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OPTIMIZING LARGE-SCALE EDUCATIONAL ASSESSMENT WITH A
“DIVIDE-AND-CONQUER” STRATEGY: FAST AND EFFICIENT

DISTRIBUTED BAYESIAN INFERENCE IN IRT MODELS

Online Supplement

S1. Gibbs Sampler via the Pólya-Gamma Distribution for the full data

First, we introduce the Pólya-Gamma distribution. A random variable, denoted as X, follows

a Pólya-Gamma distribution with parameters b > 0 and c ∈ R (denoted as X ∼ PG(b, c)) if it

satisfies the following condition:

X ∼
∞∑
h=1

G(b, 1)/(2π2(h− 0.5)2 +
c2

2
). (1)

Here, G(b, 1) represents a Gamma distribution with parameters b and 1. Let {(yij , ωij)} be the

independent random pairs, where yij ∼ Binom(1, pij) and augmented variable ωij ∼ PG(1, 0).

Leveraging Theorem 1 from Polson et al. (2013), we can represent the likelihood contribution of

the ith examinee’s answer to the jth item as follows:

Lij(θ,a, b) =
exp{aj(θi − bi)}yij

1 + exp{aj(θi − bi)}

∝ exp{κijaj(θi − bi)}
∫ ∞
0

exp{−ωij(aj(θi − bi))
2

2
}p(ωij |1, 0)dωij , (2)

where κij = yij − 1
2 .

The details of the MCMC sampling process for 2PL model are as follows:
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Step 1: Given the parameters θi, aj , bj , and the observed data yij , we sample the auxiliary

variable ωij . The full-conditional posterior distribution of ωij is given by:

ωij |θi, aj , bj ∼ PG(1, aj |θi − bj |). (3)

Step 2: Sampling the ability parameter θi for each examinee i. The prior distribution of θi

is assumed to follow a normal distribution, denoted by θi ∼ N(µ1, σ
2
1). Given a, b, ω, and y, the

full-conditional posterior distribution of θi can be expressed as follows:

f(θi|a, b,ω,y) ∝ f(θi) exp

{
−1

2
(zθ − aθi)T Ωθ (zθ − aθi)

}
, (4)

where zθ =
(
a1b1ωi1+κi1

ωi1
, · · · , aJbJωiJ+κiJ

ωiJ

)T
and Ωθ = diag(ωi1, · · · , ωiJ). Thus, the full-conditional

posterior distribution of θi follows a normal distribution with a mean of mθi = Vθi(a
TΩθzθ + µ1

σ2
1
)

and a variance of Vθi = (aTΩθa+ 1
σ2
1
)−1.

Step 3: Sampling the discrimination parameter aj for each item j. The prior distribution of

aj is assumed to follow a truncated normal distribution, such that aj ∼ TN(0,+∞)(µ2, σ
2
2). Given

θ, b, ω, and y, the full-conditional posterior distribution of aj is given by:

f(aj |θ, b,ω,y) ∝ f(aj) exp

{
−1

2
[za − (θ − 1bj)aj ]

T Ωab [za − (θ − 1bj)aj ]

}
, (5)

where za =
(
κ1j
ω1j
, · · · , κnj

ωnj

)T
, 1 = (1, · · · , 1)Tn×1 and Ωab = diag(ω1j , · · · , ωnj). Therefore, the full-

conditional posterior distribution of aj follows a truncated normal distribution at zero, with a mean

of maj = Vaj

[
(θ − 1bj)

TΩabza + µ2
σ2
2

]
and variance Vaj =

[
(θ − 1bj)

T Ωab(θ − 1bj) + 1
σ2
2

]−1
.

Step 4: Sampling the difficulty parameter bj for each item j. The prior distribution of bj

is assumed to follow a normal distribution, i.e., bj ∼ N(µ3, σ
2
3). Given θ, a, ω, and y, the full-
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conditional posterior distribution of bj is given by:

f(bj |θ,a,ω,y) ∝ f(bj) exp

{
−1

2

(
zb + 1ajbj

)T
Ωab
(
zb + 1ajbj

)}
, (6)

where zb =
(
κ1j−ajθ1ω1j

ω1j
, · · · , κnj−ajθnωnj

ωnj

)T
and Ωab = diag (ω1j , · · · , ωnj). Hence, the full-

conditional posterior distribution of bj follows a normal distribution with a mean mbj =

Vbj

[
−(1aj)

TΩabzb + µ3
σ2
3

]
and a variance Vbj =

[
(1aj)

TΩab1aj + 1
σ2
3

]−1
.

