Supplemental material:

Cortical thickness preprocessing
To build a cortical surface model and measure cortical thickness of the whole brain, all MR-images were processed with the CIVET pipeline (Ad-Dab'bagh et al., 2006; Zijdenbos et al., 2002) developed at the Montreal Neurological Institute (MNI). In brief, the native MR-image was linearly registered to standardized MNI-Talairach space using a 9-parameter linear transformation (Collins et al., 1994). Simultaneously, intensity non-uniformity was corrected using the N3 algorithm (Sled et al., 1998). The registered and corrected images were further segmented into gray matter, white matter, cerebrospinal fluid, and background using a neural net classiﬁer (Zijdenbos et al., 2002). Then, a deformable mesh model was applied to extract the two cortical surfaces (pial–cortical surface and gray–white interface) for each hemisphere with the Constrained Laplacian Anatomic Segmentation using Proximity (CLASP) algorithm (Kim et al., 2005; MacDonald et al., 2000). ADDIN Mendeley Citation{68ac26b9-571b-4e59-8ba7-6a62f79c0784};{1617e3fd-7ad8-4d40-807e-6a8d5a07d45d} CSL_CITATION  { "citationItems" : [ { "id" : "ITEM-1", "itemData" : { "DOI" : "10.1016/j.neuroimage.2005.03.036", "abstract" : "Accurate reconstruction of the inner and outer cortical surfaces of the human cerebrum is a critical objective for a wide variety of neuroimaging analysis purposes, including visualization, morphometry, and brain mapping. The Anatomic Segmentation using Proximity (ASP) algorithm, previously developed by our group, provides a topology-preserving cortical surface deformation method that has been extensively used for the aforementioned purposes. However, constraints in the algorithm to ensure topology preservation occasionally produce incorrect thickness measurements due to a restriction in the range of allowable distances between the gray and white matter surfaces. This problem is particularly prominent in pediatric brain images with tightly folded gyri. This paper presents a novel method for improving the conventional ASP algorithm by making use of partial volume information through probabilistic classification in order to allow for topology preservation across a less restricted range of cortical thickness values. The new algorithm also corrects the classification of the insular cortex by masking out subcortical tissues. For 70 pediatric brains, validation experiments for the modified algorithm, Constrained Laplacian ASP (CLASP), were performed by three methods: (i) volume matching between surface-masked gray matter (GM) and conventional tissue-classified GM, (ii) surface matching between simulated and CLASP-extracted surfaces, and (iii) repeatability of the surface reconstruction among 16 MRI scans of the same subject. In the volume-based evaluation, the volume enclosed by the CLASP WM and GM surfaces matched the classified GM volume 13% more accurately than using conventional ASP. In the surface-based evaluation, using synthesized thick cortex, the average difference between simulated and extracted surfaces was 4.6 +/- 1.4 mm for conventional ASP and 0.5 +/- 0.4 mm for CLASP. In a repeatability study, CLASP produced a 30% lower RMS error for the GM surface and a 8% lower RMS error for the WM surface compared with ASP.", "author" : [ { "family" : "Kim", "given" : "June Sic" }, { "family" : "Singh", "given" : "Vivek" }, { "family" : "Lee", "given" : "Jun Ki Jong Min" }, { "family" : "Lerch", "given" : "Jason" }, { "family" : "Ad-Dab'bagh", "given" : "Yasser" }, { "family" : "MacDonald", "given" : "David" }, { "family" : "Kim", "given" : "Sun I" }, { "family" : "Evans", "given" : "Alan