Increased fronto-striatal reward prediction errors moderate decision making in obsessive-compulsive disorder
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Supplementary Method and Results
Supplementary Method
Probabilistic reversal learning task
The participants performed a probabilistic reversal learning task (Hauser et al. 2014a, 2014b, 2015) while fMRI was recorded. Subjects first saw two simultaneously presented stimuli for 2500ms. The subjects were allowed to respond within 1500ms and the chosen option was highlighted as soon as the subjects made their choice. After an intra-stimulus interval (mean 2750ms, 2000-4000ms), the subjects saw whether they received a reward (depicted by a framed coin) of a punishment (depicted by a crossed coined). The feedback was displayed for 1000ms, followed by a fixation cross (mean duration 2750ms, 2000-4000ms). The subjects had to find out which object was ‘better’, i.e. which object had the higher probability to win. One stimulus was assigned with a win-probability of 80%, the other had a win-probability of 20%. After 6-10 correct choices, the win probabilities reversed. The subjects were informed beforehand that the reward contingencies can change. However, they were not provided with any detail of the reinforcement contingencies. The subjects played 2 runs of 60 trials plus 20 null trials (fixation cross for 9000ms) each. For a more detailed task description, please cf. Hauser et al. (2014a, 2014b, 2015).
Computational models

To infer behavior, we compared two learning models and two decision models. We performed model comparison using Bayesian random effects analysis (Stephan et al. 2009). The best performing model combination was used for group comparison and further analyses.

Learning models

We compared two versions of a modified Rescorla-Wagner reinforcement learning model: 

Anticorrelated Rescorla-Wagner model

The Reward Prediction Errors (RPE) at each trial t was computed as the difference between the anticipated (

[image: image1.wmf])

(

t

chosen

V

) and the received () outcome:

	
	
[image: image3.wmf])

(

)

(

)

(

t

chosen

t

t

V

R

RPE

-

=


	(1)


The values of both options were then updated based on the RPE (Gläscher et al. 2009):
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where α depicts the learning rate. The priors for the model fitting procedure were set to 
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Anticorrelated Risk Rescorla-Wagner model
Previous findings (Niv et al. 2012; Hauser et al. 2015) suggested that the learning (rate) might depend on the valence of the feedback. Depending on the subject’s risk-sensitivity it might be that the participant learns quicker or slower from rewards compared to punishments. We therefore extended the previous learning model by introducing different learning rates for positive and negative RPEs (Niv et al. 2012; Hauser et al. 2015). The RPE itself is computed as in eq. (1). The value update, however, is characterized as
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where α+/- depicts independent learning rates for positive and negative RPEs.
Decision models

We combined each of the learning models with a softmax function, 
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where 
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 is a free stochasticity parameter. 

In recent years, it has frequently been found that subjects tend to choose the same option as on the previous trial, and that this behavior is independent of the value of the stimuli (Lau & Glimcher 2005; Daw et al. 2011). Such behavior can also be described a perseverative behavior which has been assumed to be prevalent in OCD (Moritz et al. 2009; Gillan et al. 2011, 2013). To test this hypothesis, we added a perseveration parameter γ to the softmax function:
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Here, rep(X) describes whether the current choice was the same as the previous one. Thus, in trials where the subjects chose the same option again, rep(X) was set to 1, and to 0 otherwise (cf. (Daw et al. 2011)). The parameter γ determines how strongly we tend to perseverate, with increasing γ meaning a higher tendency to repeat the previous action again.
Model fitting procedure

All models parameters were estimated using the HGF toolbox (v3.0; http://www.translationalneuromodeling.org/tapas/; Mathys et al. 2011). We used the (negative) free-energy F to compare the model fits (Friston et al. 2007). For optimization, the Broyden, Fletcher, Goldfarb and Shannon (BFGS) quasi-Newton optimization algorithm was used. We compared each combination of a learning model with a decision model using Bayesian model selection (BMS) (Stephan et al. 2009). Because the two groups could have had a different winning model, we ran BMS for all subjects together as well as for each group independently.