Similarly, based on the Pólya-Gamma distribution, the full-conditional posterior distributions

of the parameters for M2PL model can be expressed as:

ωij |θi,aj , bj ∼ PG
(
1, |aTj θi − bj |

)
,

f(θi|a, b,ω,y) ∝ f(θi) exp

{
−1

2
(zθ − aθi)TΩθ(zθ − aθi)

}
,

f(ajq|θ, b,ω,y) ∝ f(ajq) exp

{
−1

2

(
zaq − θ·qajq

)T
Ωab
(
zaq − θ·qajq

)}
,

f(bj |θ,a,ω,y) ∝ f(bj) exp

{
1

2

(
zb − 1bj

)T
Ωab
(
zb − 1bj

)}
, (7)

where θ = (θ1, · · · ,θn)T is the n × Q matrix of ability parameters, θi = (θi1, · · · , θiQ)T and

θ·q = (θ1q, · · · , θnq)T denote the vectors consisting of the elements of the ith row and qth column

of θ, respectively. Also, a = (a1, · · · ,aJ)T is the J ×Q matrix of discrimination parameters with

aj = (aj1, · · · , ajQ)T . Ωθ and Ωab are diag(ωi1, · · · , ωiJ) and diag(ω1j , · · · , ωnj), respectively. In

the M2PL model, the vectors denoted by zθ, zb and zaq are as follows:

zθ = (
b1ωi1 + κi1

ωi1
, · · · , bJωiJ + κiJ

ωiJ
)T , zb = (

aTj θ1ω1j − κ1j
ω1j

, · · · ,
aTj θnωnj − κnj

ωnj
)T ,

zaq = (
κ1j + ω1jbj − ω1jθ

T
1,−qaj,−q

ω1j
, · · · ,

κnj + ωnjbj − ωnjθTn,−qaj,−q
ωnj

)T ,

where κij = yij − 1
2 , θi,−q denotes the vector of θi excluding the element θiq, and aj,−q denotes the

vector of aj excluding the element ajq.



4

The prior distributions of θi, ajq and bj are assumed to follow N(µ1,Σ1), TN(0,+∞)(µ2, σ
2
2)

and N(µ3, σ
2
3), respectively. Subsequently, the sampling steps for M2PL model are as follows:

(1) Given θ, a, and b, draw ωij from the PG(1, |aTj θi − bj |) distribution;

(2) Given ω, a, and b, draw θi from N(mθi ,Vθi), where mθi = Vθi
(
aTΩθzθ + Σ−11 µ1

)
, Vθi =(

aTΩθa+ Σ−11

)−1
;

(3)Given ω, θ, and b, draw ajq from the TN(0,+∞)

(
majq , Vajq

)
, where majq = Vajq

(
θT·qΩabzaq+ µ2

σ2
2

)
,

Vajq =
(
θT·qΩabθ·q + 1

σ2
2

)−1
;

(4) Given ω, θ, and a, draw bj from N(mbj , Vbj ), where mbj = Vbj
(
1TΩabzb + µ3

σ2
3

)
and variance

Vbj =
(
1TΩab1 + 1

σ2
3

)−1
.

S2. Additional results of the simulation studies

The average Bias and RMSE in the discrimination parameters as a function of the number of

subsets K in different sample sizes and test lengths in simulation study 1 are shown in Figure S-1

and S-2.

The bias and RMSE of each item for J = 40 in simulation study 1 are shown in Figure S-3.

The bias and RMSE of each item for J = 40 in simulation study 2 are shown in Figure S-4.

S3. Results of ability parameter estimates in section 6

Figure S-5a depicts the differences in EAP estimates of ability parameters between different

subsets and full data in empirical example 1, and Figure S-5b displays the square of these differences.

The differences in EAP estimates of ability parameters between different subsets and full data tend
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Figure S-1: The average Bias in the discrimination parameters as a function of the number of

subsets K in different sample sizes and test lengths.
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Figure S-2: The average RMSE in the discrimination parameters as a function of the number of

subsets K in different sample sizes and test lengths.
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Figure S-3: The bias and RMSE of each item parameter estimate across various sample sizes with a

fixed test length J = 40 in simulation study 1. Note that ‘Group’ indicates the number of subsets.
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Figure S-4: The bias and RMSE of each item parameter estimate across various latent trait di-

mensions with a fixed test length J = 40 in simulation study 2. Note that ‘Group’ indicates the

number of subsets.
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to increase as the number of subsets grows. However, most differences in Figure S-5a fall between

–0.025 and 0.025, and most squares of these differences in Figure S-5b are below 0.002. Therefore,

compared to the full data, our algorithm does not significantly deviate in its estimation of ability

parameters.
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Figure S-5: Boxplots of the differences in EAP estimates of ability parameters between different

subsets and full data in empirical example 1.

S4. Real Data Example 2

S4.1. Data description

Here, we focused on the PISA 2015 computer-based mathematics data (OECD, 2018) and

specifically considered 11 items that were previously analyzed by Man et al. (2019). The item

IDs include CM474Q01S, CM155Q01S, CM411Q01S, CM411Q02S, CM442Q02S, CM305Q01S,
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Figure S-6: 58 countries participating in the 2015 PISA mathematics cognitive test and the number

of students from each country.

CM496Q01S, CM496Q02S, CM603Q01S, CM564Q01S, and CM564Q02S. According to the PISA

2015 mathematics framework codebook, these 11 items assess two dimensions: (a) employing math-

ematical concepts, facts procedures, and reasoning and (b) context societal knowledge. After ex-

cluding non-response data as well as “Not Reached”, “Not Applicable”, and “Invalid” data, a total

of 9000 students from 58 countries responded to these 11 binary-scored items. As shown in Fig-

ure S-6, the country with the largest sample size of 669 is “QES” (i.e., Spain (Regions)), while

“QUC” (i.e., Massachusetts, USA)) has the smallest sample size of 39. The correct response rates

for the 11 items are 65.10%, 70.60%, 50.00%, 48.03%, 31.60%, 43.60%, 48.33%, 66.18%, 36.88%,

48.86%, and 46.38%. The item “CM155Q01S” has the highest correct response rate at 70.60%,

while “CM442Q02S” has the lowest at 31.60%.
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Table S-1: The EAPs and SD values for item parameters for PISA 2015 mathematics cognitive
test.

