
 

Figure S1.  Self-report distributions. Frequency plots for each self-report measure used to assay various 

pathologies. In each plot, the black bar denotes cut-offs of mild but clinically-significant symptoms, and 

the red bar denotes the median. Note that for most measures, the median is either slightly below or 

above the clinical cut-off; only mania has a large gap between the two. Cut-offs for pathological worry 

(cutoff=62) was determined in Curtiss and Klemanski (2015), for depression (cutoff-14 for at least mild 

depression) in Beck et al. (1996), for obsessive-compulsive symptoms (cutoff=21) in Foa et al. (2002) and 

mania (cutoff=6) in Altman et al. (1997).  We used the median to define the MASQ-AA short form clinical 

cutoff (cutoff=18) which is close to a very similar questionnaire, the MASQ-D30 Anxious Arousal subscale 

(cutoff=17).  
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Figure S2. Interaction between condition effect and psychopathology. In each plot, the terms “positive” 
or “threat” denote whether or not a positive or negative image was interposed between state 
transitions, and the terms “common” or “rare” denote the probability of the state transition (common = 
50%, rare=30%; the remaining state transition was of non-interest because both actions led to the final 
state 20% of the time) No interaction approached a significant effect, as noted by the ROPE being near 
the mode of each interaction effect. We additionally tested whether differences between condition 
(e.g., common positive – rare positive) depended on psychopathology group, all of which were non-
significant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

S3. Logic of model step-wise model testing and full model descriptions 

 

 

Figure S3. We conducted a step-wise model comparison, where each step is denoted by the box 
next to each subplot. Each subplot shows iBIC difference of each tested model compared to the 
best-fitting model (the one with the lowest iBIC. 

We fit the models to actual data from Gillan et al. (2016) in a step-wise fashion. We will first 
describe the logic behind each step. We then list in full detail the model formalisms. 



We first compared two standard learning architectures from the literature, wherein differences 
between the two models are reflected in how first-stage actions are learnt. One model 
combines two prediction errors concerning first-stage actions (after reaching stage 2 and after 
receiving a reward) into a single action value (1AV model) where the second prediction error is 
weighted by an eligibility trace. The second encodes two separate first-stage action values 
(which we call the “typical no decay” model, as it was used in Gillan et al., 2016), one value for 
each type of prediction error (Step 1), and two separate parameters control the influence of 
these values over first-stage actions. At the conclusion of this step, it was apparent that keeping 
two separate first-stage action values (i.e., typical model) provided the best fit to the data.  

We thus tested whether the ‘ISTL no decay’ learning architecture would be enhanced by the 
inclusion of incremental state transition learning with individual learning rates (Step 2). For this 
purpose, we compared the ‘typical no decay’ model, which learns transitions via a counting 
rule, to a model that learns transitions from state prediction errors multiplied by a subject-
specific transition learning rate, Incremental State Transition Learning model (ISTL). The results 
showed that subjects’ behavior was best captured by a model with between-subject variation in 
the rate of incremental transition learning from experienced transitions. 

In step 3, we included three alternative ways in which state transition learning might differ 
from the incremental state transition learning model: a model where the learning rate does not 
vary across subjects (‘2AV +Fixed LR’),  a model where transition learning is realised via 
Bayesian inference (‘2AV + Bayes’), and a model where transitions for actions not taken are 
updated via counterfactual inference (‘2AV + Counterfactual’). These alternative models did not 
explain the data as well as a model that allowed variation between subjects in learning rate 
(ISTL no decay).  

We then determined whether transition learning rates decrease as information is accumulated, 
as expected from an optimal observer (Step 4). Thus, we compared the so far best-fitting model 
with models where learning rates decay over time to 0 (‘2AV + Dynamic LR’) or to some fixed 
learning rate (‘2AV + Dynamic LR + Intercept’). These dynamic LR models did not explain the 
data as well as a model that allowed variation between subjects in learning rate, but within 
subjects kept learning rates constant (ISTL no decay).  

