Table 1S. Sequences of SODAs and SODCs from trypanosomatids (*Leishmania* and *Trypanosoma*) used in this study

Abbreviation	Organism	Accession number	Source ¹
LbSODA	L. braziliensis M2904	LbrM08_V2.0330	GeneDB
LdcSODA	L. donovani chagasi Jonas	AAC38830.1	GenBank
Ld/i/mSODA	L. donovani 1S2D	AAQ14562.1	GenBank
Ld/i/mSODA	L. infantum JPCM5	LinJ08.0300	GeneDB
Ld/i/mSODA	<i>L. major</i> Friedlin	AAQ14563.1	GenBank
LmSODA	L. major Friedlin	CAJ02208.1	GenBank
Tb427SODA	T. brucei 427	AAX77683.1	GenBank
Tb927SODA	T. brucei TREU927	XP_845007.1	GenBank
TbgSODA	T. brucei gambiense	Tbgamb.9921	GeneDB
TcoSODA	T. congolense	congo1275h05.q1k_8	GeneDB
TcrBSODA	<i>T. cruzi</i> CL Brener	XP_812157.1	GenBank
TcrYSODA	T. cruzi Y	AAX84933.1	GenBank
TvSODA	T. vivax	Tviv1213f02.q1k	Sanger Institute
LbSODC	L. braziliensis M2904	LbrM32_V2.2870	GeneDB
LiSODC	L. infantum JPCM5	LinJ32.3130	GeneDB
LmSODC	L. major Friedlin	LmjF32.2630	GeneDB
Tb927SODC	T. brucei TREU927	XP_829639.1	GenBank
Tb427/gSODC	T. brucei 427	AAX77682.1	GenBank
Tb427/gSODC	T. brucei gambiense	Tbgamb.42456	GeneDB
TcoSODC	T. congolense	congo1267c10.q1k	Sanger Institute
TcrB1SODC	<i>T. cruzi</i> CL Brener	XP_804696.1	GenBank
TcrB2SODC	<i>T. cruzi</i> CL Brener	XP_815674.1	GenBank
TvSODC	T. vivax	Tviv1770c08.p1k_5	GeneDB

¹GeneBank: http://www.ncbi.nlm.nih.gov; GeneDB: http://www.genedb.org; The Sanger Institute: http://www.sanger.ac.uk.

Table 2S	. Sequences	of mitochondrial	matrix-targeted	proteins of the	Trypanosomat	idae used
in this stu	ıdy ¹					

Accession number	Organism	Annotation	Source ²
2206467C	Crithidia fasciculata	histone H1-like protein p16	GenBank
AAA68599.2	Crithidia fasciculata	DNA polymerase beta	GenBank
AAB70749.1	Crithidia fasciculata	kinetoplast-associated protein p18-1	GenBank
AAC32801.1	Crithidia fasciculata	histone H1-like protein p21	GenBank
AAN46297.1	Crithidia fasciculata	histone H1-like kinetoplast DNA- binding protein p17	GenBank
AAQ88427.1	Crithidia fasciculata	kinetoplast DNA ligase k beta	GenBank
A4H9H8	Leishmania braziliensis	citrate synthase	GenBank
CAJ05692.1	Leishmania major	serine hydroxymethyltransferase	GenBank
CAJ07717.1	Leishmania major	malate dehydrogenase	GenBank
P12076	Leishmania major	heat shock 70-related protein 1	UniProt
P56281	Leishmania tarentolae	heat shock 60 protein	UniProt
Q25417	Leishmania tarentolae	aldehyde dehydrogenase	UniProt
AAC27101.1	Trypanosoma brucei	malate dehydrogenase	GenBank
AAK64278.1	Trypanosoma brucei	RNA-editing complex protein MP81	GenBank
AAK64279.1	Trypanosoma brucei	RNA-editing complex protein MP63	GenBank
AAK64280.1	Trypanosoma brucei	RNA-editing complex protein MP42	GenBank
AAM81963.1	Trypanosoma brucei	DNA polymerase I-like protein B	GenBank
AAM81964.1	Trypanosmoa brucei	DNA polymerase I-like protein C	GenBank
AAX69289.1	Trypanosoma brucei	short-chain dehydrogenase	GenBank
AAX69898.1	Trypanosoma brucei	acyl carrier protein	GenBank
AAX79977.1	Trypanosoma brucei	oxidoreductase	GenBank
P82863	Trypanosoma brucei	RNA-editing ligase 1 MP52	UniProt
Q95W12	Trypanosoma brucei	RNA-editing complex protein MP18	UniProt
XP_001218997.1	Trypanosoma brucei	conserved hypothetical protein Tb927.1.2990	GenBank
XP_827428.1	Trypanosoma brucei	iron-sulfur cluster assembly protein	GenBank
XP_827446.1	Trypanosoma brucei	acyl transferase-like protein	GenBank
XP_827827.1	Trypanosoma brucei	citrate synthase	GenBank
XP_828352.1	Trypanosoma brucei	succinyl-CoA:3-ketoacid-coenzyme A transferase	GenBank
XP_829062.1	Trypanosoma brucei	2-oxoglutarate dehydrogenase E1 component	GenBank
XP_829682.1	Trypanosoma brucei	hypothetical protein Tb11.01.7930	GenBank
XP_843727.1	Trypanosoma brucei	conserved hypothetical protein Tb927.3.1330	GenBank
XP_843773.1	Trypanosoma brucei	pyruvate dehydrogenase E1 beta subunit	GenBank
XP_845400.1	Trypanosoma brucei	L-threonine 3-dehydrogenase	GenBank

