IUCN Captive management guidelines support ex situ conservation of the Bengal florican *Houbaropsis bengalensis blandini*

SIMON P. MAHOOD, CHAMNAN HONG, MICHAEL MEYERHOFF, PAU P. FERRANDO, PHEARUN SUM, VIRAK SON, PENGANN OUCH and STEPHEN T. GARNETT

SUPPLEMENTARY TABLE 1 Demographic parameters for models of *Houbaropsis bengalensis blandini* captive breeding and release under four scenarios of programme quality (full range, below average, above average and best possible) and in situ conservation under two scenarios (current situation and future conservation), showing minimum (Min) and maximum (Max) values from which each programme iteration was sampled. Whether the parameter is restricted during the learning phase (Learn) is also shown (Y, yes; N, no; n/a: not applicable).

		Scenario of captive breeding programme quality							
		Full range Below		Above		Best			
		C		average		average		possible	
Parameter	Learn	Min	Max	Min	Max	Min	Max	Min	Max
Learning for husbandry	n/a	2	4	3	4	2	3	2	2
Proportionate	n/a	0.6	1	0.6	0.8	0.8	1	0.85	1
adjustment of relevant									
parameters during									
learning period									
Hatch rate of collected	Y	0.5	0.75	0.5	0.6	0.55	0.75	0.6	0.75
wild-laid eggs (with									
artificial incubation)									
Juvenile survival to year	Y	0.45	0.85	0.45	0.7	0.7	0.85	0.75	0.85
1 of wild-laid captive-									
reared chicks									
Adult survival in	Y	0.83	0.97	0.83	0.88	0.88	0.97	0.92	0.97
captivity									
Age of male first	Ν	1	5	3	5	2	3	1	2
breeding (years)									
Age of female sexual	Ν	1	4	3	4	2	3	1	2
maturity (years)									
Learning lag (years)	Ν	1	7	4	7	1	4	1	2
between first females									
reaching sexual maturity									
and breeding									
After first breeding,	Y	0.6	0.9	0.6	0.7	0.65	0.9	0.7	0.9
subsequent annual									
probability that an adult									
females will again breed									

Clutches female ⁻¹ yr ⁻¹ ,	Ν	1	1	1	1	1	1	1	2
for first two years of									
breeding age									
Mean clutches female ⁻¹	Ν	1	3	1	1.3	1.15	3	1.3	3
yr ⁻¹ , for subsequent									
breeding									
Hatching rate of captive	Y	0.45	0.78	0.45	0.6	0.65	0.75	0.68	0.78
reared eggs (with									
artificial incubation)									
Survival of captive	Y	0.6	0.78	0.6	0.67	0.67	0.78	0.72	0.78
juvenile to 1 year old									
Prior to first stochastic	Ν	0.05	0.167	0.125	0.167	0.1	0.167	0.05	0.1
adult event: annual									
probability of severe									
adult mortality event									
First stochastic adult	Ν	0.25	0.8	0.3	0.8	0.25	0.8	0.25	0.5
event: severe additive									
adult mortality									
Prior to first stochastic	Ν	0.2	0.5	0.333	0.5	0.2	0.5	0.2	0.333
adult event: annual									
probability of moderate									
adult mortality event									
First stochastic adult	Ν	0.1	0.2	0.15	0.2	0.1	0.15	0.1	0.15
event: severe additive									
adult mortality									
After first stochastic	Ν	0.2	0.5	0.333	0.5	0.333	0.5	0.2	0.5
adult event: annual									
probability of stochastic									
adult mortality									
After first stochastic	Ν	0.1	0.2	0.15	0.2	0.1	0.15	0.1	0.15
adult event: additive									
adult mortality									
Annual probability of	Ν	0.2	0.5	0.333	0.5	0.2	0.5	0.2	0.333
stochastic juvenile									
mortality									
Additive chick or	Ν	0.08	0.15	0.08	0.15	0.08	0.15	0.08	0.15
juvenile mortality									
Annual probability of	Ν	0.1	0.333	0.25	0.333	0.1	0.333	0.1	0.2
stochastic reduction in									
proportion of females									
breeding									
Reduction in proportion	Ν	0.15	0.2	0.15	0.2	0.15	0.2	0.15	0.2
of adult females									
breeding									
Juvenile survival to	N	0.45	0.88	0.45	0.66	0.58	0.88	0.75	0.88
release									