Next, since the behavioural signatures characterizing average performance could be generated 
by a pure model-based learner (Step 5), we tested whether model-free learning was at all 
necessary to explain the choice data. For this purpose, we compared ISTL  to an ‘MB’ learner 
that only used model-based inference (and perseveration) to determine first-stage actions. 
Again this did not explain the data as well as the ISTL no decay model. 

Finally, we tested a set of models in which learned information decays over trials. As reported 
in Gillan et al. (2016), decay may allow the model to better explain participants’ behavior. Thus, 
we first compared the ISTL model without decay to the original Gillan et al. (2016) model, which 
we refer to as the ‘Typical’ model. In this model, values of actions not chosen decay with a rate 
of 1-learning rate. Secondly, we enhanced the Typical model by including the same incremental 
state transition learning process that is included in the ISTL no decay model, allowing also state 
transitions to decay at rate of 1-state transition learning rate (‘ISTL+one decay). Last, we tested 



variant of these two models wherein values of unchosen actions decayed at a rate that 
constituted a separate free parameter (‘Typical + two decay’ and ‘ISTL’, respectively). The ISTL 
model explained the data the best of all models. 
 



Model descriptions

July 16, 2021

1 Models with decay on unchosen actions
1.1 Gillan et al 2016 model = Typical model
The following model includes two updates in the model-free system for first-stage actions: namely
a Temporal Difference update (known as TD(0)) and a Monte Carlo update. The Monte Carlo
update reinforces first-stage action values according to the final reward only. Note that the Monte
Carlo update is equivalent to lambda=1 in Daw (2011).

Allowing each of these possible model-free updates to influence first-stage action learning was carried
out in Gillan et al. (2016). The first action-value represents the prediction of which second-stage
one will arrive in, each of which has its own value depending on how rewarded it has been in the
recent past. The second first-stage action value represents the prediction that the first-stage action
will be rewarded after the second-stage choice. Separating these first-stage action values in turn
removes the requirement for an eligibility trace. All models use the Bellman equation to derive
model-based action values.

1.1.1 Variables

Below, t=time, s=state, a=action. At stage one, two images appeared, one of which could be
selected with a given action. The image was always chosen with a certain action that did not
change across the task. Each action led to two possible states (determined by a transition matrix),
wherein each state had two unique images. At this second stage, an image again is selected with
a given action. Note only an “s” subscript is used for second-stage action values, since one could
either transition to state 2 or 3. The selection of this image would lead to a monetary reward
determined by a latent probability that drifted across the task (see Gillan et al., 2016).

1.1.2 NOTE

See Gillan et al. (2016) for how the inverse temperature parameters are rescaled by learning rate
which improves parameter estimation. Actions taken are denoted as ‘a’ and unchosen actions as
‘u’. Second stage states arrived at are denoted as ‘s’ whereas states not arrived at are denoted as
‘x’.

R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
Transition matrix

M = one-hot vector indicating which first-stage action was taken on the last trial.
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First-stage action values: QMF0t,a = First-stage action value predicting value at second stage.

QMF1t,a = First-stage action value predicting reward after second stage.

QMBt,a = Model-based value of action 1

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

1.1.3 Free Parameters

All alpha parameters below were drawn from Beta priors that spans the 0-1 range.

1− α = decay rates on chosen and unchosen actions

All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

βMF0 = inverse temperature for QMF0 at first stage.

βMF1 = inverse temperature for QMF1 at first stage.

βMB = inverse temperature for QMB at first stage.

βst = strength of perseveration at first stage. This multiplies the M vector, which the previously
enacted first-stage action.

βMF2 = inverse temperature for QMF2 at second stage.

1.1.4 Learning computations

• Updating the transition matrix:

Each trial, a transition counter is updated. For example if state1, action1 led to state 2 once,
and on the next transition, the same transition occurs, the counting matrix would be updated as
follows:

Tcounting =

[
1 + 1 0
0 0

]
T can be one of two matrices at and given trial T1 =

[
0.7 0.3
0.3 0.7

]
or T2 =

[
0.3 0.7
0.7 0.3

]
or T3 =[

0.5 0.5
0.5 0.5

]
at any given trial.