XP_845557.1	Trypanosoma brucei	conserved hypothetical protein Tb927.6.4400	GenBank
XP_845738.1	Trypanosoma brucei	andtrypanothione/tryparedoxin dependent peroxidase 3	GenBank
XP_847200.1	Trypanosoma brucei	isocitrate dehydrogenase [NADP]	GenBank
XP_847316.1	Trypanosoma brucei	conserved hypothetical protein Tb927.8.4860	GenBank
XP_847436.1	Trypanosoma brucei	2-amino-3-ketobutyrate coenzyme A ligase	GenBank
XP_951580.1	Trypanosoma brucei	hypothetical protein Tb927.2.3180	GenBank
XP_951693.1	Trypanosoma brucei	3-oxoacyl-(ACP) reductase	GenBank
P82864	Trypanosoma brucei brucei	RNA-editing ligase MP48	UniProt
Q04933	Trypanosoma brucei brucei	dihydrolipoyl/dihydrolipoamide dehydrogenase	GenBank
Q37683	Trypanosoma brucei brucei	heat shock 60 protein	UniProt
O79469	Trypanosoma cruzi	peroxiredoxin	UniProt
P20583	Trypanosoma cruzi	heat shock 70 protein	UniProt
P90597	Trypanosoma cruzi	dihydrolipoyl dihydrolipoamide dehydrogenase	GenBank
Q95046	Trypanosoma cruzi	heat shock 60 protein	UniProt
XP_811987.1	<i>Trypanosoma cruzi</i> strain CL Brener	glycerol-3-phosphate dehydrogenase	GenBank

¹The N-terminal extensions of SODAs and SODCs from *Trypanosoma* species and SODAs from *Leishmania* were complete, but SODCs from *Leishmania* were shorter than those from *Trypanosoma*. However, a detailed inspection of *Leishmania* genomic sequences upstream of *sodc* genes revealed that these regions had no in-frame stop codons for a long distance, and that their inferred amino acid sequences were similar to the N-terminal regions of *Trypanosoma* SODCs. Therefore, we extended the sequences from *Leishmania* by 43 residues in these apparently homologous regions.

²GenBank: http://www.ncbi.nlm.nih.gov; UniProt: http://www.expasy.uniprot.org

Table 3S. Sequences of nuclear-encoded plastid-targeted proteins of euglenoids and dinoflagellates used in this study

