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The ’t Hooft-Polyakov Monopole
It is a familiar theme in the foundations of physics that there is a strong analogy between gauge theory and general relativity
ðGRÞ. However, while geometrically nontrivial solutions ði.e., black holesÞ of GR were discovered very soon after the
theory’s incipiency, the historical discovery of the gauge theory analog ði.e., topological solitonsÞ took a rather more
complex path. Roughly speaking, topological solitons are nonlinear, finite-energy, particle-like solutions of field theory:
their stable particle-like nature is due to a topologically nontrivial ‘twisting’ of the field configuration, which can be
quantified in terms of a conserved ‘topological charge’.
The key insight into the existence of soliton solutions was provided by ’t Hooft and Polyakov, who managed to

guess a soliton ansatz for SUð2Þ YMH theory, now fittingly called the ’t Hooft-Polyakov ðtHPÞ monopole—‘monopole’
because of its resemblance to the Dirac monopole in electrodynamics.
In order for a YMH solution to have a finite energy, the field f must tend asymptotically to the vacuum manifold V ≔

ffjVðfÞ 5 0g, on pain of the energy integral of the theory blowing up. Such asymptotic statements are best modeled
in terms of the behavior of field fðxÞ as jxj tends to infinity. On the one hand, we know that spatial infinity can be modeled
as a very large sphere S2

` in R3; and on the other hand, we know that the V has the topology of a sphere S2. Thus, the
asymptotic data for f as jxj → ` is given by the map

f`:S2
` → V ; S2: ðA1Þ

This qualitative analysis suffices to reveal the sense in which a field configuration can be characterized in terms of a
topological property: intuitively, the topological character of a configuration is determined by the number of times f`

wraps S2 around S2. In more technical language, we say that the different types of solutions are characterized by the
homotopy class of f`. In fact these classes are in 1:1 correspondence with the second homotopy group p2ðS2Þ 5 Z, and
we say that a solution in the homotopy class N ∈ Z has topological charge N.
By combining an asymptotic analysis of the fields ðbased on the finite energy requirementÞ with the requirement of

spherical symmetry, ’t Hooft and Polyakov were able to write down the explicit form that ðA, fÞ should take if it is to be
a topological soliton solution for the YMH theory. We will not need the details of the solution in what follows; indeed
it will suffice to quote the asymptotic form of f:

f` 5 vx̂; ðA2Þ

where v is a real number and x̂ is a unit 3 vector. The group GI of gauge transformations that leave this boundary condition
invariant is then easily determined to be

fg :R3 → G j gðxÞ→ expðiat�xÞ; j x j → ` g: ðA3Þ

We thus see that the DES symmetry group of the theory can be computed by means of the quotient group operation in ð13Þ.
The result is given by a straightforward but tedious exercise in algebraic topology, and it depends on the topological
charge N of the solution. To wit, when N 5 0, GDES 5 Z � Uð1Þ, and when N ≥ 1, GDES 5 ZjNj � R.36

Let us take stock. Earlier in section 2, we considered Greaves and Wallace’s claim of GlobalInLocal, which they take
to be illustrated by the example of KGM gauge theory ðthe end of sec. 3.2Þ, whose DES symmetry is a globalization
of its local symmetry. However, we also saw in section 4.2 that the general definition of a theory’s DES symmetry turns
on its boundary conditions and the asymptotic behavior of its fields: thus, the KGM example shows that only in one such

36. See Giulini ð1995Þ for this result and the details of the computation. For an alternative—and prior—derivation of the dyonic
spectrum ðthe ‘Witten effect’Þ, see the introduction of a topological term in Witten ð1979Þ.
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case, DES symmetry happens to coincide with a globalization of gauge symmetry. But, our consideration of the tHP
monopole furnishes us with an example in which the two concepts come apart.
A second problem noted earlier with the claim GlobalInLocal is that the concept of a global transformation does not

make sense in the context of a general gauge theory. This fact is also illustrated in the case of monopoles, albeit ones whose
long range field is non-Abelian ðe.g., where the gauge symmetry is ‘broken down’ to a Uð2Þ subgroupÞ, unlike that of the
tHP monopole ðwhich has a Uð1Þ long-range magnetic fieldÞ. For instance, Preskill ð1984, sec. 4.5Þ shows that global
transformations cannot be defined in the vicinity ði.e., at the subsystem boundaryÞ of a monopole with a long-range non-
Abelian magnetic field. What this shows is that there are physical subsystems for which the asymptotic global transfor-
mations that Greaves and Wallace describe in the KGM case cannot even be defined—and where this is due not to
topologically nontrivial space-times but instead to non-Abelian gauge groups and a topologically nontrivial subsystem
boundary. This again shows that it is in general a mistake to think of global symmetry as somehow contained within gauge
symmetry.
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