This is determined by the Tcounting matrix. When Tcounting(1, 1)+Tcounting(2, 2) > Tcounting(1, 2)+
Tcounting(2, 1), then T1 is used. When the inequality is the converse, then T2 is used. If they are
equal, then T3 is used.

• Updating chosen action-values

QMF0t+1,a = QMF0t,a(1− α) +QMF2t

QMF1t+1,a = QMF1t,a(1− α) +R

QMF2t+1,s,a = QMF2t,s,a(1− α) +R

• Decaying unchosen actions
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QMF0t+1,u = QMF0t,u(1− α)

QMF1t+1,u = QMF1t,u(1− α)

QMF2t+1,s,u = QMF2t,s,u(1− α)

QMF2t+1,x,a = QMF2t,x,a(1− α)

QMF2t+1,x,u = QMF2t,x,u(1− α)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

1.1.5 Decision computations

First-stage action:

P (a) ∝ e(βMF0QMF0+βMF1QMF1+βMBQMB+βstM)

Secon-stage action:

P (a, si) ∝ e(βMF2QMF2)

1.2 Typical + two decay
Same as typical model except an extra free parameter, ϵ, decays actions that were NOT chosen

• Updating chosen action-values

QMF0t+1,a = QMF0t,a(1− α) +QMF2t

QMF1t+1,a = QMF1t,a(1− α) +R

QMF2t+1,s,a = QMF2t,s,a(1− α) +R

• Decaying unchosen actions at a rate defined by “D” bounded between [0,1]

QMF0t+1,u = QMF0t,u(D)

QMF1t+1,u = QMF1t,u(D)

QMF2t+1,s,u = QMF2t,s,u(D)

QMF2t+1,x,a = QMF2t,x,a(D)

QMF2t+1,x,u = QMF2t,x,u(D)

1.3 ISTL + one decay
Here we simply amend the Typical model used in Gillan et al. (2016) except instantiate state
transition learning in an incremental process.

γ = learning rate for state transitions

• Updating the transition matrix:

3



T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
Each trial, a transition estimate is updated with a learning rate, and probabilities are at that time
normalized. For instance, if action 1 is taken and transition to state 2:

P (s = 2|a = 1)t+1 = P (s = 2|a = 1)t + γ(1− P (s = 2|a = 1)t)

and

PP (s = 1|a = 1)t+1 = 1− P (s = 2|a = 1)t+1

1.4 ISTL model
The final and winning ISTL model included the same incremental state transition learning model
in ISTL + one decay, with the addition that transitions for actions not taken decayed by the same
rate to the prior on state transitions (i.e., 0.5):

Each trial, a transition estimate is updated with a learning rate, and probabilities are at that time
normalized. For instance, if action 1 is taken and transition to state 2:

P (s = 2|a = unchosen)t+1 = P (s = 2|a = 1)t + γ(0.5− P (s = 2|a = unchosen)t)

and

P (s = 1|a = unchosen)t+1 = 1− P (s = 2|a = unchosen)t+1

Second, the ISTL model include a separate free decay parameter on all unchosen actions, which is
the same as defined in the Typical + two decay model.

2 Models without decay on unchosen actions
2.1 Typical model no decay
R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
Transition matrix

M = one-hot vector indicating which first-stage action was taken on the last trial.

First-stage action values: QMF0t,a = First-stage action value predicting value at second stage.

QMF1t,a = First-stage action value predicting reward after second stage.

QMBt,a = Model-based value of action 1

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

2.1.1 Free Parameters

All alpha parameters below were drawn from Beta priors that spans the 0-1 range.

α1 = learning rate for both updates on first-stage action values.

α2 = learning rate for for update on second action value.
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All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

βMF0 = inverse temperature for QMF0 at first stage.