Accession number	Organism	Annotation	Reference
Euglenoids			
EEL00000923	Euglena gracilis	PEP/phosphate translocator	Durnford and Gray (2006)
EEL00002060	Euglena gracilis	Mg-protoporphyrin IX methyltransferase	Durnford and Gray (2006)
EEL00002416	Euglena gracilis	peptide chain release factor, RF 2	Durnford and Gray (2006)
EEL00002660	Euglena gracilis	СІрВ	Durnford and Gray (2006)
EEL00003294	Euglena gracilis	ABC transporter	Durnford and Gray (2006)
EEL00003630	Euglena gracilis	photosystem II protein (PsbW)	Durnford and Gray (2006)
EEL00003784	Euglena gracilis	phosphoribulokinase	Durnford and Gray (2006)
EEL00003797	Euglena gracilis	PSI subunit IV protein (PsaE)	Durnford and Gray (2006)
EEL00004932	Euglena gracilis	50S ribosomal protein L9	Durnford and Gray (2006)
EEL00006808	Euglena gracilis	squalene and phytoene synthases	Durnford and Gray (2006)
EEL00008550	Euglena gracilis	Short-chain (SC) dehydrogenase	Durnford and Gray (2006)
EEL00009282	Euglena gracilis	MECP synthase	Durnford and Gray (2006)
Dinoflagellates			
CK784108	Alexandrium tamarense	acyl carrier protein	Patron <i>et al.</i> (2005)
CF064566	Amphidinium carterae	ribosomal protein L16	Patron <i>et al.</i> (2005)
CF065976	Amphidinium carterae	ATP synthase subunit I	Patron <i>et al.</i> (2005)
CF067008	Amphidinium carterae	ATP synthase subunit gamma	Patron <i>et al.</i> (2005)
CF067087	Amphidinium carterae	cytochrome b	Patron <i>et al.</i> (2005)
CF067099	Amphidinium carterae	an unknown protein	Patron <i>et al.</i> (2005)
CF067331	Amphidinium carterae	a membrane protein	Patron <i>et al.</i> (2005)
CF067332	Amphidinium carterae	photosystem II protein L	Patron <i>et al.</i> (2005)
AAW79290	Heterocapsa triquerta	acyl carrier protein	Patron <i>et al.</i> (2005)
AAW79296	Heterocapsa triquerta	ATP synthase subunit gamma	Patron <i>et al.</i> (2005)
AAW79300	Heterocapsa triquerta	carbonic anhydrase	Patron et al. (2005)
AAW79321	Heterocapsa triquerta	phosphoribulokinase	Patron <i>et al.</i> (2005)
AAW79330	Heterocapsa triquerta	beta-keto acyl reductase	Patron <i>et al.</i> (2005)
AAW79335	Heterocapsa triquerta	dimethyladenosine synthase	Patron <i>et al.</i> (2005)
AAW79349	Heterocapsa triquerta	photosystem II protein L	Patron <i>et al.</i> (2005)

Table 4S. Programs predicting targeting signals and subcellular localizations used in this study.

Program name	Reference			
Programs specializing in the p	Programs specializing in the prediction of signal peptides (SP)			
DetecSig in ConPred II	Lao and Shimizu (2001)			
Phobius	Käll <i>et al.</i> (2004)			
PrediSi	Hiller <i>et al.</i> (2004)			
Sigcleave in EMBOSS 3.0.0	Rice <i>et al.</i> (2000)			
SignalP-HMM 3.0	Nielsen and Krogh (1998)			
SignalP-NN 3.0	Bendsten <i>et al.</i> (2004)			
SIG-Pred	bioinformatics.leeds.ac.uk/prot_analysis/Signal.html			
SOSUIsignal	Gomi <i>et al.</i> (2004)			

Programs that distinguish different kinds of N-terminal targeting signals, such as signal peptides, mitochondrial transit peptides, and plastid transit peptides

BLSTM-LOC 1.0	139.91.72.10/blstm/blstm.html
iPSORT	Bannai <i>et al.</i> (2002)
Predotar 1.03	Small <i>et al.</i> (2004)
PredSL	www.195.134.85.247/PredSL/index.html
PProwler 1.2	Bodén and Hawkins (2005)
TargetLoc	Hoglund <i>et al.</i> (2006)
TargetP 1.1	Emanuelsson <i>et al.</i> (2000)

Programs specializing in the prediction of mitochondrial transit peptides or mitochondrial localizations

MITOPRED	Guda <i>et al.</i> (2004)
MitoProt II 1.0a4	Claros and Vincens (1996)
SubMito	Du and Li (2006)

Programs that predict different subcellular localizations of a protein			
BaCelLo	Pierleoni <i>et al.</i> (2006)		
CELLO 2.5	Yu <i>et al.</i> (2004)		
ESLpred	Bhasin and Raghava (2004)		
LOCtree	Nair and Rost (2005)		
MultiLoc	Hoglund <i>et al.</i> (2006)		
PLOC	Park and Kanehisa (2003)		
Protcomp 6.0	www.softberry.com		
pSLIP	Sarda <i>et al.</i> (2005)		
PSORT II	Nakai and Horton (1999)		
PSORT 6.4	Nakai and Horton (1999)		
SubLoc 1.0	Hua and Sun (2001)		
WoLF PSORT	Horton <i>et al.</i> (2006)		

Table 5S. The percentage composition of amino acids in SODA, SODC, *Euglena* and dinoflagellate plastid protein, and trypanosomatid mitochondrial matrix-targeted protein pre-sequences

(The table contains median and quartile range (in parentheses) of amino acids for which differences between the groups were statistically significant at P < 0.05.)