Data acquisition and analysis
fMRI was recorded in a 3T Philips Scanner (Philips Medical Systems, Best, the Netherlands), equipped with a receive-only 32-element head coil array. We concurrently recorded 64-channel EEG and ECG. ECG was used for artifact correction with RETROICOR (http://www.translationalneuromodeling.org/tapas/; Kasper et al. 2016), the EEG will not be reported here.
For our fMRI analysis, we derived the RPE estimates of our winning behavioral model (cf. above). The single-trial RPEs were used as parametric modulators during outcome presentation. To improve model validity, we entered the following regressors of no interest: Onsets of all stimulus presentations and the chosen value (Vchosen) as a parametric modulator, all missed trials, and six realignment-derived movement parameters. Furthermore, we entered an additional regressor for each scan with a scan-to-scan motion > 1mm (determined using a custom adaptation of the artRepair-toolbox, http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html). We additionally regressed out pulsatile effects using RETROICOR (http://www.translationalneuromodeling.org/tapas/) (Glover et al. 2000; Kasper et al. 2009, 2016). For all task-related regressors, the spatial and temporal derivatives were entered. 
The main effect of RPEs was calculated by entering all subjects in a common 2nd level analysis. To determine the differential activations, we used independent sample t-tests. The results of the random-effects fMRI analyses are reported using a p<.05 voxel-height FWE threshold for task main effects, and p<.05 cluster-extent FWE correction (voxel-height threshold p<.005) for between group comparisons.

ROI-Analyses
To better understand the obtained group differences, we extracted the mean beta of the clusters which differed between the groups (ACC; putamen). We then tested whether the RPE-related activation in these areas significantly correlated with the symptom severity (as measured using the (C)Y-BOCS scores), as well as with the age-of-onset (dichotomously encoded) within OCD patients. We used Pearson correlation to investigate the relation between the variables.
Supplementary Results
Main effect of reward prediction errors (RPEs)
We examined the main effect of RPEs by analyzing the effect of the RPE parametric modulator across all subjects. We found a positive correlation with RPEs in a network containing ventromedial prefrontal cortex, posterior cingulum, striatum, and other areas. A network containing dorsomedial prefrontal cortex (dmPFC, including ACC), anterior insulae and dorsolateral prefrontal cortex was negatively correlated with RPEs (Fig. S1, Table S1).

Supplementary Table S1. Main effect of RPEs. Reward prediction errors across all subjects elicit the typical RPE regions (also cf. Supplementary Fig. S1; listed at pFWE < .05, k >= 15). AI: anterior insula, bil: bilateral, dACC: dorsal anterior cingulate cortex, dlPFC: dorsolateral prefrontal cortex, dmPFC: dorsomedial prefrontal cortex, IFG: inferior frontal gyrus, IPC: inferior parietal cortex, IPL: inferior parietal lobe, IPS: intraparietal sulcus, MCC: middle cingulate cortex, MTG: medial temporal gyrus, PCC: posterior cingulate cortex, SMG: supramarginal gyrus, VS: ventral striatum
	Contrast
	Region
	Hemisphere
	Cluster size

(voxels)
	x
	y
	z
	z Score

	
	
	
	
	
	
	
	

	RPE
	PCC
	bil
	2260
	-5
	-54
	10
	>8

	
	vmPFC
	bil
	4794
	-9
	44
	-12
	>8

	
	
	
	20
	-5
	20
	-11
	6.05

	
	IFG
	left
	555
	-38
	30
	-14
	>8

	
	
	right
	93
	35
	32
	-14
	6.52

	
	
	right
	107
	-48
	30
	13
	6.29

	
	amygdala
	right
	579
	20
	-6
	-20
	>8

	
	
	left
	536
	-17
	-4
	-17
	6.62

	
	IPC
	left
	1230
	-45
	-64
	24
	>8

	
	Hippocampal
	left
	321
	-29
	-34
	-17
	7.40

	
	SMG
	right
	1597
	68
	-22
	18
	6.94

	
	
	left
	400
	-62
	-22
	18
	6.72

	
	striatum
	right
	163
	23
	15
	25
	6.78

	
	putamen
	right
	250
	36
	3
	10
	6.74

	
	
	left
	51
	-35
	-1
	12
	5.96

	
	precentral
	right
	779
	39
	-25
	65
	6.61

	
	MTG
	left
	142
	-57
	-9
	-20
	6.50

	
	
	left
	276
	-63
	-46
	-9
	6.33

	
	IPS
	left
	37
	-24
	-40
	57
	6.26

	
	
	right
	91
	26
	-43
	63
	6.01

	
	putamen
	left
	136
	-29
	-13
	3
	6.23

	
	MCC
	bil
	186
	6
	-22
	49
	6.09

	
	
	left
	30
	-8
	-30
	46
	6.03

	
	rolandic operculum
	left
	26
	-42
	-10
	18
	6.07

	
	VS
	right
	18
	9
	8
	-12
	5.87

	
	rolandic operculum
	right
	16
	41
	-31
	24
	5.83

	
	
	left
	15
	-54
	-4
	7
	5.73

	
	