βMF1 = inverse temperature for QMF1 at first stage.

βMB = inverse temperature for QMB at first stage.

βst = strength of perseveration at first stage. This multiplies the M vector, which the previously
enacted first-stage action.

βMF2 = inverse temperature for QMF2 at second stage.

2.1.2 Learning computations

• Updating the transition matrix:

Each trial, a transition counter is updated. For example if state1, action1 led to state 2 once,
and on the next transition, the same transition occurs, the counting matrix would be updated as
follows:

Tcounting =

[
1 + 1 0
0 0

]
T can be one of two matrices at and given trial T1 =

[
0.7 0.3
0.3 0.7

]
or T2 =

[
0.3 0.7
0.7 0.3

]
or T3 =[

0.5 0.5
0.5 0.5

]
at any given trial.

This is determined by the Tcounting matrix. When Tcounting(1, 1)+Tcounting(2, 2) > Tcounting(1, 2)+
Tcounting(2, 1), then T1 is used. When the inequality is the converse, then T2 is used. If they are
equal, then T3 is used.

• Updating action-values

QMF0t+1,a = QMF0t,a + α1(QMF2t −QMF0t,a)

QMF1t+1,a = QMF1t,a + α1(R−QMF1t,a)

QMF2t+1,s,a = QMF2t,s,a + α2(R−QMF2t,s,a)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

2.1.3 Decision computations

First-stage action:

P (a) ∝ e(βMF0QMF0+βMF1QMF1+βMBQMB+βstM)

Secon-stage action:

P (a, si) ∝ e(βMF2QMF2)
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3 Incremental State Transition Learning (ISTL) model without
decay

R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
transition matrix

M = one-hot vector indicating which first-stage action was taken on the last trial.

First-stage action values: QMF0t,a = First-stage action value predicting value at second stage.

QMF1t,a = First-stage action value predicting reward after second stage.

QMBt,a = Model-based value of action 1

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

3.0.1 Free Parameters

All alpha parameters below were drawn from Beta priors that spans the 0-1 range.

α1 = learning rate for both updates on first-stage action values.

α2 = learning rate for for update on second action value.

γ = learning rate for state transitions

All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

βMF0 = inverse temperature for QMF0 at first stage.

βMF1 = inverse temperature for QMF1 at first stage.

βMB = inverse temperature for QMB at first stage.

βst = strength of perseveration at first stage. This multiplies the M vector, which the previously
enacted first-stage action.

βMF2 = inverse temperature for QMF2 at second stage.

3.0.2 Learning computations

• Updating the transition matrix:

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
Each trial, a transition estimate is updated with a learning rate, and probabilities are at that time
normalized. For instance, if action 1 is taken and transition to state 2:

P (s = 2|a = 1)t+1 = P (s = 2|a = 1)t + γ(1− P (s = 2|a = 1)t)

and

PP (s = 1|a = 1)t+1 = 1− P (s = 2|a = 1)t+1

• Update action values:
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QMF0t+1,a = QMF0t,a + α1(QMF2t −QMF0t,a)

QMF1t+1,a = QMF1t,a + α1(R−QMF1t,a)

QMF2t+1,s,a = QMF2t,s,a + α2(R−QMF2t,s,a)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

3.0.3 Decision computations

First-stage action:

P (a) ∝ e(βMF0QMF0+βMF1QMF1+βMBQMB+βstM)

Secon-stage action:

P (a, si) ∝ e(βMF2QMF2)

α1 = learning rate for QMF0

α2 = learning rate for QMF1 and QMB

4 ISTL + no decay + Counterfactual
Same as ISTL + no decay except that transitions for actions not taken are updated as if the not-
taken action led to the state than was not experienced for the taken action. This counterfactual
inference is predicated on assumption (that was told to participants and experienced in practice)
that the two actions cannot lead most often to the same state.

