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SUPPLEMENTARY TABLE 1 List of online databases and herbaria consulted.
Source/Location

Online databases
Global Biodiversity Information 
Facility 

http://www.gbif.org/occurrence

African Plant Database http://www.ville-ge.ch/musinfo/bd/cjb/africa
Anthos—Sistema de información sobre
las plantas de España

http://www.anthos.es

Banco de datos de Biodiversidad—
Generalitat Valenciana

http://bdb.cma.gva.es

Ministero dell'Ambiente e della Tutela 
del Territorio e del Mare (MATTM) & 
Istituto superiore per la protezione e la 
ricerca ambientale (ISPRA)

http://www.reportingdirettivahabitat.it

Herbaria*
AL University of Algiers (Algeria)
BC Botanical Institute of Barcelona (Spain)
CAG University of Cagliari (Italy)
GDA University of Granada
HJBS The Sóller Botanic Garden Herbarium (Spain)
MA Real Jardín Botánico of Madrid (Spain)
MGC University of Malaga (Spain)
MPU University of Montpellier (France)
P Muséum National d'Histoire Naturelle–Paris (France)
SASSA Faculty of Sciences, University of Sassari (Italy)
SEV University of Sevilla (Spain)
SS Faculty of Pharmacy, University of Sassari (Italy)
VAL University of Valencia (Spain)

*Abbreviations follow Thiers (2018).

1



SUPPLEMENTARY MATERIAL 1  Estimating  Helianthemum caput-felis  extinction  risk using the E
criterion of the IUCN Red List criteria: methodological details and implementation of models.

Data collection

Demographic data were collected on 98 permanent plots placed in six different populations along
the overall species distribution range and representative of the full ecological range in which the
plant  grows  (Sulis  et  al.,  2018).  In  each  population,  after  excluding  the  areas  with  extreme
conditions, permanent plots (2 × 1 m in size) were randomly placed in the area where the plant was
found;  within  the  plots,  all  present  plants  (821 in  the  first  census)  were  marked,  mapped  and
monitored over a three-year period (2013–2015; Sulis et al., 2018). All new seedlings that appeared
inside the plots were also counted, measured and mapped. Surveys took place three times per year,
following Jacquemyn et al.  (2010). In early March, all plots were surveyed for the first time to
locate all previously mapped individual plants and to map any new seedlings. During the flowering
peak (March–April), when all the plants were fully grown, the plots were surveyed a second time to
measure each plant (i.e. height, minimum and maximum diameter), to count the number of flowers
per plant and to check for the occasional new individuals, which were added to the data set. During
the  fruiting  peak (late  May–early  June),  the  last  survey was made on all  plots  to  estimate  the
number of fruits per plant. In this case, 10 mature fruits were randomly collected from each plot to
estimate the mean number of seeds per fruit (N = 980 fruits in total). The number of seeds per fruit
was directly counted in the laboratory, and subsequently, the number of seeds for each plant was
estimated by multiplying the average number of seeds per fruit and the number of fruits per plant
(Sulis et al., 2018). All the collected data were organized in a global geo-database.

Description and implementation of models

Population  models  provide  a  powerful  tool  for  population  biologists  to  estimate  parameters
important to population persistence and dynamics by modelling commonly collected demographic
data on stage and/or age transitions (Caswell, 2001). These models may result in biases, however,
where underlying state variables are continuous (Picard et al., 2010; Salguero-Gómez & Plotkin,
2010), such as for example, height, weight, biomass (Metcalf et al., 2013). These models quantify
all  ways (through survival  and reproduction)  in  which individuals  contribute  to  the size of the
population after one-time step.  Transition matrices  contain exactly  the same information as life
cycle graphs, but then organized in matrix form. Hence, matrix models represent the life cycle of
individuals, and can be used to investigate the dynamics of a population (Jongejans & de Kroon,
2012). A transition matrix (A) consists of matrix elements (aij) which describe survival, growth and
fecundity transitions from stage j to stage i during a certain period of time. Perturbation analyses of
the demographic matrices,  such as elasticity  analysis,  are used to determine which hypothetical
changes in matrix elements (aij) have the greatest effects on the deterministic population growth
rate (λ). The deterministic population growth rate denotes the asymptotic growth of the population,
which can indicate an increasing, stable or declining population (Ramula, 2008).

Recently, a new discrete-time structured method has been introduced: the integral projection model
(Easterling et al., 2000), which retains the desirable properties of the matrix projection model while
avoiding entirely the need to group plants into discrete stage classes. Integral projection models
describe how a population structured by a continuous individual-level  state variable  changes in
discrete time (Easterling et al., 2000). Integral projection models are defined by a kernel, which
represents  probability  densities  of  growth between discrete  or  continuous  stages  conditional  on
survival, and the production of offspring (Metcalf et al., 2013). It offers tools that can incorporate
stage,  age and continuous states into similar  analysis  of population dynamics  (Easterling et  al.,
2000; Ellner & Rees, 2006).