C" }, { "family" : "Lee", "given" : "Min" }, { "family" : "Lee", "given" : "Ki" }, { "family" : "Ad-dab", "given" : "Yasser" } ], "container-title" : "Most", "id" : "ITEM-1", "issue" : "1", "issued" : { "date-parts" : [ [ "2005", "8" ] ] }, "note" : "\u003cm:note/\u003e", "page" : "210 - 221", "title" : "Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification", "type" : "article-journal", "volume" : "27" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=68ac26b9-571b-4e59-8ba7-6a62f79c0784" ] }, { "id" : "ITEM-2", "itemData" : { "DOI" : "10.1006/nimg.1999.0534", "abstract" : "Automatic computer processing of large multidimensional images such as those produced by magnetic resonance imaging (MRI) is greatly aided by deformable models, which are used to extract, identify, and quantify specific neuroanatomic structures. A general method of deforming polyhedra is presented here, with two novel features. First, explicit prevention of self-intersecting surface geometries is provided, unlike conventional deformable models, which use regularization constraints to discourage but not necessarily prevent such behavior. Second, deformation of multiple surfaces with intersurface proximity constraints allows each surface to help guide other surfaces into place using model-based constraints such as expected thickness of an anatomic surface. These two features are used advantageously to identify automatically the total surface of the outer and inner boundaries of cerebral cortical gray matter from normal human MR images, accurately locating the depths of the sulci, even where noise and partial volume artifacts in the image obscure the visibility of sulci. The extracted surfaces are enforced to be simple two-dimensional manifolds (having the topology of a sphere), even though the data may have topological holes. This automatic 3-D cortex segmentation technique has been applied to 150 normal subjects, simultaneously extracting both the gray/white and gray/cerebrospinal fluid interface from each individual. The collection of surfaces has been used to create a spatial map of the mean and standard deviation for the location and the thickness of cortical gray matter. Three alternative criteria for defining cortical thickness at each cortical location were developed and compared. These results are shown to corroborate published postmortem and in vivo measurements of cortical thickness.", "author" : [ { "family" : "MacDonald", "given" : "D" }, { "family" : "Kabani", "given" : "N" }, { "family" : "Avis", "given" : "D" }, { "family" : "Evans", "given" : "A C" } ], "container-title" : "NeuroImage", "id" : "ITEM-2", "issue" : "3", "issued" : { "date-parts" : [ [ "2000", "9" ] ] }, "note" : "\u003cm:note/\u003e", "page" : "340-56", "title" : "Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI.", "type" : "article-journal", "volume" : "12" }, "uris" : [ "http://www.mendeley.com/documents/?uuid=1617e3fd-7ad8-4d40-807e-6a8d5a07d45d" ] } ], "mendeley" : { "previouslyFormattedCitation" : "(J. S. Kim et al., 2005; D MacDonald, Kabani, Avis, \u0026#38; Evans, 2000)" }, "properties" : { "noteIndex" : 0 }, "schema" : "https://github.com/citation-style-language/schema/raw/master/csl-citation.json" } Both surfaces were registered non-linearly to a high resolution average surface template to establish inter-subject correspondence of the cortical vertex (Grabner et al., 2006; Lyttelton et al., 2007; Mazziotta et al., 1995). Applying an inverse of the aforementioned linear transformation, cortical thickness was measured in native space as the linked distance between corresponding vertices of both inner and outer surfaces. The thickness values were smoothed using surface-based diffusion smoothing with 20 mm full-width at half-maximum (FWHM) (Chung et al., 2003). 