5 ISTL + no decay + Dynamic LR
Same as ISTL + no decay except here the γ decays to 0 on each trial by the following equation:

γt =
1

ϵ+Naction

where ϵ determine the starting learning rate, and Naction is a tally of how many times a given action
was taken.

6 Dynamic LR + Intercept
Same asISTL + no decay + Dynamic LR except here the γ decays to a variable baseline LR, ω:

γt = ω + 1−ω
ϵ+Naction

where ϵ determines time it will take to decay to baselin ω learning rate, and Naction is a tally of
how many times a given action was taken.

7 Fixed LR
Same as 2AV + LR except here, γ is fixed across subjects.
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8 Bayesian transition learning
R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
transition matrix

M = one-hot vector indicating which first-stage action was taken on the last trial.

First-stage action values: QMF0t,a = First-stage action value predicting value at second stage.

QMF1t,a = First-stage action value predicting reward after second stage.

QMBt,a = Model-based value of action 1

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

• Transition matrices:

p1 represents the belief that the true transition matrix is T1 =

[
0.7 0.3
0.3 0.7

]
Whereas p2 represents the belief that the true transition matrix is T2 =

[
0.3 0.7
0.7 0.3

]
at any given

trial.

8.0.1 Fixed parameter

The beta prior defining evidence in favor of Transition Matrix 1 was initialized with mode=0.5

8.0.2 Free Parameters

All alpha parameters below were drawn from Beta priors that spans the 0-1 range.

α1 = learning rate for both updates on first-stage action values.

α2 = learning rate for for update on second action value.

κ = concentration of prior over belief in either possible transition matrix.

All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

βMF0 = inverse temperature for QMF0 at first stage.

βMF1 = inverse temperature for QMF1 at first stage.

βMB = inverse temperature for QMB at first stage.

βst = strength of perseveration at first stage. This multiplies the M vector, which the previously
enacted first-stage action.

βMF2 = inverse temperature for QMF2 at second stage.
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8.0.3 Learning computations

• Updating the transition matrix:

Note that we use a mode of 0.5 to define the prior belief in the correct transition matrix, and a
free parameter to quantify the spread of the belief distribution, which is formally known as the
concentration of the prior distribution.

The mode (fixed) and concentration (free) of the beta distribution defining the prior belief in T1
and T2 was converted to E1 (evidence in favor of T1) and E2 (evidence in favor of T2) parameters
describing the shape of the beta distribution by the following equations:

E1 = mode(κ− 2) + 1.

E2 = (1-mode)(κ− 2) + 1.

The posterior of the beta prior is updated analytically:

E1 = E1 + 1 when common transitions predicted by T1 are experienced.

and

E2 = E2 + 1 when common transitions predicted by T2 are experienced.

Each time model-based action values are computed, evidence for each transition matrix is derived
from the mean of the beta distribution by:

p1 =
E1

E1+E2 which represents the probability that T1 is the true transition matrix.

p2 = 1− p1.

QMBt+1 = (Bellman Equation for T1)(p1) + (Bellman Equation for T2)(p2).

• Updating action-values

QMF0t+1,a = QMF0t,a + α1(QMF2t −QMF0t,a)

QMF1t+1,a = QMF1t,a + α1(R−QMF1t,a)

QMF2t+1,s,a = QMF2t,s,a + α2(R−QMF2t,s,a)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

8.0.4 Decision computations

First-stage action:

P (a) ∝ e(βMF0QMF0+βMF1QMF1+βMBQMB+βstM)

Secon-stage action:

P (a, si) ∝ e(βMF2QMF2)

9



9 MB
Here, first-stage actions are only influences by model-based planning and a perseveration parameter.

R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
transition matrix

M = one-hot vector indicating which first-stage action was taken on the last trial.

First-stage action values: QMF0t,a = First-stage action value predicting value at second stage.

QMF1t,a = First-stage action value predicting reward after second stage.

QMBt,a = Model-based value of action 1

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

9.0.1 Free Parameters

All alpha parameters below were drawn from Beta priors that spans the 0-1 range.