PARM
K=1 K=2 K=4 K=6

EAP SD EAP SD EAP SD EAP SD

a1.3 1.0871 0.0629 1.0785 0.0755 1.0156 0.0984 1.0498 0.1321
a1.4 0.5868 0.0483 0.5714 0.0573 0.4951 0.0713 0.4812 0.1074
a1.5 1.2259 0.0740 1.2019 0.0908 1.0855 0.1078 1.1283 0.1552
a1.6 0.2356 0.0416 0.2277 0.0483 0.2245 0.0609 0.2155 0.0705
a1.7 0.8685 0.0701 0.8680 0.0890 1.0694 0.1307 1.0636 0.1759
a1.8 0.6427 0.0644 0.6526 0.0844 0.8760 0.1162 0.8592 0.1838
a1.9 0.6572 0.0500 0.6466 0.0622 0.5896 0.0766 0.5942 0.0968
a1.10 0.7663 0.0565 0.7727 0.0668 0.6483 0.0837 0.7119 0.1185
a1.11 0.6668 0.0523 0.6680 0.0623 0.5875 0.0795 0.6297 0.1038
a2.3 1.0688 0.0555 1.1003 0.0688 1.1680 0.0884 1.1512 0.1242
a2.4 0.4793 0.0424 0.4928 0.0505 0.5652 0.0648 0.5880 0.1000
a2.5 1.1851 0.0625 1.2149 0.0791 1.3214 0.1064 1.3719 0.1679
a2.6 0.2056 0.0382 0.2142 0.0432 0.2163 0.0541 0.2246 0.0625
a2.7 1.9171 0.0971 1.9105 0.1416 1.8091 0.1697 1.8181 0.2348
a2.8 1.7280 0.0868 1.6860 0.1144 1.5123 0.1326 1.5623 0.1981
a2.9 0.4843 0.0424 0.4967 0.0545 0.5420 0.0657 0.5491 0.0863
a2.10 0.3215 0.0427 0.3190 0.0521 0.4066 0.0671 0.3670 0.0947
a2.11 0.3981 0.0429 0.3966 0.0503 0.4641 0.0648 0.4387 0.0855
b3 0.3239 0.0312 0.3304 0.0356 0.3333 0.0435 0.3371 0.0496
b4 0.2453 0.0251 0.2461 0.0266 0.2484 0.0299 0.2531 0.0334
b5 1.5275 0.0488 1.5318 0.0550 1.5438 0.0688 1.5913 0.0925
b6 0.3281 0.0229 0.3288 0.0234 0.3294 0.0246 0.3314 0.0260
b7 0.5651 0.0406 0.5647 0.0499 0.5761 0.0612 0.5713 0.0739
b8 −0.6708 0.0348 −0.6657 0.0405 −0.6652 0.0484 −0.6832 0.0599
b9 0.7826 0.0278 0.7844 0.0308 0.7860 0.0355 0.7921 0.0403
b10 0.2045 0.0251 0.2046 0.0275 0.2033 0.0310 0.2083 0.0343
b11 0.3169 0.0252 0.3176 0.0270 0.3192 0.0308 0.3217 0.0336

Note: PARM represents parameter, EAP denotes the expected a posteriori estimation, and SD is the standard
deviation. K = 1 indicates the full data set, i.e., no data partitioning.

S4.2. Designs

As the data set sample size is limited to 9,000, it is concluded in Section 5 that, when dealing

with a relatively small sample size, the number of subsets should not exceed 10 for optimal perfor-

mance. Therefore, we partitioned the data into K = 2, 4, and 6 subsets. As these 11 items measure
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two dimensions, we set the number of latent traits to Q = 2. These two latent dimensions are com-

pensatory each other, because if students possess only societal knowledge but lack mathematical

concepts and reasoning skills, they cannot properly answer the items. Therefore, the M2PL model

is utilized to fit this dataset. We conducted 10,000 MCMC iterations, discarding the initial 5,000

as burn-in. Subsequently, we analyzed the running time of the LS-WASP algorithm under different

subsets.

S4.3. Results

Table S-1 presents the item parameter estimates under different subsets using the LS-WASP

algorithm. The most accurate estimates are obtained when data is partitioned into two subsets.

When the number of subsets is increased to 4 or 6, there is a slight deviation in estimates compared

to using the full data. However, the difference for the majority of parameters remains within 0.1,

with only a few exceeding 0.2. This might result from the reduction in sample size per subset as

the number of subsets increases.

Table S-1 displays the SDs of item parameter estimates under different conditions, Figure S-7

shows the bar plots of the differences in the SD values of EAP estimates of item parameters between

different subsets and full data in empirical example 2. The SD values progressively increases with

the number of subsets. However, Figure S-7 illustrates that the maximum difference in SD for

parameter a is less than 0.02, while for parameter b, it mainly remains within 0.04. Figures S-

8 presents the difference in the ability parameter θ in empirical example 2. As the number of

subsets increases, the difference between the two latent traits of θ maintains an increasing trend.

