
Gaussian Process Classifiers (GPC) 

Here we provide a brief overview of the Gaussian Process (GP) prediction models that 

summarises material presented in more detail elsewhere (Kuss and Rasmussen, 2005: 

Rasmussen and Williams, 2006).  

We assume a set of training data D={X,y}, where X is an m x d matrix consisting of input 

vectors xi (i.e. m training samples with d features each) and y is a column vector of target 

variables for classification where yi ∈ {+1, −1}. Training samples are indexed by i =1,…,m. 

The goal is to identify some function from the training data that allows us to accurately 

predict a new target y* from a new data sample x*. For binary GPCs, as those employed 

here, predictions take the form of class probabilities p(y*=1|x*, D). In GPC, prediction 

proceeds by placing a GP prior over an unconstrained latent function and computing its 

posterior distribution. In this case, we do not observe this function directly, but instead use a 

sigmoidal response function to map it to the unit interval. While there are several possibilities 

for this function, here we use the cumulative Gaussian density Φ (x) (or probit likelihood) 

which can be computed as 
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The response function thus converts an unbounded regression problem into a classification 

problem where output is constrained to the unit interval, ensuring a valid probabilistic 

interpretation. 

For binary classification, we can write each likelihood term as p(yi|ƒi)=Φ (yi ƒi) (owing to the 

symmetry of the probit likelihood) and rewrite Bayes rule as: 
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Here, f = (ƒ1,…,ƒm)T collects the latent function values at training points, N(f|0,K) describes 

the prior over the latent function (i.e. the covariance function),  (   ) is the marginal 

likelihood or model evidence and we have factorised the likelihood over training samples 



(because the class labels are independent given the latent function). In this work, we use a 

simple inner product covariance function. Making GPC predictions is a two-step process. 

First, we compute the distribution of the latent variable at the test point, and then we 

compute its expectation to produce a probabilistic prediction. As opposed to point predictions 

produced by Support Vector Machines, class probabilities are derived from integrating over 

the entire distribution for the latent function at the test data point.  

Exact inference for GP classification is not analytically tractable, but the posterior and 

marginal likelihood in equation S1 can both be approximated by Gaussians. The 

approximate posterior can be written as  (     )   (   ) , where the approximate 

parameters    and   are computed using the Expectation Propagation algorithm (Minka, 

2001; Rasmussen and Williams, 2006). Once the approximate posterior has been computed, 

it can then be used to compute: (1) the marginal likelihood and (2) the approximate posterior 

for the test case. Following Kuss and Rasmussen (2005), the latter can be computed by: 
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Finally, predictions are made by computing the posterior expectation of the latent function at 

the test point:  
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Training a GP model refers to finding the best functional form and optimising any free 

hyperparameters for the covariance function, which is commonly done by maximising the 

logarithm of the marginal likelihood. The marginal likelihood measures the total probability of 

the data given the model hyperparameters and has the attractive property that it constitutes 



a trade-off between good fit to the data and a penalty for model complexity, so that simpler 

models are favoured. We refer the reader to other sources for a detailed treatment of training 

GPC models (Rasmussen and Williams, 2006; Marquand et al., 2010). Note that the 

PROBID toolbox used in this study employs the Gaussian processes for machine learning 

toolbox (www.gaussianprocess.org/gpml) for all GPC inference. 

 

Discrimination Maps 

Discrimination mapping for GPC is described in detail in Marquand et al., (2010), but briefly, 

for linear covariance functions, such as those employed here, it is possible to construct a 

spatial representation of the discrimination function, which can be computed by: 
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The quantity  ̂ is referred to as the maximum a posteriori (MAP) estimate of the GPC weight 

vector, and is the best point estimate of the GPC decision function (i.e. the mode of the 

Gaussian approximation in voxel space). 

Here, we aim to provide an intuitive interpretation of the maps and consider a 

simplified version of the GPC decision function, given by p(y = class 1|x, ŵ) = σ(xT ŵ), where 

y is the class label of a test subject (in this paper, y>0.5, corresponds to class 1 or bipolar 

disorder, otherwise class 2 or control), x is the feature vector containing gray or white matter 

voxels for the test subject,  ŵ is the MAP estimate of the GPC weight vector (i.e. the 

discrimination  map) and σ is a sigmoid function that maps the values to the interval [0,1].1 

During the training phase any GPC hyperparameters are computed by maximizing 

the logarithm of the marginal likelihood as described above. During the test phase, for 

classifying a new example we first multiplied each voxel by its corresponding coefficient in 

the weight vector. After that we add all multiplied values and pass the sum through a sigmoid 

                                                           
1
 Note that this is the MAP approximation for GPC and accurately reflects its behaviour in that it is guaranteed 

to give predictions with the same class label as the true GPC predictive probability (see Rasmussen and 

Williams, 2006).  

http://www.gaussianprocess.org/gpml


function in order to obtain an output between 0 and 1 (which are predictive probabilities). 

This process is illustrated graphically in figure 1 (main text).  
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