α1 = learning rate for both updates on first-stage action values.

α2 = learning rate for for update on second action value.

γ = learning rate for state transitions

All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

βMB = inverse temperature for QMB at first stage.

βst = strength of perseveration at first stage. This multiplies the M vector, which retains which
action was taken most recently.

βMF2 = inverse temperature for QMF2 at second stage.

9.0.2 Learning computations

• Updating the transition matrix:

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
Each trial, a transition estimate is updated with a learning rate, and probabilities are at that time
normalized. For instance, if action 1 is taken and transition to state 2:

P (s = 2|a = 1)t+1 = P (a1, s2)t + γ(1− P (s = 2|a = 1)t)

and

P (s = 1|a = 1)t+1 = 1− P (s = 2|a = 1)t+1

• Updating action-values
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QMF0t+1,a = QMF0t,a + α1(QMF2t −QMF0t,a)

QMF1t+1,a = QMF1t,a + α1(R−QMF1t,a)

QMF2t+1,s,a = QMF2t,s,a + α2(R−QMF2t,s,a)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

9.0.3 Decision computations

First-stage action:

P (a) ∝ e(βMBQMB+βstM)

Secon-stage action:

P (a, si) ∝ e(βMF2QMF2)

10 1AV Model
R = reward

T =

[
P (s = 1|a = 1) P (s = 1|a = 2)
P (s = 2|a = 1) P (s = 2|a = 2)

]
transition matrix

First-stage action values: QMF1t,a = First-stage action value.

QMBt,a = Model-based value of action 1

M = one-hot vector indicating which first-stage action was taken on the last trial.

Second-stage action values: QMF2t,s,a = Second-stage action value predicting reward.

10.0.1 Free Parameters

All parameters below were drawn from Beta priors that spans the 0-1 range.

α1 = learning rate for both updates on first-stage action values.

α2 = learning rate for for update on second action value.

λ = eligibility trace

ω = weight on model-based control

All beta parameters below were drawn from Gamma priors that spans all positive real numbers.

β1 = inverse temperature for QMF0 at first stage.

β2 = inverse temperature for QMB at first stage.

st = perseveration parameter
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10.0.2 Learning computations

• Updating the transition matrix:

Each trial, a transition counter is updated. For example if state1, action1 led to state 2 once,
and on the next transition, the same transition occurs, the counting matrix would be updated as
follows:

Tcounting =

[
1 + 1 0
0 0

]
T can be one of two matrices at and given trial T1 =

[
0.7 0.3
0.3 0.7

]
or T2 =

[
0.3 0.7
0.7 0.3

]
or T3 =[

0.5 0.5
0.5 0.5

]
at any given trial.

This is determined by the Tcounting matrix. When Tcounting(1, 1)+Tcounting(2, 2) > Tcounting(1, 2)+
Tcounting(2, 1), then T1 is used. When the inequality is the converse, then T2 is used. If they are
equal, then T3 is used.

• Updating action-values

QMF1t+1,a = QMF1t,a + α1(QMF2t −QMFt,a)

QMF1t+2,a = QMF1t+1,a + α1(R−QMF1t+1,a)

QMF2t+1,s,a = QMF2t,s,a + α2(R−QMF2t,s,a)

Model-based q-values are then computed via the Bellman equation:

QMBt+1 = P (s1|ai) max
a∈{1,2}

QMF2(s1, ai) + P (s2|ai) max
a∈{1,2}

QMF2(s2, ai).

Q values for 1-stage actions are integrated in the following way:

Qintegrated = ω(QMB) + (1− ω)(QMF1)

10.0.3 Decision computations

First-stage action:

P (a) ∝ eβ1[Qintegrated+st(M)]

Secon-stage action:

P (a, si) ∝ eβ2QMF2

11 1AV+ LR model
Same as Daw model except state transition estimates are learned in the same way as 2AV + LR.