Juvenile survival post	Ν	0.1	0.3	0.1	0.3	0.1	0.3	0.1	0.3
release to 1 year									
		In sit	<i>u</i> conse	rvation	for wild	and pos	t-release		
		Curre	ent					Future	
		situat	situation				situation		
Annual probability that	n/a	0.33	0.8					0.33	0.8
an adult female will									
breed									
Wild nest survival	n/a	0.4	0.7					0.6	0.7
Re-nesting rate after	n/a	0.1	0.5					0.1	0.5
failure									
Wild juvenile survival to	n/a	0.1	0.3					0.1	0.2
1 year									
Adult survival	n/a	0.82	0.98					0.6	0.8

SUPPLEMENTARY TABLE 2 Evidence base used to estimate *H. bengalensis blandini* demographic parameters

Parameter	Evidence
Learning for husbandry	Estimates used are same as Dolman et al. (2015) owing to a lack
	of evidence to the contrary
Proportionate adjustment	Estimates used are same as Dolman et al., (2015) owing to a lack
of relevant parameters	of evidence to the contrary
during learning period	
Hatch rate of collected	Estimates used are same as Dolman et al., (2015) owing to a lack
wild-laid eggs (with	of evidence to the contrary
artificial incubation)	
Juvenile survival to year	Estimates used are same as Dolman et al., (2015) owing to a lack
1 of wild-laid captive-	of evidence to the contrary
reared chicks	
Adult survival in	Estimates used are same as Dolman et al., (2015) owing to a lack
captivity	of evidence to the contrary (One male Bengal Florican kept in
	captivity in Cambodia in 2018 (for the purpose of rehabilitation)
	survived for three months at which time it was released to the wild
	(ACCB unpublished data)).
Age of male first	Male Little Bustard breed at age 2 years (Bretagnolle & Inchausti,
breeding (years)	2005). Captive male Houbara and McQueens Bustards breed at 1–
	4 years (Dolman et al., 2015).
Age of female sexual	Female Little Bustard will start breeding after 1 year (Bretagnolle
maturity (years)	& Inchausti, 2005). Satellite telemetry data indicate that sub-adult
	females $(n = 2)$ have similar home range size to adult females $(n = 2)$
	7) during the breeding season (Packman, 2011), so might also be
	breeding. Captive female Houbara and McQueens Bustards breed
	at 1–3 years (Dolman et al., 2015).
Learning lag (years)	Estimates used are same as Dolman et al., (2015) owing to a lack
between first females	of evidence to the contrary.
reaching sexual maturity	
and breeding	
After first breeding,	Estimates used are same as Dolman et al., (2015) owing to a lack
subsequent annual	of evidence to the contrary
probability that an adult	
females will again breed	
Clutches female ⁻¹ yr ⁻¹ , for	Estimates used are same as Dolman et al., (2015) owing to a lack
first two years of	of evidence to the contrary
breeding age	
Mean clutches female	Estimates used are same as Dolman et al., (2015) owing to a lack
yr ⁻ , for subsequent	of evidence to the contrary
breeding	
Hatching rate of captive	Estimates used are same as Dolman et al., (2015) owing to a lack
reared eggs (with	of evidence to the contrary
artificial incubation)	

