Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation

Steffen J. Sahl^{1,+*}, Lana Lau¹, Willianne I. M. Vonk², Lucien E. Weiss¹, Judith Frydman² & W. E. Moerner^{1*}

Departments of ¹Chemistry and ²Biology, Stanford University, Stanford, CA, USA ⁺Present address: Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Correspondence should be addressed to W.E.M. (wmoerner@stanford.edu) or S.J.S. (steffen.sahl@mpibpc.mpg.de).

Supplementary Figure | Additional examples of single-molecule super-resolution imaging.

(a) Cells containing mutant Htt_{ex1} (97Q) still in the apparently diffuse state – at the earliest possible time points (fixed at ~10 hours post-transfection) when fluorescence signals first become detectable. (b) Selected cells (~10-12 hours post-transfection) expressing mutant Htt_{ex1} (97Q), where a bright aggregate (early, but very bright inclusion body) is already observed. The regions imaged do not contain the inclusion body, which has been dramatically reduced in fluorescence intensity by a targeted bleaching protocol. In both cases, regions of 8×8 μ m² were imaged. Scale bars: 2 μ m.