	
	
	
	
	
	

	-RPE
	AI
	right
	1403
	35
	20
	6
	>8

	
	
	left
	750
	-35
	17
	-5
	7.36

	
	dACC/dmPFC
	bil
	3721
	3
	20
	46
	>8

	
	dlPFC
	right
	1832
	44
	26
	34
	7.29

	
	
	
	469
	21
	18
	64
	6.70

	
	
	left
	358
	-29
	51
	18
	6.58

	
	
	
	146
	-41
	29
	33
	6.10

	
	precuneus
	bil
	379
	8
	-66
	48
	7.28

	
	IPL
	right
	682
	39
	-40
	39
	6.47

	
	
	left
	51
	-38
	-46
	40
	5.91

	
	
	
	
	
	
	
	


Supplementary Table S2. Model comparison results. Bayesian model comparison showed that the anticorrelated Rescorla-Wagner model with the perseveration softmax outperformed all other models across all subjects, but also for each group individually (also cf. supplementary material). Additionally, the winning model outperformed a Bayesian hierarchical model which includes a volatility hierarchy (data not shown; (Mathys et al. 2011)). expP: expected posterior; px: exceedance probability (probability that model fits data better than the other models)
	
	all
	CTRL
	OCD

	
	expP
	px
	expP
	px
	expP
	px

	Rescorla-Wagner
	.098
	.000
	.057
	.000
	.063
	.000

	Rescorla-Wagner risk
	.054
	.000
	.044
	.000
	.044
	.000

	Rescorla-Wagner perseveration
	.724
	1.000
	.647
	.996
	.637
	.994

	Rescorla-Wagner risk+perseveration
	.124
	.000
	.252
	.004
	.255
	.006


Supplementary Table S3. Group characteristics for early- and late-onset OCD. A separate listing of characteristics of early- (EO) and late-onset (LO) patients. The OCD patient that performed on chance level in the task is not listed in this table. ADHD: attention deficit hyperactivity disorder; AN: anorexia nervosa; CD: conduct disorder; GAD: generalized anxiety disorder
	
	early onset (N=22)
	late onset (N=10)
	

	age
	19.2y±7.0 (range: 13-42)
	32.9y±7.7 (range 23-45)
	t(30)=4.95, p<.001

	sex (m/f)
	16/6
	5/5
	

	(C)YBOCS
	15.23±9.98
	16.00±10.13
	t(30)=.20, p=.841

	disease duration1
	8.6y±8.0
	9.5y±8.5
	t(28)=.274, p=.786

	IQ
	109±20
	89±17
	t(30)=2.78, p=.009

	number medicated/unmedicated 
	12/10
	7/3
	

	number of remitted patients
	1
	4
	

	current comorbidities
	F32/33 depression (N=1)

F40.01 panic disorder with agoraphobia (N=1)

F40.2 specific phobia (N=2)

F41.1 GAD (N=1)

F45.2 body dysmorphic disorder (N=1)

F45.4 pain disorder (N=1)

F50.0 AN (N=1)

F90.0 ADHD (N=2)

F91.0 CD (N=1)

F93.8 other childhood emotional disorders (N=2)

F95.1 chronic tic disorder (N=1)
	F32/33 depression (N=2)

F40.01 panic disorder with agoraphobia (N=1)

F40.1 social phobia (N=4)

F40.2 specific phobia (N=2)

F41.1 GAD (N=1)
	


1 missing data from 2 subjects
Supplementary Fig. S1. Main effect of RPEs across all subjects. RPEs consistently correlated with networks containing vmPFC, posterior cingulate and striatum (positive correlation, warm colors), and dmPFC (incl. dACC) and AI (negative correlation, cold colors).
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Supplementary Fig. S2. Age-of-onset and fMRI activation. Normalized RPE activation in ACC (left panel) and putamen (right). A significant difference between early onset (EO, violet diamonds) and late onset (LO, violet squares) in putamen suggests that the difference to the controls (pink circles) was mainly driven by the LO group (cf. main text). However, a marked difference in group size (10 vs 22 patients) demands replication.
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Supplementary Fig. S3. Relation between fMRI activation in putamen and perseveration. There was a significant correlation between the perseveration parameter gamma and fMRI activation in OCD patients in the putamen (orange, r=.486, p=.005), but not in controls (green, r=.089, p=.617). This suggests that the hyperactivity in the putamen of OCD patients might be a compensatory effect that normalized the reduced perseveration behavior.
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