Survival of captive	Estimates used are same as Dolman et al., (2015) owing to a lack
juvenile to 1 year old	of evidence to the contrary
Prior to first stochastic	Estimates used are same as Dolman et al., (2015) owing to a lack
adult event: annual	of evidence to the contrary
probability of severe	
adult mortality event	
First stochastic adult	Estimates used are same as Dolman et al., (2015) owing to a lack
event: severe additive	of evidence to the contrary
adult mortality	
Prior to first stochastic	Estimates used are same as Dolman et al., (2015) owing to a lack
adult event: annual	of evidence to the contrary
probability of moderate	
adult mortality event	
First stochastic adult	Estimates used are same as Dolman et al., (2015) owing to a lack
event: severe additive	of evidence to the contrary
adult mortality	
After first stochastic adult	Estimates used are same as Dolman et al., (2015) owing to a lack
event: annual probability	of evidence to the contrary
of stochastic adult	
mortality	
After first stochastic adult	Estimates used are same as Dolman et al., (2015) owing to a lack
event: additive adult	of evidence to the contrary
mortality	
Annual probability of	Estimates used are same as Dolman et al., (2015) owing to a lack
stochastic juvenile	of evidence to the contrary
mortality	
Additive chick or juvenile	Estimates used are same as Dolman et al., (2015) owing to a lack
mortality	of evidence to the contrary
Annual probability of	Estimates used are same as Dolman et al., (2015) owing to a lack
stochastic reduction in	of evidence to the contrary
proportion of females	
breeding	
Reduction in proportion	Estimates used are same as Dolman et al., (2015) owing to a lack
of adult females breeding	of evidence to the contrary
Juvenile survival to	Estimates used are same as Dolman et al., (2015) owing to a lack
release	of evidence to the contrary
Juvenile survival post	Estimates used are same as Dolman et al., (2015) owing to a lack
release to 1 year	of evidence to the contrary
Annual probability that	2-6 of 6 radio tagged female Bengal Florican nested (Gray et al.,
an adult female will breed	2009); 17 of 22 radio-tagged female Little Bustard nested
	(Lapiedra et al., 2011).
Wild nest survival	For $n = 63$ Bengal Florican nests monitored between 2008 and
	2018 in a well-protected grassland survival rate was 63%,
	although success rates appear to be higher in recent years (WCS
	unpublished data). Survival rates unknown in other areas so lower
	estimate used by Dolman et al., (2015) also used here: future nest

	survival rates assumed to be higher because birds (if still present)
	will be restricted to well-protected areas.
Re-nesting rate after	Satellite telemetry data and bi-model pattern of nest dates suggest
failure	Bengal Floricans can nest twice per year (Packman, 2011). Rates
	unknown, so data from Dolman et al., (2015) used for current
	situation; since evidence is equivocal on whether second nest is
	due to failure of the first; contra Dolman et al., (2015) we see no
	reason to assert that re-nesting rates would change under future
	scenarios.
Wild juvenile survival to	No Bengal Florican data. Data from Dolman et al., (2015) used,
1 year	although with less optimistic future estimate owing to impact of
-	power lines.
Adult survival	In absence of power lines, data from Cambodia indicate annual
	adult survival rate of Bengal Florican is 89.9% (95% CI 82.2–
	97.6%); this is expected to decline in the future owing to power
	line collisions (Mahood et al., 2016).

SUPPLEMENTARY FIG. 1 Sensitivity of (a) mean extirpation probability and (b) geometric mean numbers of adult females, to aspects of captive-breeding performance, under the 'best possible' programme quality scenario substituting each parameter in turn with a value drawn from the 'full-range' scenario. Error bars represent 95% limits for extirpation probability and upper and lower quartiles for numbers of females in year 10; vertical dashed lines show the 95% intervals or 50% quartiles of 1,000 iterations prior to sensitivity analysis. Sensitivity to stochastic parameters was examined for the 'best possible' scenario, by varying the magnitude of impacts on survival or breeding by $\pm 25\%$. Captive populations are established by initial harvest of 10 eggs yr⁻¹ for 5 years.

References

- Bretagnolle, V. & Inchausti, P. (2005) Modelling population reinforcement at a large spatial scale as a conservation strategy for the declining little bustard (*Tetrax tetrax*) in agricultural habitats. *Animal Conservation*, 8, 59-68.
- Dolman, P.M., Collar, N.J., Scotland, K.M. & Burnside, R.J. (2015) Ark or park: the need to predict relative effectiveness of *ex situ* and *in situ* conservation before attempting captive breeding. *Journal of Applied Ecology*, 52, 841-850.
- Gray, T.N.E., Chamnan, H., Collar, N.J. & Dolman, P.M. (2009) Sex-specific habitat use by a lekking bustard: conserv implications for the critically endangered bengal florican (*Houbaropsis bengalensis*) in an intensifying agroecosystem. *The Auk*, **126**, 112-122.

Lapiedra, O., Ponjoan, A., Gamero, A., Bota, G. & Mañosa, S. (2011) Brood ranging behaviour and breeding success of the threatened little bustard in an intensified cereal farmland area. *Biological Conservation*, **144**, 2882-2890.

Mahood, S.P., Silva, J.P., Dolman, P.M. & Burnside, R.J. (2016) Proposed power transmission lines in Cambodia constitute a significant new threat to the largest population of the Critically Endangered Bengal florican *Houbaropsis bengalensis*. *Oryx*, **52**, 147-155.

Packman, C.E. (2011) Seasonal landscape use and conservation of a critically endangered bustard: Bengal florican in Cambodia. University of East Anglia.