However, most of the differences between the two latent traits range from -0.1 to 0.1. The maximum
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Figure S-7: Differences between the SD values of item parameter estimates under different subsets
and the SD values of item parameter estimates under the full data in empirical example 2.

squared difference presented in Figure S-8b is 0.02. This concludes that the LS-WASP algorithm

can accurately estimate the ability parameters of the M2PL model.

Figure S-9 shows the running time of the LS-WASP algorithm, which still exhibits a multiplica-

tive relationship with the full data running time. In summary, the LS-WASP algorithm exhibits

applicability to the M2PL model. With proper data partitioning, it continues to accurately and

efficiently estimate the M2PL model’s parameters.

S5. Verification of Assumption 3 (a) and (b) and proof of the theorems

S5.1. Verification of Assumption 3 (a) and (b)

Proposition 1. Given that the discrimination parameter a, the difficulty parameter b, and the

ability parameter θ are all bounded, then Assumption 3 (a) and (b) is satisfied for the 2PL model

and M2PL model.
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Figure S-8: Boxplots of the differences between the EAPs of ability parameters under different
subsets and the EAP estimates of ability parameters under the full data in empirical example 2.

Proof. The log marginal likelihood function for the 2PL model is as follows:

`(η) =

n∑
i=1

log f(yi | η) =

n∑
i=1

log

∫
p (yi | η, θi)φ(θi)dθi, (8)

where p (yi | η, θi) =
∏J
j=1 Pj(θi)

yijQj(θi)
1−yij , Pj(θi) =

exp{aj(θi−bj)}
1+exp{aj(θi−bj)} , Qj(θi) = 1 − Pj(θi),

and φ (θi) is the population distribution of θi. Note that the log-likelihood function involved an

integral which can be challenging to evaluate on a digital computer. Consequently, Hermite-Gauss

quadrature is frequently utilized to approximate these integrals in IRT studies (Bock & Aitkin, 1981;

Harwell et al., 1988; Baker & Kim, 2004). Specifically, if φ (θi) is a continuous distribution with finite

moments, it can be approximated to any desired degree of accuracy by a discrete distribution over a

finite number of points (Baker & Kim, 2004). Using the Hermite-Gauss quadrature approximation

to approximate this integral, we derive the first and second order derivatives of hn (η) = − 1
n` (η)
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Figure S-9: Running times under different subset conditions in empirical example 2.

with respect to the item parameters as follows. For the calculation procedure and derivatives of

higher orders, please refer to Baker and Kim (2004).

∂hn(η)

∂aj
= −

Q∑
q=1

(
rjq − f jqPj(Xq)

)
(Xq − bj), (9)

∂2hn(η)

∂a2j
=

Q∑
q=1

(Xq − bj)2f jqPj(Xq)Qj(Xq), (10)

∂hn(η)

∂bj
=

Q∑
q=1

aj
(
rjq − f jqPj(Xq)

)
, (11)

∂2hn(η)

∂b2j
=

Q∑
q=1

a2jf jqPj(Xq)Qj(Xq), (12)

∂2hn(η)

∂aj∂bj
=

Q∑
q=1

(
rjq − f jqPj(Xq)

)
−

Q∑
q=1

(Xq − bj)ajf jqPj(Xq)Qj(Xq), (13)

where rjq = 1
n

∑n
i=1 yijp (Xq | yi,η), f jq = 1

n

∑n
i=1 p (Xq | yi,η), Pj(Xq) =

exp{aj(Xq−bj)}
1+exp{aj(Xq−bj)} , and

Qj(Xq) = 1−Pj(Xq). Additionally, Xq (q = 1, · · · , Q) is referred to as a Hermite-Gauss quadrature

“node”, and the number of nodes, Q, is finite. Since yij can only take values of 0 or 1, and

the probability values satisfy 0 < Pj (Xq) < 1, 0 < p (Xq | yi,η) < 1, it is assured that both
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rjq = 1
n

∑n
i=1 yijp (Xq | yi,η) and f jq = 1

n

∑n
i=1 p (Xq | yi,η) are bounded. Additionally, since the

MLE η̂n remains bounded when the parameters a, b, θ are bounded, Assumption 3 (a) is satisfied

for the 2PL model. It is obvious that the parameters a, b, θ are all bounded. For instance, although

theoretically the ability could range from −∞ to +∞, in practical applications, it typically varies

between −4 and 4.

We then proceed to verify Assumption 3 (b). Denote f jqPj(Xq)Qj(Xq) , wjq and
∑Q

q=1

(
rjq−

f jqPj(Xq)
)
, dj . According to the definition of maximum likelihood estimation, we have

∂hn(η)

∂aj
|aj=âj = −

Q∑
q=1

(
r̂jq − f̂ jqP̂j(Xq)

)
(Xq − b̂j) = 0,

∂hn(η)

∂bj
|
bj=b̂j

=

Q∑
q=1

âj
(
r̂jq − f̂ jqP̂j(Xq)

)
= 0.

