Suppose that experiment E_1 showed that x_2 and x_1 were independent, such that the ordering between x_1 and x_2 remains underdetermined.

The only experiment that establishes whether $x_1 \rightarrow x_2$ are experiments E_2 with x_1 in J_2 and x_2 not in J_2 .

Experiments E_1 and E_2 resolve the order between x_1 and x_2 , suppose without loss of generality that it is $x_1 \rightarrow x_2$. In the worst case this required two experiments.

Now for the remainder: the only experiment that establishes whether $x_1 \rightarrow x_3$ are experiments E_3 with x_1 and x_2 in J_3 and x_3 not in J_3 . Note that none of the previous experiments could have been an $E₃$.

The only experiment that establishes whether $x_1 \rightarrow x_4$ are experiments E_4 with x_1 , x_2 , x_3 in J_4 and x_4 not in J_4 . None of the previous experiments could have been an $E₄$.

...

The only experiment that establishes whether $x_1 \rightarrow x_n$ is an experiment E_n with x_1, \ldots, x_{n-1} in J_n and x_n not in J_n . None of the previous experiments could have been an E_n . It follows that *n* experiments are in the worst case necessary to discover the causal structure. QED

The above proof shows that in the worst case a sequence of n experiments is necessary that have intervention sets that intervene on at least $n - i$ variables simultaneously for each integer i in $1 \le i \le n$.

Appendix B

Parameterization PM1 for structure 1 in figure 2 (all variables are binary):

Parameterization PM2 for structure 2 in figure 2:

 $p(u = 1) = .5$
 $p(v = 1) = .5$ $p(z = 1 | u = 1, v = 1, v = 1) = .8$ $p(z = 1 | u = 1, v = 1, v = 0) = .8$ $p(x = 1|u = 1) = .8$
 $p(x = 1|u = 0) = .2$
 $p(z = 1|u = 1, v = 0, y = 0) = .8$
 $p(z = 1|u = 1, v = 0, y = 0) = .8$ $p(z = 1 | u = 1, v = 0, y = 0) = .8$ $p(z = 1 | u = 0, v = 1, y = 1) = .8$ $p(y = 1|v = 1, x = 1) = .8$
 $p(y = 1|v = 1, x = 0) = .8$
 $p(z = 1|u = 0, v = 1, y = 0) = .8$
 $p(z = 1|u = 0, v = 0, y = 1) = .8$ $p(y = 1|v = 1, x = 0) = .8$
 $p(y = 1|v = 0, x = 1) = .8$
 $p(z = 1|u = 0, y = 0, y = 0) = .2$ $p(z = 1 | u = 0, v = 0, v = 0) = .2$ $p(y=1|y=0, x=0) = .2$

Passive observational distribution:

PM1:
$$
P(X, Y, Z) = \sum_{uv} P(U)P(V)P(X|U)P(Y|V, X)P(Z|U, V, X, Y)
$$

PM2: $P(X, Y, Z) = \sum_{uv} P(U)P(V)P(X|U)P(Y|V, X)P(Z|U, V, Y)$

Experimental distribution when x is subject to an intervention $($ I write $P(A|B||B)$ to mean the conditional probability of A given B in an experiment where B has been subject to a surgical intervention):

PM1:
$$
P(Y, Z|X||X) = \sum_{uv} P(U)P(V)P(Y|V,X)P(Z|U, V, X, Y)
$$

PM2: $P(Y, Z|X||X) = \sum_{uv} P(U)P(V)P(Y|V, X)P(Z|U, V, Y)$

Experimental distribution when ν is subject to an intervention:

PM1:
$$
P(X, Z|Y||Y) = \sum_{w} P(U)P(V)P(X|U)P(Z|U, V, X, Y)
$$

PM2: $P(X, Z|Y||Y) = \sum_{w} P(U)P(V)P(X|U)P(Z|U, V, Y)$

Experimental distribution when z is subject to an intervention:

$$
PM1: P(X, Y|Z||Z) = \sum_{uv} P(U)P(V)P(X|U)P(Y|V,X)
$$

$$
PM2: P(X, Y|Z||Z) = \sum_{uv} P(U)P(V)P(X|U)P(Y|V,X)
$$

By substituting the terms of PM1 and PM2 in the above equations it can be verified that PM1 and PM2 have identical passive observational and single-intervention distributions but that they differ for the following double-intervention distribution on x and y .

Experimental distribution when x and y are subject to an intervention:

PM1:
$$
P(Z|X, Y||X, Y) = \sum_{uv} P(U)P(V)P(Z|U, V, X, Y)
$$

PM2: $P(Z|X, Y||X, Y) = \sum_{uv} P(U)P(V)P(Z|U, V, Y)$

PM1 and PM2 (unsurprisingly) have identical distributions for the other two double-intervention distributions, since the $x \rightarrow z$ edge is broken and the remaining parameters are identical in the parameterizations:

Experimental distribution when x and z are subject to an intervention:

PM1:
$$
P(Y|X, Z||X, Z) = \sum_{v} P(V)P(Y|V, X)
$$

PM2: $P(Y|X, Z||X, Z) = \sum_{v} P(V)P(Y|V, X)$

Experimental distribution when y and z are subject to an intervention:

$$
PM1: P(X|Y,Z||Y,Z) = \sum_{u} P(U)P(X|U)
$$

PM2:
$$
P(X|Y,Z||Y,Z) = \sum_{u} P(U)P(X|U)
$$

Appendix C

Parameterization PM3 for structure 1 in figure 2:

Substituting the parameters of PM3 in the equations for the passive observational or any experimental distributions of PM1 in appendix 2, it can be