	Pre-sequences			
Amino acid	SODCs	Plastid proteins (<i>Euglena</i> and dinoflagellates)	SODAs	Mitochondrial proteins (trypanosomatids)
Alanine (A)	7.9 (7.2-9.9)	16.7 (14.3-21.4)	13.9 (12.5-15.6)	7.9 (0.0-12.5)
Arginine (R)	11.3 (10.9-12.4)	7.4 (4.2-8.5)	9.4 (6.3-11.8)	16.7 (14.0-23.1)
Asparagine (N)	4.0 (4.0-4.1)	1.7 (0.8-2.4)	0.0 (0.0-5.6)	0.0 (0.0-1.0)
Aspartic acid (D)	4.4 (4.0-6.2)	2.4 (1.0-3.4)	0.0 (0.0-0.0)	0.0 (0.0-0.0)
Glutamic acid (E)	4.1 (4.1-4.4)	2.1 (1.0-4.0)	0.0 (0.0-0.0)	0.0 (0.0-0.0)
Glutamine (Q)	4.0 (3.3-4.1)	3.2 (1.7-6.6)	0.0 (0.0-2.8)	0.0 (0.0-4.4)
Glycine (G)	6.9 (5.6-6.9)	6.6 (5.5-8.2)	6.3 (3.1-8.3)	0.0 (0.0-5.9)
Leucine (L)	4.4 (4.0-8.2)	9.8 (7.9-12.7)	12.5 (11.1-15.6)	11.1 (5.7-16.7)
Lysine (K)	3.0 (2.2-3.1)	1.9 (1.0-3.0)	3.1 (3.1-5.6)	0.0 (0.0-3.9)
Methionine (M)	3.3 (3.1-4.0)	3.2 (1.8-5.0)	6.5 (6.3-13.9)	8.3 (5.0-11.1)
Proline (P)	4.1 (4.0-4.4)	6.0 (4.8-9.2)	8.3 (6.3-9.4)	0.0 (0.0-5.8)
Tyrosine (Y)	7.8 (7.2-7.9)	0.9 (0.0-2.1)	3.1 (2.8-6.3)	0.0 (0.0-0.0)

REFERENCES (FOR TABLES 3 AND 4)

Bannai, H., Tamada, Y., Maruyama, O., Nakai, K. and Miyano, S. (2002). Extensive feature detection of N-terminal protein sorting signals. *Bioinformatics* **18**, 298-305.

Bendsten, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. *Journal of Molecular Biology* **340**, 783-795.

Bhasin, M. and Raghava, G. P. (2004). ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. *Nucleic Acids Research* **32** (Web Server issue), W414-W419.

Bodén, M. and Hawkins, J. (2005). Prediction of subcellular localization using sequence-biased recurrent networks. *Bioinformatics* **21**, 2279-2286.

Claros, M. G. and Vincens, P. (1996). Computational method to predict mitochondrially imported proteins and their targeting sequences. *European Journal of Biochemistry* **241**, 779-786.

Du, **P. and Li**, **Y.** (2006). Prediction of protein submitochondria locations by hybridizing pseudoamino acid composition with various physicochemical features of segmented sequence. *BMC Bioinformatics* **7**, 518.

Durnford, D. G. and Gray, M. W. (2006). Analysis of *Euglena gracilis* plastid-targeted proteins reveals different classes of transit sequences. *Eukaryotic Cell* **5**, 2079-2091.

Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. *Journal of Molecular Biology* 300, 1005-1016.

Gomi, M., Sonoyama, M. and Mitaku, S. (2004). High performance system for signal peptide prediction: SOSUIsignal. *Chem-Bio Informatics Journal* **4**, 142-147.

Guda, C., Guda, P., Fahy, E. and Subramaniam, S. (2004). MITOPRED: a web server for the prediction of mitochondrial proteins. *Nucleic Acids Research* **32**, W372-W374.

Hiller, K., Grote, G., Scheer, M., Münch, R. and Jahn, D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. *Nucleic Acids Research* **32** (Web Server issue), W375-W379.

Horton, P., Park, K. J., Obayashi, T. and Nakai, K. (2006). Protein subcellular localization prediction with WoLF PSORT. In *Proceedings of the 4th Asia-Pacific Bioinformatics Conference* (*APBC2006*) (ed. Jiang, T. *et al.*), pp. 39-48. Imperial College Press, Taibei.

Hoglund, A., Donnes, P., Blum, T., Adolph, H. W. and Kohlbacher, O. (2006). MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. *Bioinformatics* **22**, 1158-1165.