Then, we have d̂j =
∑Q

q=1

(
r̂jq − f̂ jqP̂j(Xq)

)
= 0. Hence, the Hessian matrix of hn(η) at η̂n is

D2(hn(η̂n)) =


∂2hn(η)
∂a2j

∂2hn(η)
∂aj∂bj

∂2hn(η)
∂bj∂aj

∂2hn(η)
∂b2j

 |η=η̂n

=


∑Q

q=1(Xq − b̂j)2ŵjq −
∑Q

q=1(Xq − b̂j)âjŵjq

−
∑Q

q=1(Xq − b̂j)âjŵjq
∑Q

q=1 â
2
j ŵjq

 =

Q∑
q=1

ŵjqẑqẑ
T
q . (14)

where ẑq =
(
Xq − b̂j ,−âj

)T
. Let Ẑ = (ẑ1, · · · , ẑQ)T , Ŵj = diag(ŵj1, · · · , ŵjQ), we obtain

D2 (hn(η̂n)) = ẐTŴjẐ ,H. For any nonzero vector x = (x1, x2)
T , we have

xTHx =
(
Ẑx
)T
ŴjẐx = P TŴjP =

Q∑
q=1

ŵjqp
2
q , (15)

where P = Ẑx = (p1, · · · , pQ)T . Moreover, for any q, it is evident that ŵjq = f̂ jqP̂j(Xq)Q̂j(Xq) >

0, i.e., the diagonal matrix Ŵj > 0, and thus xTHx = P TWjP > 0. Then, by the sufficient and
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necessary condition for a matrix to be positive definite, the matrix H = D2(hn(η̂n)) is confirmed

to be a positive definite. Since the determinant of a positive definite matrix is always positive, it

can be concluded that Assumption 3 (b) is satisfied for the 2PL model.

Here,we use the 2PL model as an example for verification, and the verification process for the

M2PL model follows a similar approach. Thus, Assumption 3 (a) and (b) are also satisfied for the

M2PL model.

S5.2. Proof of the theorems

Consider the function d(A,B), which is referred to as the Wasserstein metric in the fields of

statistics and optimal transport theory. It is defined as follows:

d(A,B) =

√
tr(A+B − 2(A

1
2BA

1
2 )

1
2 ), (16)

where both A and B are positive semi-definite matrices of the size p×p. Bhatia et al. (2019, please

see page 3) demonstrated that the function d(·, ·) establishes a metric in the space of positive semi-

definite matrices. The term “Wasserstein mean” of K positive semi-definite matrices Ak (where

k = 1, · · · ,K) denotes the Wasserstein barycenter corresponding to the variance-covariance matrix

of the normal distributions N(0,Ak), for k = 1, · · · ,K.

Lemma 1. Suppose Ak, k = 1, · · · ,K represents a sequence of p× p positive definite matrices,

and their Wasserstein mean is signified by Ā. When considering another positive definite matrix

A0, we have

d(Ā,A0) ≤ 2

√√√√ p

K

K∑
k=1

‖Ak −A0‖ ≤ 2

√√√√ p

K

K∑
k=1

‖Ak −A0‖F . (17)

where ‖ · ‖ signifies the operator norm, while ‖ · ‖F represents the Frobenius norm.
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Proof. As per the definition of Ā, it is established that

Ā := arg min
X>0

K∑
k=1

wkd
2(X,Ak). (18)

This implies that

1

K

K∑
k=1

d2(Ā,Ak) ≤
1

K

K∑
k=1

d2(A0,Ak). (19)

Applying the triangle inequality and the arithmetic mean-geometric mean (AM-GM) inequal-

ity, we derive that

d2(Ā,A0) ≤ 2

[
1

K

K∑
k=1

d2(Ā,Ak) +
1

K

K∑
k=1

d2(A0,Ak)

]

≤ 4

K

K∑
k=1

d2(A0,Ak)

≤ 4

K

K∑
k=1

‖A
1
2
0 −A

1
2
k ‖

2
F (by Theorem 1 of Bhatia et al. (2019))

≤ 4p

K

K∑
k=1

‖A
1
2
0 −A

1
2
k ‖

2. (20)

Since the square root function demonstrates operator monotonicity, Theorem X.1.1 from Bhatia

(2013) can consequently be implemented to the prior inequality, yielding

d(Ā,A0) ≤ 2

√√√√ p

K

K∑
k=1

‖Ak −A0‖. (21)

The final inequality presented in Equation (17) is established upon recognizing that the Frobenius

norm serves as an upper bound for the operator norm. The details of this proof can also be found

in Lemma 2 in Shyamalkumar and Srivastava (2022).

