Supplemental Material

S.1. Definitions

In order to summarize changes in the shape of the sedimentary odd chain-length n-alkane distribution over time we used measures of the peakedness (kurtosis) and asymmetry (skewness) of the distribution. Kurtosis and skewness are commonly used to describe the shape of probability distributions of random variables. Positive kurtosis indicates a relatively peaked distribution, while positive skewness indicates a distribution with a tail extending toward values larger than the mean. Here we adapt these measures to describe the shapes of the odd-chain n alkane relative abundance distributions in SL sediments. We first used the relative abundances of the odd chain-length n-alkanes (as $\%$ of total odd n-alkanes) in each sediment sample to define a frequency distribution with a total population (n) of ~ 100. For example, if $n \mathrm{C}_{29}$ comprised 30% of the total odd n-alkanes, it was assigned a population of 30 . This was repeated for all odd chain lengths between C_{17} and C_{35}, with the $\%$ abundance rounded to the nearest whole number. We then calculated the kurtosis and skewness of the odd chain-length n-alkane distribution as follows:

$$
\begin{aligned}
& \text { kurtosis }=\left\{\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s}\right)^{4}\right\}-\frac{3(n-1)^{2}}{(n-1)(n-2)} \\
& \text { skewness }=\frac{n}{(n-1)(n-2)} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s}\right)^{3}
\end{aligned}
$$

where n is the total population $(\sim 100), x_{i}$ is the i th chain length value, \bar{x} is the mean chain length, and s is the standard deviation of the chain-length distribution.

S. $2 \quad$ Testing chain-length distribution differences between time intervals

In order to evaluate the significance of n-alkane chain-length distribution changes between various time intervals delineated in our records (i.e., LH, MH, EH, LP), we applied both
parametric (t test) and non-parametric (Mann-Whitney U test) tests of difference for each measure of the chain-length distribution shown in Fig. 5 (ACL, skewness, kurtosis, $n \mathrm{C}_{23}$ and $n \mathrm{C}_{29}$ relative abundances). The results did not differ between the parametric and non-parametric tests, so we report only the t-test results. The average ACL, skewness, kurtosis, $n \mathrm{C}_{23}$ relative abundance and $n \mathrm{C}_{29}$ relative abundances of the LH interval (2.95 ka - present) were statisticallydistinct from the averages of the $\mathrm{MH}(7.5-3.0 \mathrm{ka})$ and $\mathrm{EH}(10.7-7.5 \mathrm{ka})$ interval for all measures ($p<0.0003$), supporting our contention that the LH-MH transition witnessed a substantial change in the composition of plant n-alkane sources at SL. The other transitions we highlight (LP-EH, EH-MH) were less stark, but in many cases the adjacent intervals were nonetheless statistically distinct. The mean values of distribution kurtosis, skewness, $n \mathrm{C}_{23}$ relative abundance and $n \mathrm{C}_{29}$ relative abundance between the LP and EH intervals were significantly different ($p \leq 0.02$), as were the skewness and kurtosis between the EH and MH intervals ($p<$ 0.001). $n \mathrm{C}_{23}$ relative abundance differences between the EH and MH fell just short of significance at the 95% level $(p<0.06)$. ACL was not significantly different between the LP and EH or the EH and MH intervals.

