
Appendix A. Local search algorithm784

k = 0.05; \\ initialize annealing constant k

tabuList = []; \\ initialize tabuList as empty

while ContinueSearch~=0 \\ continue until stopping condition is met

ContinueSearch = 0; \\ initialize stopping condition

Counter = 0; \\ initialize count of runs since updating k

while Counter < CounterMax \\ if the count is less than our

\\ prespecified max count

List = setdiff(1:length(ListOfMoves),tabuList); \\ find rows from the ListOfMoves not in tabuList

MoveNo = randsample(List,1); \\ select random MoveNo from those not in tabuList

tabuList(end+1) = MoveNo; \\ add selected MoveNo to the tabuList

if numel(tabuList) > tabuTenure \\ if the tabuList is full

tabuList = tabuList(2:end); \\ let the top row expire

end

[AICnew,MatchNew] = Rearrange(MoveNo,... \\ find the best rearrangement

MatchOld,AICold); \\ of the selected segment

if AICnew > AICold \\ if the new AIC is worse than the old AIC

if exp(-k*(AICnew-AICold)) > rand() \\ should we accept the worse match?

AICold = AICnew; MatchOld = MatchNew; \\ yes, update the old combination and AIC

ContinueSearch = 1; \\ ammend stopping condition

end

else \\ if the new AIC is better than the old AIC

AICold = AICnew; MatchOld = MatchNew; \\ update the stored old combination and AIC

if AICnew < AICbest \\ if the new AIC is better than the best AIC

AICbest = AICnew; MatchBest = MatchNew; \\ update the best combination and AIC

end

end

Counter = Counter + 1; \\ add 1 to the count since updating k

end

k=alpha*k; \\ update the annealing constant.

end

MatchBest \\ return the optimal solution

785

49