Lemma 2. Consider two p× p positive semi-definite matrices, denoted as A and B, we have

‖A−B‖F ≤ d(A,B)
(√

tr(A) +
√

tr(B)
)
. (22)
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Proof. Considering the p× p positive semi-definite matrices A and B, we can represent F(A)

and F(B) as

F(A) := {Mp×p : A = MMT },

F(B) := {Np×p : B = NNT }. (23)

Subsequently, we find that

‖A−B‖F = ‖MMT −NNT ‖F

= ‖MMT −MNT +MNT −NNT ‖F

≤ ‖M‖F ‖MT −NT ‖F + ‖NT ‖F ‖M −N‖F

= ‖M −N‖F (‖M‖F + ‖N‖F )

= ‖M −N‖F
(√

tr(A) +
√

tr(B)
)
. (24)

Based on Theorem 1 of Bhatia et al (2019), we have

d(A,B) = min
M∈F(A);N∈F(B)

‖M −N‖F . (25)

Hence, we concluded

‖A−B‖F ≤
(√

tr(A) +
√

tr(B)
)

min
M∈F(A);N∈F(B)

‖M −N‖F

= d(A,B)
(√

tr(A) +
√

tr(B)
)
. (26)

The details of this proof can also be found in Lemma 3 in Shyamalkumar and Srivastava (2022).
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Theorem 2. If Assumptions 1-4 hold, as n, s→∞,

W 2
2 (π, π̃) = Op(s

−2) +Op(n
− 3

2 ), (27)

where π denotes the full data posterior, π̃ denotes the WASP approximate posterior. And n and s

represent the sample size of the full data and subset, respectively.

Proof. We first define some necessary notations for the proof. We denote n and s as the sample

sizes of the full data and subset, respectively. Let π, π(k) and π̃ represent the full data posterior,

the kth subset posterior, and the WASP posterior, respectively. Given Assumption 2 and Corollary

1, we establish that

W 2
2 (π, π̃) = ‖µ− µ̃‖22 + tr(Σ + Σ̃− 2(Σ̃

1
2ΣΣ̃

1
2 )

1
2 )

= ‖µ− µ̃‖22 + d2(Σ, Σ̃), (28)

where µ, Σ and µ̃, Σ̃ denote the means and covariance matrices of π and π̃ respectively. We denote

µ(k) and Σ(k) as the mean and covariance matrix of the kth subset posterior π(k), respectively.

Assume Iη∗ be the Fisher information matrix under the truth value of the parameter η∗. The

maximum likelihood estimators (MLE) for the full data and the kth subset are defined as η̂MLE

and η̂
(k)
MLE , respectively. The Fisher information matrices for the full data and subset, under η̂MLE

and η̂
(k)
MLE , can be written as

Î = − 1

n

∂2 log f(y|η)

∂η∂ηT

∣∣∣∣
η=η̂MLE

, Î(k) = −1

s

∂2 log f(y(k)|η)

∂η∂ηT

∣∣∣∣
η=η̂

(k)
MLE

. (29)

First, we focus on the first term of Equation (28) on the right side. Based on Kass et al.
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(1990), µ(k) and η̂
(k)
MLE would unfold in the following manner under Assumption 3

µ(k) = η̂
(k)
MLE +

γ(k)

n
+O(n−2),

η̂
(k)
MLE = η∗ +

δ(k)√
s

+Op(s
−1), (30)

where

γ(k) = Î−1(k)

[
∂ log g(η)

∂η

∣∣∣∣
η=η̂

(k)
MLE

− 1

2

(
−1

s

∂3 log f(y(k)|η)

∂η∂ηT∂η

∣∣∣∣
η=η̂

(k)
MLE

)
Î−1(k)

]
,

δ(k) =
1√
s
I−1η∗

s∑
i=1

∂ log f(y
(k)
i |η∗)

∂η
. (31)

Consequently, we represent the mean of the WASP posterior π̃ as follows

µ̃ =
1

K

K∑
k=1

µ(k)

= η∗ +
1

K

K∑
k=1

γ(k)

n
+

1

K

K∑
k=1

δ(k)√
s

+O(n−2) +Op(s
−1). (32)

Similarly, we derive the mean of the full data posterior in the following manner

µ = η∗ +
γ

n
+

δ√
n

+O(n−2) +Op(n
−1), (33)

where

γ = Î−1

[
∂ log g(η)

∂η

∣∣∣∣
η=η̂MLE

− 1

2

(
− 1

n

∂3 log f(y|η)

∂η∂ηT∂η

∣∣∣∣
η=η̂MLE

)
Î−1

]
,

δ =
1√
n
I−1η∗

n∑
i=1

∂ log f(yi|η∗)
∂η

. (34)

Taking into account that δ√
n

= 1
K

∑K
k=1

δ(k)√
s

, γ(k) and γ are O(1), along with the condition s < n,
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we have

µ̃− µ =
1

K

K∑
k=1

γ(k)

n
− γ
n

+Op(s
−1) +O(n−2) +Op(n

−1)

= Op(s
−1) +O(n−2) +Op(n

−1)

= Op(s
−1). (35)

Therefore

‖µ̃− µ‖22 = Op(s
−2) in Pnη∗-probability. (36)

Next, we focus on the second term on the right within W 2
2 (π, π̃). In accordance with As-

sumption 3 presented in this paper and Theorem 4 from Kass et al. (1990), we derive the Laplace

approximation for the covariance matrix related to the full data posterior and the subset posterior

as follows

Σ =
1

n
Î−1 +O(n−2),

Σ(k) =
1

n
Î−1(k) +O(n−2). (37)

According to the consistency in the maximum likelihood estimation, we have

Î = − 1

n

∂2 log f(y|η)

∂η∂ηT

∣∣∣∣
η=η̂MLE

= − 1

n

∂2 log f(y|η)

∂η∂ηT

∣∣∣∣
η=η∗

+Op(n
− 1

2 ) = Iη∗ +Op(n
− 1

2 ), (38)

where η∗ indicates the true value of the parameter η. Similarly, we have Î(k) = Iη∗ + Op(n
− 1

2 ).