2



The main difference between an integral projection model and a matrix population model is that
whereas in discrete projection matrices the number of classes (i.e. number of stages in the life cycle
of the study species) must be defined a priori, integral projection models impose the discretization
of the three-dimensional surface for the purposes of numerical integration. This produces a typically
large  matrix  (e.g.  100  × 100  cells)  that  is  more  robust  to  biases  from matrix  dimensionality
(Zuidema et al., 2010; Salguero-Gómez & Plotkin, 2010) and sample size (e.g. Ramula et al., 2009)
than classical matrix models (Metcalf et al., 2014).

To investigate the demography of the H. caput-felis global population both the matrix population
model and the integral projection model were performed. In a constant environment, a modelled
asymptotic growth rate (λ) > 1 indicates that the population will eventually increase whereas λ < 1
indicates that the population will decline to extinction (Ezard et al., 2010).

The chosen variable (to define the size-classes in the matrix population model and as continuous
state variable in the integral projection model ) to evaluate the demographic dynamics of H. caput-
felis populations  was  plant  size  (plant  volume)  which  has  been  demonstrated  to  be  positive
correlated with the reproductive capacity (Fenu et al., 2015). The plant volume (plant size = V,
expressed in cm3) was calculated according to the formula in Fenu et al. (2015):

Plant size [cm3]: V = [π × (dM/2) × (dm/2)] × h

in  which  plant  height  (h)  and the  maximum and minimum diameter  (dM and  dm,  respectively)
directly measured for each individual plant were used.

Matrix population model implementation

To characterize  the  population  dynamics  of  H. caput-felis,  a  size-structured  matrix  model  was
constructed (Caswell, 2001), from which demographic vital rates and their relative importance were
calculated. Matrix models divide the populations into discrete classes and track the contribution of
individuals in each class at one census to all classes in the following census (Caswell, 2001; Morris
&  Doak,  2002).  This  stage  classification  was  devised  to  characterize  the  population  using  a
biological  approach  (Lefkovitch,  1965;  Marrero-Gómez  et  al.,  2007),  which  relies  on  field
observations  of  developmental  states.  The  life  cycle  of  H.  caput-felis was  classified  into  five
developmental stages based on the results of a previous study (Fenu et al., 2015) and on our field
observations.  Accordingly,  a  seed  bank  class,  a  seedling  class  and  three  adult  classes  (small,
medium and large) were distinguished, based on plant size (plant volume) and the reproductive
capacity (number of fruits per plant). Hence, five size classes were selected to build the matrices:
(1) seeds, (2) plants with a volume <5 cm3 (seedling, hereafter), (3) flowering and fruiting plants
with a volume of 5.1– 500 cm3 (small adult, hereafter), (4) adults plants with a volume of 500.1–
5000 cm3 (medium adult, hereafter), and (5) large adults plants (large, hereafter). 
The seed  bank class  was  calculated  by  multiplying  the  proportion  of  total  reproductive  output
attributable to an individual (the average number of seeds per fruit with the fruit number of each
plant; data from Fenu et al., 2015) times the total number of seedlings at the end of the projection
interval  (Stubben  &  Milligan,  2007).  According  to  Wardle (1998),  the  transitions  among  the
different life stages are shown in the life-cycle diagram in Supplementary Fig. 1.
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SUPPLEMENTARY FIG. 1  Life  cycle  diagram  of  Helianthemum  caput-felis.  The  black  arrows
represent survival/growth transitions and the blue arrows involve production (via seeds) of new
individuals after one year.

The basic matrix model is given by

nt +1=A nt

where nt and n(t+1) are vectors whose elements, aij are the number of individuals that belong to the ith
category at time t and t + 1, respectively, and A is the non-negative square matrix, whose elements,
aij represent the transitions or contributions from individuals in the jth category to the ith category
after  one-time  step  (Caswell,  2001).  Transition  probabilities  were  obtained  by  calculating  the
proportion of individuals in each category experiencing each specific fate from one year to the next
(Marrero-Gómez et al., 2007).

The survival rate is the expected proportions of plants in class i at the last census that are still alive
at the current census. The growth rate is the estimated probability that a surviving plant undergoes a
transition from its original class to each of the other potential classes (Morris & Doak, 2002).
A different transition matrix for each year was generated, adding individual fertility estimates per
plant. Then, the annual matrices were created setting the number of time steps for a deterministic
model (it=100). To extract the mean deterministic  λ of all years, a mean of the three projection
matrices for deterministic analysis was calculated, making random draw with replacement. 

Long-term simulations of the fates of  H. caput-felis  population  were carried out by incorporating
environmental stochasticity into the matrix  models. Environmental stochasticity involves chance
variation in several external factors such as weather conditions that affect population performance
(Picó & Riba, 2002). The effect of initial population size on the long-term dynamics of the analysed
population was tested in order to calculate the stochastic growth rate (λS, Tuljapurkar et al., 2003).
The numeric values for the population size (40 seedlings, 186 small, 210 adults and 209 large adults
plants) in the first year of monitoring (2013) were used as starting population vector (nt).

