7 Appendix A. Local search algorithm

k = 0.05;

tabulList [1;
while ContinueSearch™=0
ContinueSearch = 0;

Counter = 0;

while Counter < CounterMax

List = setdiff(1:length(List0fMoves),tabulist);

MoveNo = randsample(List,1);

tabuList (end+1) = MoveNo;

if numel(tabulList) > tabuTenure

tabuList tabuList(2:end);

end

[AICnew,MatchNew] = Rearrange(MoveNo,...
785 Match01d,AICold);
if AICnew > AICold
if exp(-k*(AICnew-AICold)) > rand()
AICold = AICnew; Match0ld = MatchNew;
1;

ContinueSearch
end
else
AICold = AlICnew;
if AICnew < AICbest

AICnew;

Match0ld = MatchNew;

AICbest MatchBest = MatchNew;
end
end
Counter = Counter + 1;
end
k=alphax*k;

end

MatchBest

\\
\\

\\
\\
\\

\\
\\
\\
\\

\\
\\
\\

\\

\\

\\

\\

\\

\\

\\

\\
\\

\\

\\

\\

initialize annealing constant k

initialize tabulList as empty

continue until stopping condition is met
initialize stopping condition

initialize count of runs since updating k

if the count is less than our
prespecified max count
find rows from the ListOfMoves not in tabulist

select random MoveNo from those not in tabulist

add selected MoveNo to the tabulList
if the tabulist is full

let the top row expire

find the best rearrangement

of the selected segment

if the new AIC is worse than the old AIC
should we accept the worse match?

yes, update the old combination and AIC
ammend stopping condition

if the new AIC is better than the old AIC
update the stored old combination and AIC
if the new AIC is better than the best AIC

update the best combination and AIC

add 1 to the count since updating k

update the annealing constant.

return the optimal solution

49





