Polygenic Risk Scores for Schizophrenia Are Associated with Oculomotor Endophenotypes – Supplementary Material

Annabell Coors^a, Mohammed-Aslam Imtiaz^a, Meta M. Boenniger^a, N. Ahmad Aziz^{a,b}, Monique M.B. Breteler^{a,c,#,+} & Ulrich Ettinger^{d,#}

^aPopulation Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

^bDepartment of Neurology, Faculty of Medicine, University of Bonn, Germany

^cInstitute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn,

Germany

^dDepartment of Psychology, University of Bonn, Germany

[#] These authors contributed equally to this paper

⁺Corresponding author

Address correspondence to:

Monique M. B. Breteler, DZNE, Venusberg-Campus 1, Gebäude 99, 53127 Bonn, Germany.

Table A.1 Associations between Polygenic Risk Scores (PRS) for Schizophrenia at Different p-value

 Thresholds for SNP Inclusion and Eye Movement Outcomes

Eye Movement Outcome	p-value Threshold for SNP Inclusion	b (95%-CI) for PRS	p-value	R ² (%)
Antisaccade error rate (%)	5*10 ⁻⁸	0.743 (-0.639, 2.125)	0.292	Ì
Antisaccade error rate (%)	0.1	0.864 (-0.069, 1.796)	0.069	/
Log of antisaccade latency (log ms)	5*10 ⁻⁸	0.003 (-0.001, 0.007)	0.153	/
Log of antisaccade latency (log ms)	0.1	0.002 (-0.001, 0.005)	0.154	/
Antisaccade amplitude gain (%)	5*10 ⁻⁸	-1.667 (-3.457, 0.123)	0.068	/
Antisaccade amplitude gain (%)	0.1	-1.088 (-2.299, 0.124)	0.078	/
Smooth pursuit velocity gain (%)	5*10 ⁻⁸	-0.014 (-0.884, 0.857)	0.976	/
Smooth pursuit velocity gain (%)	0.1	0.687 (0.100, 1.273)	0.022	0.14
Saccade frequency during smooth	5*10 ⁻⁸	0.004 (-0.028, 0.037)	0.790	/
Saccade frequency during smooth	0.1	-0.001 (-0.023, 0.020)	0.902	/
pursuit (N/s)				
Prosaccade amplitude gain (%)	5*10 ⁻⁸	-0.095 (-0.497, 0.307)	0.643	/
Prosaccade amplitude gain (%)	0.1	-0.079 (-0.350, 0.191)	0.564	/
Log of prosaccade latency (log ms)	5*10 ⁻⁸	0.000 (-0.003, 0.003)	0.979	/
Log of prosaccade latency (log ms)	0.1	-0.002 (-0.004, 0.000)	0.126	/

Note. The table displays the change in performance per one standard deviation increase in PRS for schizophrenia for different eye movement outcomes. b=unstandardized regression coefficient, 95%-CI=95%-confidence interval. Unstandardized regression coefficients were obtained from the following multivariable linear regression model: Eye movement outcome $\sim b_0 + PRS^* b_1 + age + age^2 + sex + population stratification + residual error. R² refers to the variance explained in eye movement performance by PRS in percent.$