Hua, S.and Sun, Z. (2001). Support vector machine approach for protein subcellular localization prediction. *Bioinformatics* **17**, 721-728.

Käll, L., Krogh, A. and Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. *Journal of Molecular Biology* **338**, 1027-1036.

Lao, D. M. and Shimizu, T. (2001). A method for discriminating a signal peptide and a putative 1st transmembrane segment. In *Proceedings of the 2001 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS'01)* (ed. Valafar, F.), pp. 119-125. CSREA Press, USA.

Nair, R. and Rost, B. (2005). Mimicking cellular sorting improves prediction of subcellular localization. *Journal of Molecular Biology* **348**, 85-100.

Nakai, K. and Horton, P. (1999). PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. *Trends in Biochemical Sciences* 24, 34-36.

Nielsen, H. and Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hiddenMarkov model. *Proceedings: International Conference on Intelligent Systems for Molecular Biology* 6, 122-130.

Park, K. J. and Kanehisa, M. (2003). Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. *Bioinformatics* **19**, 1656-1663.

Patron, N. J., Waller, R. F., Archibald, J. M. and Keeling, P. J. (2005). Complex protein targeting to dinoflagellate plastids. *Journal of Molecular Biology* **348**, 1015-1024.

Pierleoni, A., Martelli, P. L., Fariselli, P. and Casadio, R. (2006). BaCelLo: a balanced subcellular localization predictor. *Bioinformatics* 22, 408-416.

Rice, P., Longden, I. and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. *Trends in Genetics* **16**, 276-277.

Sarda, D., Chua, G. H., Li, K. B. and Krishnan, A. (2005). pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties. *BMC Bioinformatics* **6**, 152.

Small, I., Peeters, N., Legeai, F. and Lurin, C. (2004). Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. *Proteomics* **4**, 1581-1590.

Yu, C. S., Lin, C. J. and Hwang, J. K. (2004). Predicting subcellular localization of proteins for
Gram-negative bacteria by support vector machines based on n-peptide compositions. *Protein Science* 13, 1402-1406.

LEGENDS TO FIGURES

Fig. 1S. Analyses of N-terminal extensions of mitochondrial matrix-targeted proteins from trypanosomatids. Although these pre-sequences show some variation in their hydropathy profiles, they are relatively short and do not have the wide hydrophobic domain followed by a long hydrophilic region characteristic of N-terminal extensions of both SODCs (see Fig. 3) and *Euglena* and dinoflagellate plastid proteins (see Fig. 2S in Supplementary material). Overall, hydropathy profiles of mitochondrial matrix-targeted proteins clearly resemble those of SODAs (see Fig. 1). Please compare AAK64280.1 with LdcSODA, O79469 with Tb427SODA, XP_843727.1 with TcoSODA, and XP_847200.1 with TvSODA. For a further description see Fig. 1.

Fig. 2S. Analyses of the N-terminal extensions of proteins targeted to multimembrane plastids, represented here by *Euglena* (left panel) and dinoflagellate (right panel) proteins. Their pre-sequences have a bipartite nature with a distinct hydrophobic domain followed by a long hydrophilic domain. Interestingly, a very similar pre-sequence architecture is characteristic of SODCs (see Fig. 3). Please compare, for example, EEL00003797 with LiSODC, AAW79321 with LmSODC, EEL00002416 with TcrB1SODC, or AAW79349 with TvSODC. For a further description see Fig. 1.

Fig. 3S. Correspondence analyses of the amino acid compositions of pre-sequences of SODAs, trypanosomatid mitochondrial matrix-targeted proteins, SODCs, as well as *Euglena* and dinoflagellate plastid proteins. The analyses were performed on four physicochemical classes of amino acids: acidic (D, E), basic (H, K, R), polar (N, Q, S, T, Y) and hydrophobic or nonpolar (A, C, F, G, I, L, M, P, V, W). The first two dimensions explain in sum 82.3 % of the variance. The acidic class constitutes 54 % of the first dimension and polar class almost 49 % in the second dimension. The ellipsoids shown indicate 85 % confidence.

Fig. 4S. Alignment of the N-terminal extensions of SODCs. Particular residues are shaded according to their levels of conservation. The band below the alignment shows predictability of a signal peptide. The intensity of shading is proportional to the fraction of software that predicted the given site to be a signal peptide, as shown by the scale bar.

11

Fig. 2S

12

Fig. 4S

levels of residue conservation according to the BLOSUM 62

scale of signal peptide predictability

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0