = 10^3; 
data = output(output(:, 22) == 1, 6)* adj; 
range = (i_e* e_p)* adj; 
best_val = e_p* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Runoff, m/yr
subplot(5, 3, 5)
adj = 10^3;  
data = output(output(:, 22) == 1, 7)* adj; 
range = (i_w* q)* adj; 
best_val = q* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Precipitation, m/yr
subplot(5, 3, 8)
adj = 10^3; 
data = output(output(:, 22) == 1, 8)* adj; 
range = (i_w* p)* adj; 
best_val = p* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Calving parameter, 1/yr
subplot(5, 3, 11)
adj = 1; 
data = output(output(:, 22) == 1, 9)* adj; 
range = (r_mc* m_calv)* adj; 
best_val = m_calv* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Length of summer, months
subplot(5, 3, 14)
adj = 12; 
data = output(output(:, 22) == 1, 10)* adj; 
range = (t_sum)* adj; 
% best_val = m_calv* adj; 
boxplot(data, 0, '+', 0, 1000); 
hold on
% plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) median(data) range(2)]))
set(gca, 'YTick', [])
% Positive degree day factor, mm/day/deg. C
subplot(5, 3, 3)
adj = 10^3/ 365; 
data = output(output(:, 22) == 1, 11)* adj; 
range = (f_pdd)* adj; 
best_val = 8; 
boxplot(data, 0, '+', 0, 1000); 
hold on
plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) best_val median(data) range(2)]))
set(gca, 'YTick', [])
% Mean ablation season temperature, deg. C
subplot(5, 3, 6)
adj = 1; 
data = output(output(:, 22) == 1, 12)* adj; 
range = (T_abl)* adj; 
% best_val = 8; 
boxplot(data, 0, '+', 0, 1000); 
hold on
% plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) median(data) range(2)]))
set(gca, 'YTick', [])
% Atmospheric lapse rate, deg. C/km
subplot(5, 3, 9)
adj = 10^3; 
data = output(output(:, 22) == 1, 13)* adj; 
range = (gamma)* adj; 
% best_val = 8; 
boxplot(data, 0, '+', 0, 1000); 
hold on
% plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) median(data) range(2)]))
set(gca, 'YTick', [])
% Slope of ice surface
subplot(5, 3, 12)
adj = 1; 
data = output(output(:, 22) == 1, 14)* adj; 
range = (slope)* adj; 
% best_val = 8; 
boxplot(data, 0, '+', 0, 1000); 
hold on
% plot([best_val best_val], y_ext_line, 'k-')
axis([range, y_ext])
set(gca, 'XTick', sort([range(1) median(data) range(2)]))
set(gca, 'YTick', [])
% Plot #3: Tradeoff between evaporation index and wetness index.  
ie_yes = output(output(:, 22) == 1, 6)/ e_p; 
iw_yes = output(output(:, 22) == 1, 7)/ q; 
figure
subplot(3, 3, [2 3 5 6])
plot(ie_yes, iw_yes, 'k.')
hold on
plot([0.5 1], [1 1], 'k-')
plot([1 1], [0.5 1], 'k-')
plot(1, 1, 'k+')
axis([i_e, i_w])
subplot(3, 3, [1 4])
boxplot(iw_yes, 0, '+', 1, 1000); 
axis([0 2 i_w])
subplot(3, 3, [8 9])
boxplot(ie_yes, 0, '+', 0, 1000); 
axis([i_e 0 2])
% Plot #4: Tradeoffs among all parameters, two at a time.  Each row contains the 
% interaction of one specific parameter (plotted on the y-axis) with all other 
% parameters.  Parameters investigated, by row counting downwards, are the same 
% as columns 1-13 in the output matrix (see the main file, agassiz_mc_v4.m).  
% The columns correspond to columns 2-14 of the output matrix, this time 
% counting from left to right.  
norm_input = output(:, 1: 14); 
% Delete rows that don't meet the closed-basin criterion.  
norm_input(output(:, 22) == 0, :) = []; 
% Normalize each input variable column so that all values fall in [0 1], which 
% corresponds to the investigated range for each parameter.  
for i = 1: 1: 14; 
    norm_input(:, i) = norm_input(:, i)- min(output(:, i)); 
    norm_input(:, i) = norm_input(:, i)/ (max(output(:, i)- min(output(:, i)))); 
end
figure
for i = 1: 1: 6; 
    for j = 2: 1: 7; 
        if j > i; 
            subplot(7, 7, 7* (i- 1)+ j)
            plot(norm_input(:, j), norm_input(:, i), 'b.')
%           x_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
%           y_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
            axis([0 1 0 1])
            axis square
%           x_lim = get(gca, 'xlim'); 
%           y_lim = get(gca, 'ylim'); 
            set(gca, 'xticklabel', '')
            set(gca, 'yticklabel', '')
        end
    end
end
figure
for i = 1: 1: 7; 
    for j = 8: 1: 14; 
        if j > i; 
            subplot(7, 7, 7* (i- 1)+ (j- 7))
            plot(norm_input(:, j), norm_input(:, i), 'b.')
%           x_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
%           y_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
            axis([0 1 0 1])
            axis square
%           x_lim = get(gca, 'xlim'); 
%           y_lim = get(gca, 'ylim'); 
            set(gca, 'xticklabel', '')
            set(gca, 'yticklabel', '')
        end
    end
end
figure
for i = 8: 1: 13; 
    for j = 9: 1: 14; 
        if (j- 7) > (i- 7); 
            subplot(7, 7, 7* (i- 8)+ (j- 7))
            plot(norm_input(:, j), norm_input(:, i), 'b.')
%           x_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
%           y_lim = [min(norm_input(:, j)) max(norm_input(:, j))];
            axis([0 1 0 1])
            axis square
%           x_lim = get(gca, 'xlim'); 
%           y_lim = get(gca, 'ylim'); 
            set(gca, 'xticklabel', '')
            set(gca, 'yticklabel', '')
        end
    end
end
% unit_conversion.m
% Takes the parameters from data_values.m and param_ranges.m and converts them 
% to consistent units (m for distances; yr for times).  
V_lake = V_lake* 1000^3; 
    % km^3 => m^3
A_lake = A_lake* 1000^2; 
    % km^2 => m^2
A_basin = A_basin* 1000^2; 
    % km^2 => m^2
L_lake = L_lake* 1000; 
    % km => m
L_basin = L_basin* 1000; 
    % km => m
e_p = e_p/ 1000; 
    % mm => m
q = q/ 1000; 
    % mm => m
p = p/ 1000; 
    % mm => m
t_sum = t_sum/ 12; 
    % months => yr
f_pdd = f_pdd/ 1000* 365; 
    % mm/day => m/yr
gamma = gamma/ 1000; 
    % 1/km => 