12



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: Parameter Recovery. The diagram comprises data simulated from the winning model (ISTL) 
and best-fit group hyperparameters for the subsample of subjects (MB > 2.5). The simulation was 
contained 400 generated agents over 200 trials of the two-step task.  The group hyperparameters were 
derived through fitting the model, and thus, parameter recovery reflect the empirical range of 
parameter values. The plot comprises the full set of correlations between fitted and true parameters in 
the simulation and subsequent model fitting. The vertical axis in the heatmap with “F” represent the 
fitted parameters, and the horizontal axis represent the ground-truth parameters that generated the 
data. The following are the group priors we generated the data from. Importantly, next to each 
parameter in parentheses denotes the abbreviations used in the heatmap for each of these parameters: 
 

Learning rates:  
Learning Rate (𝛼)  ~ beta(1.76,0.57) 
Learning Rate state transitions(𝛾) ~ beta(0.50,3.60).  
Decay (d) ~ beta(1.50,3.50) 
Softmax beta weights 1st action: 
Model based beta (𝛽𝑀𝐵) ~ gamma(0.5,10) lower bounded at 2.5 
Model free beta TD0 (𝛽𝑀𝐹0) ~  gamma(0.6,0.2) 
Model free beta TD1(𝛽𝑀𝐹1) ~  gamma (1.02,1.32),  
Action perseveration beta (𝛽𝐴𝑃)  ~ normal (0.84,0.73).  
Softmax beta weight 2nd action:  
Model free beta 2nd stage (𝛽𝑀𝐹2) ~  gamma (3.03,0.8).  
 
 
 
 
 
 



Note S1. Model-fitting and model recovery 

Simulating data from both the winning model (‘ISTL’; incremental state transition learning rate) 
and the second-best fitting model (‘Typical’; typical model used in prior studies that use a 
counting rule for state transition learning), we recovered the generative model 10 out of 10 
times, using group-fitted population parameters. In other words, when generating the data 
from ‘ISTL’, we found that ‘ISTL’ explained the resultant simulated data far better than the next-
best-fitting model, ‘Typical’. We then simulated data as if ‘Typical’ model was in fact true, and 
also found that the resultant data was explained better by ‘Typical’ than did the ‘ISTL’ model. 
Specifically, the mean difference in iBIC when generating data with the winning model, was 
332.99 in favor of ‘ISTL’ when ‘ISTL’ generated the data, and was 196.41 in favor of ‘Typical’ 
when generating the data with ‘Typical’.  

The priors used to generate data for ‘ISTL’ are written above in Figure S5.  

The priors for ‘Typical’ are: 

Learning Rate (𝛼)  ~ beta(1.76,0.57) 
Learning Rate state transitions(𝛾) ~ beta(0.50,3.60).  
Decay (d) ~ beta(1.50,3.50) 
Softmax beta weights 1st action: 
Model based beta (𝛽𝑀𝐵) ~ gamma(0.5,10) lower bounded at 2.5 
Model free beta TD0 (𝛽𝑀𝐹0) ~  gamma(0.6,0.2) 
Model free beta TD1(𝛽𝑀𝐹1) ~  gamma (1.02,1.32),  
Action perseveration beta (𝛽𝐴𝑃)  ~ normal (0.84,0.73).  
Softmax beta weight 2nd action:  
Model free beta 2nd stage (𝛽𝑀𝐹2) ~  gamma (3.03,0.8).  

 

The hierarchical model-fitting procedure we describe in text was used to fit models both to 
empirical and simulated data. All parameters drawn from beta distributions started with 
uniform priors over the [0,1] range of possible values, and all other parameters drawn from 
gamma distributions started with priors that favored small values (scale=1, rate=1) over the 
[0,∞] range. 
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Figure S5. Log-transforming accounts for more shared variance between LR and MB-Beta. We 
demonstrate that log-transforming state transition learning rate and model-based beta computational 
parameters increases their shared variance, evidenced by the significantly increased correlation 
between the two variables when doing so. Importantly, we sought to maximally account for such shared 
variance in regressions reported in Results. 
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