Appendix
1. Disorders as latent variables

Many human traits such as intelligence, or psychiatric disorders, are not directly measurable. Instead, questionnaire items are used to measure the different aspects of the trait of interest, and the trait itself is considered as an underlying, latent variable that influences the responses on the questionnaire items. Therefore, latent variables are constructs that can be regarded as the common denominator of the observed item responses. The interpretation of a latent variable heavily depends on the content of the items because adding or deleting items from a scale can change the common denominator.

2. Mixture distributions

The three methods share the same point of departure, namely that if there are distinct groups in the population, then the observed data, Y, have a distinct distribution in each group. The joint distribution of the data is a mixture distribution. A mixture distribution is simply a weighted sum of k=1, ..., K component distributions where the weights, [image: image1.png]My,



 correspond to the relative sizes of the K groups:
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Eq(1)
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 denotes the probability distribution of the data Y in the total population, and [image: image4.png]i)



 is the distribution of the kth group.

Meehl’s taxometrics procedures described below limits K to 2, a taxon and a complement group, and focus on the linear association between two variables (i.e., covariance) in the total population. Model-based clustering and latent variable mixture modeling require the choice of a specific distribution for f(Y). The two methods differ in how the component distributions, fk(Y) are parameterized.

Model-based clustering and LVMM are based on the assumption that each group or cluster in the population corresponds to one of the mixture components. However, mixture distributions can also be used to approximate distributions that are for instance skewed. Here, the mixture components are only used to approximate the non-normal features of the target distribution, and don’t necessarily have an interpretation as a cluster of subjects. 


It is important to note that the distinction between dimensionality and taxonicity is not necessarily clear-cut when using a latent variable framework for inference. The clusters can for instance be ordered (low, medium, high), and in that case approach dimensionality as the mean difference between clusters decreases, and the number of clusters increases. Whether differences between clusters can be detected is a matter of statistical power.

3. Taxometrics


Using the assumptions that the population is a mixture of two groups and that there is zero covariance between any two symptoms within group, Meehl (1965) derives the formula for the covariance of two variables in the total population. The steps of the derivation consist of the decomposition of a covariance between two variables, X and Y, into the sum of the mean cross-product, E(XY), and the product of the means E(X)E(Y),
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Eq(2)

and extend this expression to a mixture of two components. Under the assumption of zero within class covariation, the extension to a mixture of taxon and complement class leads to a simple formula that shows that the covariance equals the cross-product of the taxon and complement mean differences weighted by their respective proportions in the sample

[image: image6.png](X, ¥Y) = nglE.(X) — E.CONE.(¥) - E.(Y)].





Eq(3)

In Eq(3) p and q are the respective proportions of the taxon, t, and complement, c, groups. Meehl (1965) calls this the “General Covariance Mixture Theorem”. The three taxometric procedures described below use Eq(3) to locate the cut point on one of the indicators of the construct, say X, that provides the best partition into taxon and complement . This point is called “hitmax”, and corresponds to the cutoff in Figure 2, panel B.


MAMBAC necessitates two continuous indicators of the latent construct, say X and Y. The sample is repeatedly partitioned into two groups at increasing values of X, and for every partition, the difference in the mean of Y for individuals below the cut point and above the cut point is computed. In case taxonicity holds, then it is expected that the mean difference increases as the proportion of the sample below the cut point increases, and then decreases. The reason for this expectation is that an optimal partition on X (i.e., one that does the best job at grouping taxon members and compliment members, i.e., hitmax) will optimize the mean difference in Y between the two partitions. In case dimensionality holds, then the expectation is reverse, namely that the mean difference first decreases and then increases again. This is because when cutting the sample at the mean of X the two resulting groups are equal sized and will have the smallest mean difference on Y. Any other cut will result in a smaller and a larger group, and the mean in the smaller group will change more than the mean in the larger group since it is influenced more heavily by the tail of the distribution. The result is a larger mean difference for cuts other than at hitmax. Graphical inspection is used to decide whether the plotted curve of the mean difference in Y vs. X provides a better match with the expectations for taxonicity or the expectation of dimensionality. The plots are obtained and inspected for all pairs of observed variables, using each variable once as the X variable to partition the sample. 


MAXEIG was developed to leverage information in multivariate data (Waller & Meehl, 1998). The procedure is a direct extension of MAXCOV. Instead of the covariance of Y and Z, the eigenvalue of the covariance or correlation matrix of the multivariate data is computed in each sliding window on one of the indicator variables. The reasoning is as follows. The largest eigenvalue of a correlation matrix is a measure of the variance of the first principle component (PC). If the premise of taxonicity is true, that is, if the covariances between items are due to mean differences between the taxon and the complement, then the first PC will pick up this source of variation. If the mean differences between taxon and complement are large and explain most of the covariances, then the first PC basically represents the mean difference between the two groups, and the first eigenvalue will be considerably larger than the second. This is in principle the same idea as using eigenvalues to determine the number of factors in exploratory factor analysis, with the difference that the “factor” here is the mean difference between two groups. The same idea is for instance also used in genetic analyses where the first PC is included as a covariate to control for population stratification.  As in MAXCOV, the eigenvalue is computed for sliding intervals of one of the indicators, X, and each variable is once used as X. The eigenvalues are plotted, and visually inspected. In case of taxonicity, a peak at the location of optimal separation into taxon and complement (i.e., at hitmax) is expected.