Functional connectivity data processing
Functional MRI data were analyzed using SPM8 (www.fil.ion.ucl.ac.uk/spm) and the DPARSF (Chao-Gan and Yu-Feng, 2010) toolbox (http://www.restfmri.net/forum/DPARSF). The structural and functional images were reoriented to the center point of the anterior commissure. The first five volumes of each subject were discarded for signal equilibrium. Each set of functional volumes was corrected for within-scan acquisition time differences, and was then realigned to the mean image to correct for head motions. Functional data was further cleaned for motion by applying a scrubbing procedure implemented in DPARSF toolbox that removed images (frames) with > .5 frame-wise displacement and its three time-adjacent frames (Power et al., 2011) . The functional images were normalized to MNI space using the transformation matrix that was estimated by unified segmentation of the T1-image that was in alignment with the functional images.. Finally all functional images were spatially smoothed with a Gaussian kernel of 10 mm FWHM. 

Subsequently, the blood oxygenation level dependent (BOLD) signal of each voxel was band-pass filtered (0.01–0.08Hz) to eliminate low-frequency drift and high-frequency physiological noise. Extracted time series of each seed ROI (see section ‘Region-of-interest definition for RSFC analysis’) were entered in separate whole-brain general linear models, including nuisance variables to account for non-neural fluctuations, i.e. estimated motion parameters, average signal from the white matter and ventricular regions using standard masks implemented in DPARSF. As no respiratory and heart rate variability data was available and because such non-neuronal noise components may introduce false coherences and cause over-estimation of RSFC strength (Weissenbacher et al., 2009), we chose to remove non-neural physiological noise by including global mean as an additional nuisance regressor. It has been shown that removing global mean signal increases specificity of RSFC results (Weissenbacher et al., 2009). 

Table S1: Medication status of patients

Type of antidepressant medication used by patients in our sample. 18 patients used at least on type of medication. No accurate information on dosage and duration of use is available. 
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TCA

MDD # CitalopramParoxetinFluoxetinSertralineVenlafaxineMirtazapin DuloxetineAgomelatineLorazepam Quetiapine ChlorprothixenValproic Acid

1 x x

2 x x

3

4 x x

5 x x

6 x x x x

7 x

8 x

9 x x

10 x

11 x x x

12 x

13 x x

14 x x

15 x x

16 x x x

17 x

18 x

19 x

SSRIs other anti-psychotic medication


Table S2: Movement information per patient

[image: image2.emf]Table 1a: mean movement in 6 directions and between group differences

Maximum absolute translation

Group N mean  SD

t-score p

x MDD 19 .58 .81

HC 19 .31 .43 1.30 .20

y MDD 19 .64 .47

HC 19 .24 .07 3.59 .001

z MDD 19 1.00 .87

HC 19 .62 .32 1.81 .08

Maximum absolute rotation

Group N mean  SD

t-score p

x (pitch) MDD 19 1.16 1.13

HC 19 .46 .22 2.67 .01

y (yaw) MDD 19 .49 .45

HC 19 .39 .40 .77 .45

z (roll) MDD 19 .58 .89

HC 19 .27 .27 1.43 .16

Table 1b: Framewise displacement (FD) per subject

# subject per group mean_FD  # FD > .05 % PF > .05  mean_FD  # FD > .05% PF > .05 

1

.33 73.00 .15 .21 4.00 .01

2 .37 69.00 .14 .25 27.00 .06

3 .10 .00 .00 .18 1.00 .00

4 .13 1.00 .00 .13 .00 .00

5 .10 .00 .00 .17 21.00 .04

6 .14 1.00 .00 .11 .00 .00

7 .14 .00 .00 .10 .00 .00

8 .12 8.00 .02 .29 28.00 .06

9 .10 .00 .00 .12 6.00 .01

10 .12 2.00 .00 .15 8.00 .02

11 .12 .00 .00 .21 13.00 .03

12 .10 .00 .00 .11 .00 .00

13 .11 3.00 .01 .17 5.00 .01

14 .18 7.00 .01 .14 6.00 .01

15 .08 .00 .00 .27 47.00 .10

16 .18 9.00 .02 .25 11.00 .02

17 .11 8.00 .02 .19 31.00 .06

18 .16 4.00 .01 .11 1.00 .00

19 .14 .00 .00 .13 2.00 .00

MDD HC

Table 1: movement information per group


Fig. S1: Main effects of seed based connectivity

Renderings of positive (yellow color scale) and negative (blue color scale) effects of seed based connectivity, showing regions positively or negatively correlated with our four seed regions, projected on the surface of the right hemisphere (RH; left column); left hemisphere (LH; middle column), and mid-sagital slice (MID; right column). Top row: dmPFC seeded network; second row: rSTG seeded network; third row: dlPFC seeded network; bottom row: pMCC seeded network. Main effects are displayed at t>3.09 (equivalent to p<.001, uncorrected).
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