Since the matrix inversion acts as a continuous operator within the subspace of reversible matrices,

we have

Î−1 = I−1η∗ +Op(n
− 1

2 ),

Î−1(k) = I−1η∗ +Op(n
− 1

2 ). (39)
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By integrating Equation (39) into Equation (37), we have

nΣ− I−1η∗ = Op(n
− 1

2 ),

nΣ(k) − I−1η∗ = Op(n
− 1

2 ). (40)

Additionally, we find that Σ(k) − Σ = Op(n
− 3

2 ). Finally, by invoking Lemma 1, we have

d2(Σ̃,Σ) ≤ 4J

K

K∑
k=1

‖Σ(k) − Σ‖F = Op(n
− 3

2 ). (41)

Therefore, when n, s→∞, it follows that W 2
2 (π, π̃) = Op(s

−2) +Op(n
− 3

2 ) in Pnη∗-probability.

This completes the proof of the Theorem 2.

Theorem 3. Under Assumptions 1-5, when n,M →∞,

W 2
2 (π̃, ̂̃π) = Op(M

−1) + op(n
−1). (42)

where n represents the sample size of the full data, M denotes the number of iterations after

burn-in.

Proof. As stated in section 4.3 of this paper, the KM posterior drawing pertaining to π̃ and

the empirical measure, ̂̃π, for k = 1, · · · ,K and m = 1, · · · ,M , can be expressed as

η̃ = µ̃+ Σ̃
1
2 ξ

(m)
(k) ,

̂̃η = ̂̃µ+
̂̃
Σ

1
2

Σ̂
− 1

2

(k)

(
µ(k) − µ̂(k)

)
+
̂̃
Σ

1
2

Σ̂
− 1

2

(k)Σ
1
2

(k)ξ
(m)
(k) . (43)
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Consequently, given the definition of the Wasserstein distance, it follows that

W 2
2 (π̃, ̂̃π) ≤ 1

KM

K∑
k=1

M∑
m=1

‖̂̃η − η̃‖22
≤ 1

KM

K∑
k=1

M∑
m=1

‖̂̃µ− µ̃+
̂̃
Σ

1
2

Σ̂
− 1

2

(k)

(
µ(k) − µ̂(k)

)
+
̂̃
Σ

1
2

Σ̂
− 1

2

(k)Σ
1
2

(k)ξ
(m)
(k) − Σ̃

1
2 ξ

(m)
(k) ‖

2
2

≤ 2

K

K∑
k=1

‖̂̃µ− µ̃+
̂̃
Σ

1
2

Σ̂
− 1

2

(k)

(
µ(k) − µ̂(k)

)
‖22 +

2

KM

∑
k,m

‖
(̂̃
Σ

1
2

Σ̂
− 1

2

(k)Σ
1
2

(k) − Σ̃
1
2
)
ξ
(m)
(k) ‖

2
2

≤ 4‖̂̃µ− µ̃‖22 +
4

K

K∑
k=1

‖ ̂̃Σ 1
2

Σ̂
− 1

2

(k)

(
µ(k) − µ̂(k)

)
‖22 + 2 max

1≤k≤K
‖Dk‖22

1

KM

∑
k,m

‖ξ(m)
(k) ‖

2
2, (44)

where Dk =
̂̃
Σ

1
2

Σ̂
− 1

2

(k)Σ
1
2

(k) − Σ̃
1
2 .

To start with, we focus on the first term in Equation (44). According to Assumption 5, we

have

‖̂̃µ− µ̃‖22 = ‖ 1

K

K∑
k=1

(
µ̂(k) − µ(k)

)
‖22 ≤

1

K

K∑
k=1

‖µ̂(k) − µ(k)‖22 = Op(M
−1). (45)

Then, we focus on the second term in Equation (44). From Theorem 9 of Bhatia et al. (2019),

we have
̂̃
Σ ≤ 1

K

∑K
k=1 Σ̂(k). Consequently, it follows that

‖ ̂̃Σ 1
2

Σ̂
− 1

2

(k) ‖
2
2 ≤ ‖

( 1

K

K∑
k=1

nΣ̂(k)

) 1
2
(
nΣ̂(k)

)− 1
2 ‖22

≤

√√√√‖( 1

K

K∑
k=1

nΣ̂(k)

)(
nΣ̂(k)

)−1‖22
≤

√√√√ 1

K

K∑
k=1

‖nΣ̂(k)‖22‖
(
nΣ̂(k)

)−1‖22
= Op(1). (46)
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In conjunction with Assumption 5, we have

‖̂̃Σ 1
2

Σ̂
− 1

2

(k)

(
µ(k) − µ̂(k)

)
‖22 ≤ ‖

̂̃
Σ

1
2

Σ̂
− 1

2

(k) ‖
2
2‖µ(k) − µ̂(k)‖22 = Op(M

−1). (47)

For the last term in Equation (44), break down Dk to yield

‖Dk‖2 = ‖ ̂̃Σ 1
2

Σ̂
− 1

2

(k)Σ
1
2

(k) − Σ̃
1
2 ‖2

= ‖n−
1
2
[(

(n
̂̃
Σ)