4. Model based clustering

As shown by Banfield and Raftery (1993, see also Fraley and Raftery, 2002), the relation between the covariance matrix and orientation, shape, and volume becomes evident upon an eigen decomposition of the within cluster covariance matrix, [image: image7.png]
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Eq(4)

Dk contains the eigenvectors, which determine the orientation, and [image: image9.png]


 is a diagonal matrix containing the eigenvalues, which determine shape and volume. To separate the latter, the matrix with the eigenvalues can be rewritten as [image: image10.png]


where [image: image11.png]


 is the first eigenvalue of the kth cluster. The first eigenvalue is a measure of the variance of the first PC in the cluster, and is therefore related to the volume. The elements in Ak are ordered in magnitude, the first equaling 1. If all eigenvalues are about equal in size then the elements in Ak are also about equal, and the shape of the kth cluster is spherical. 

The parameters in Dk, [image: image12.png]Ar,and A,



 can be constrained within and across clusters, leading to a number of interesting models to compare. For instance, if [image: image13.png]


 differs for the K clusters then the clusters differ in size, whereas if a model with the constraint [image: image14.png]


 fits the data well, then the clusters have equal size. If all elements of Ak are approximately equal in magnitude, then the shape of the cluster is (hyper)spherical. A spherical shape means that the observed variables are uncorrelated within the cluster. Note that this specific submodel corresponds to the premise of the taxometric procedures. If all elements of Ak except the first are approximately zero, then the data in the cluster will lie close to a line. This represents a situation where there is covariation within cluster that can be attributed to a single dimension (the first PC).


Banfield and Raftery (1993) provide means to deal with outlying observations that do not clearly belong to one of the clusters. Importantly, the models are not limited to two clusters, but can be fitted for k=1, …, K clusters. The estimation of a model with K clusters can be done using the EM-algorithm, which is implemented in the R package mclust (Fraley et al., 2012). Details concerning estimation are provided in Fraley & Raftery (2002), and in Celeux & Govaert (1995) who also show the relation between specific submodels of the general model-based clustering framework and clustering algorithms such as k-means clustering.

5. LVMMs

Factor analysis is a statistical model that relates observed variables to latent continuous variables using a set of linear regression equations. Each observed variable, Y,  is regressed on one or more latent continuous factors, commonly denoted as [image: image15.png]
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 to indicate intercept, factor loading, and measurement error, a factor model with m=1, …, M factors can be written as
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Eq(5)

Means and covariance matrix of Y are
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Eq(6)

and

[image: image21.png]AWAT 10,











Eq(7)
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is the mean of the mth factor, [image: image23.png]


 the loading matrix, [image: image24.png]


 the factor covariance matrix, and [image: image25.png]


 the matrix with the error variances.


Factor loadings and measurement error can differ across observed variables, thus allowing for differences in reliability of the observed variables. In case observed variables are not continuous, the linear regression in Eq (5) is replaced by a logistic or multinomial regression, or by assuming an unobserved continuous response variable that obeys the factor model, and that is related to the observed categorical variables via a threshold model (see Figure 5). Importantly, in order to estimate the model, it is necessary to assume a multivariate distribution for the observed variables in addition to assuming linear, or logistic regressions of the observed variables on the latent factors. Including structural relations between factors in a model (e.g., one factor predict another factor) leads to structural equation models.


Latent class analysis features a latent categorical variable. Each individual in the sample is assumed to belong to one of the classes. This is represented in the latent class model by assuming that the class variable has a multinomial distribution where each individual has a 1 for one of the classes, and zero’s for all other classes. Importantly, the observed variables are assumed to be independent within each class. This assumption is called the local independence assumption. The latent class model is therefore consistent with the assumptions of the taxometric procedures, and the spherical model-based cluster model described above. Local independence means that the covariances within each class are fixed to zero. This leads to a very parsimonious model that is usually unproblematic to fit to empirical data. The drawback is that in practice this assumption is rarely met. Often there is substantial covariation within class, which has lead to the development of latent variable mixture modeling (LVMM). 


LVMM combines structural equation models with latent class analysis. Within each class a factor or structural equation model can be specified to account for covariation between the Y within each class (see Figure 1, panel B). Focusing again on using multivariate normal distributions as component distributions in Eq(1), we have
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Eq(8)

where the class-specific mean vector [image: image27.png]Iy



 and covariance matrix [image: image28.png]


 are parameterized according to the factor model, see Eq(6) and Eq(7). The basic LVMM in Eq(8) has been extended in multiple different ways, including models with multiple latent class variables, multilevel mixtures, mixtures with non-normal within class distributions, to name a few. However,  a description of the possibilities within the LVMM framework is beyond the scope of this paper.
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Fig. 5. The threshold model relates observed categorical responses to an underlying unobserved continuous response variable. The unobserved response variable Y* is normally distributed, and the categories in the observed variable Y arise from scoring below or above a threshold τ on Y*. The figure shows the threshold model for a binary variable with a single threshold. Extending the model to M thresholds leads to M+1 response categories.
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