1
2 − I−

1
2

η∗ + I
− 1

2
η∗
)
Σ̂
− 1

2

(k)Σ
1
2

(k) −
(
(nΣ̃)

1
2 − I−

1
2

η∗ + I
− 1

2
η∗
)]
‖2

≤ n−
1
2
[
‖((n ̂̃Σ)

1
2 − I−

1
2

η∗ )Σ̂
− 1

2

(k)Σ
1
2

(k)‖2 + ‖I−
1
2

η∗ (Σ̂
− 1

2

(k)Σ
1
2

(k) − I)‖2 + ‖((nΣ̃)
1
2 − I−

1
2

η∗ )‖2
]
, (48)

where I represents the identity matrix. For the final term (nΣ̃)
1
2 − I−

1
2

η∗ in Equation (48), using

Lemma 1, Lemma 2, and Equation (40), we have

‖nΣ̃− I−1η∗ ‖2 ≤ ‖nΣ̃− I
−1
η∗ ‖F

≤ d(nΣ̃, I−1η∗ )

[√
tr(nΣ̃) +

√
tr(I−1η∗ )

]

≤ 2

√√√√ J

K

K∑
k=1

‖nΣ(k) − I−1η∗ ‖F


√√√√ 1

K

K∑
k=1

tr(nΣ(k) − I−1η∗ + I−1η∗ ) +
√

tr(I−1η∗ )


≤ 2

√√√√ J

K

K∑
k=1

‖nΣ(k) − I−1η∗ ‖F


√√√√ 1

K

K∑
k=1

tr(nΣ(k) − I−1η∗ ) +
1

K

K∑
k=1

tr(I−1η∗ ) +
√

tr(I−1η∗ )


= op(1)×Op(1)

= op(1), (49)

where ‖ · ‖F represents the Frobenius norm. Thus, we have ‖(nΣ̃)
1
2 − I−

1
2

η∗ ‖2 ≤
√
‖nΣ̃− I−1η∗ ‖2 =

op(1). Similarly, we establish that ‖(n ̂̃Σ)
1
2 − I−

1
2

η∗ ‖2 = op(1). Hence, the first term of Equation (48)

can be obtained as follows

‖
(
(n
̂̃
Σ)

1
2 − I−

1
2

η∗
)
Σ̂
− 1

2

(k)Σ
1
2

(k)‖2 ≤
√
‖(n ̂̃Σ− I−1η∗ )‖2‖Σ̂

− 1
2

(k)Σ
1
2

(k)‖2 = op(1). (50)
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For the term Σ̂
− 1

2

(k)Σ
1
2

(k) − I, based on Assumption 5, we have

‖Σ̂−
1
2

(k)Σ
1
2

(k) − I‖2 = ‖Σ̂−
1
2

(k)Σ
1
2

(k) − Σ̂
− 1

2

(k) Σ̂
1
2

(k)‖2

≤
√
‖Σ̂−1(k)‖2‖Σ

1
2

(k) − Σ̂
1
2

(k)‖2

≤
√
‖(nΣ̂(k))−1‖2

√
‖nΣ(k) − nΣ̂(k)‖F

= op(1). (51)

Therefore, we derive

‖Dk‖2 ≤ n−
1
2

[
‖((n ̂̃Σ)

1
2 − I−

1
2

η∗ )Σ̂
− 1

2

(k)Σ
1
2

(k)‖2 + ‖I−
1
2

η∗ (Σ̂
− 1

2

(k)Σ
1
2

(k) − I)‖2 + ‖((nΣ̃)
1
2 − I−

1
2

η∗ )‖2
]

= op(n
− 1

2 ). (52)

In other words, ‖Dk‖22 = op(n
−1). Finally, integrating Equations (45), (47) and (52), we have

W 2
2 (π̃, ̂̃π) = Op(M

−1) + op(n
−1) in PK-probability, (53)

where PK = P1 ⊗ · · · ⊗ PK is the probability measure on the Markov chain generated by the

posterior distribution of all subsets. This completes the proof of the Theorem 3.



27

References

Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation techniques. New
York: Dekker.

Bhatia, R. (2013). Matrix analysis (Vol. 169). Cham: Springer Science & Business Media.

Bhatia, R., Jain, T., & Lim, Y. (2019). On the Bures−Wasserstein distance between positive
definite matrices. Expositiones Mathematicae, 37 (2), 165−191.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443−459.

Harwell, M. R., Baker, F. B., & Zwarts, M. (1988). Item parameter estimation via marginal max-
imum likelihood and an EM algorithm: A didactic. Journal of Educational Statistics, 13 (3),
243−271.

Kass, R. E., Tierney, L., & Kadane, J. B. (1990). The validity of posterior expansions based on
Laplace’s method. Bayesian and Likelihood Methods in Statistics and Econometrics, 7, 473−487.

Man, K., Harring, J. R., Jiao, H., & Zhan, P. (2019). Joint modeling of compensatory multidimen-
sional item responses and response times. Applied Psychological Measurement, 43 (8), 639−654.

OECD (2018). PISA 2015 technical report. Paris: OECD Publishing.

Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya-
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