The popbio 2.4.3 package of Stubben & Milligan (2007) in R 3.1.2 (R Core Team, 2014) was used
to calculate  the finite  rate  of  increase (λ) and the stochastic  lambda (λS)  of  the population  via
Tuljapakar’s method (Tuljapurkar, 1990). The bootstrap method (Kalisz & McPeek, 1993; Caswell,
2001)  was  used:  each  annual  matrix  was  randomly  resampled  with  replacement  50,000  times.
Therefore,  in each sample,  the number of plants  in each size class equalled the number in the
corresponding  class  in  the  original  data  set;  then,  from  the  resulting  distributions  of  50,000
estimates for each matrix, the stochastic growth rate was extracted (the analytic approximation of λ
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and  a  percentile  95%  confidence  interval  were  computed;  Morris  &  Doak,  2005).  Bootstrap
distributions of population growth rates were calculated using the  boot.transitions function of the
aforementioned package. 

Integral projection model implementation

Integral projection models are similar to matrix population models, but differ because populations
do not have to be divided into classes, but state variables (size, in this case) can be continuous
(Easterling  et  al.,  2000).  Integral  projection  models  describe  how a  population  structured  by  a
continuous individual-level state variable changes in discrete time (Easterling et al., 2000), using a
continuous  projection  kernel  to  describe  the  population  size  distribution  by  a  density  function
(Easterling et al., 2000; Ellner & Rees, 2006). The state of the population is described by the size
distribution n(y, t), and growth, survival, flowering and fruiting probability are described in function
of  the  selected  continuous  variable  (plant  size  = plant  volume).  Constant,  linear  and quadratic
models were fitted for each vital rate, and the best model was selected based on the lowest AIC
value (Dauer & Jongejans, 2013). The integral projection model  of a size structured population is
given by:

n ( y , t+1 )=∫
L

U

K ( y , x )n ( x , t )dx=∫
L

U

[P ( y , x )+F ( y , x ) ] n ( x , t )dx

where n(y, t + 1) is the size distribution y of both established and newly recruited plants in census
time  t + 1,  n(x,  t) the distribution across size of individuals at  census time  t,  L and  U are the
respective lower and upper size limits modelled in the integral projection model  (Metcalf et al.,
2013), and these values were set lower and higher than the observed minimum and maximum sizes,
to avoid unintentional evictions (Williams et al., 2012). 

The  kernel  (K)  can  be  broken  down into  two  sub-kernels  (P and  F):  P sub-kernel  represents
transitions attributable to survival and growth, while F sub-kernel describes per capita contributions
of reproductive individuals given the recruit  density function at the next census (Metcalf  et  al.,
2013). 

Survival, growth and fecundity objects that compose the integral projection model were constructed
using the IPMpack 2.1 package (Metcalf et al., 2014), and matrix were plots with the fields package
(Nychka 
et al., 2014) in R (R Core Team, 2014). 

The method proposed by Merow et al. (2014) for species with complex life cycles was followed and
adapted  to  the  specific  case  of  this  study. The  survival  probability  was  modelled  by  logistic
regression (binomial  error  distribution  and logit  link  function),  and the growth probability  was
modelled as a linear regression (Merow et al., 2014). Fecundity was the product of two vital rates:
the  probability  of  flowering,  modelled  as  a  logistic  regression  (by  specifying  binomial  error
distributions and logit-link functions in GLM), and the number of fruits in the peak of the year t for
every monitored plant, modelled as a linear regression (with a Poisson error distribution and a log
link function), times the mean number of seedlings in year t + 1 per number of fruiting individuals
in year t, and a probability function of the seedling size distributions. The seedling size distribution
in each year was described as a normal distribution with the observed mean and standard deviation
(Merow et al., 2014).
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Direct determination of further vital rates in the field was impossible for every individual plant, so
they were included in the integral projection model  as constants (i.e. size independent), and have
been incorporated into the fecundity parameter calculation: 

(1)  the  mean  number  of  seeds  per  fruit  (obtained  multiplying  the  total  number  of  filled  fruits
directly counted in the field by the mean value of seeds per fruit, following the same approach in
Bruna et al. (2014); 

(2)  the  probability  of  seed  germination,  by  counting  the  number  of  all  new  seedlings  in  t+1
compared to the total number of seeds in t;

(3) the probability of seedling survival within the year of seed and seedling production,  estimated
from the ratio  between seedlings counted in year t  and seedlings present in  t+1 (Merow et al.,
2014); 

(4) the probabilities of seeds entering the seed bank or 

(5) the probability of the seeds staying in that location, calculated according to Quintana-Ascencio
et al. (1998) because of the absence of available seed bank studies for H. caput-felis.

The integral projection model  predicts the population’s asymptotic growth rate (λ), represented by
the dominant eigenvalue, with associated eigenvectors and state-dependent sensitivity and elasticity
functions (Easterling et al., 2000). The dominant right and left eigenvectors w(x) and v(x) give the
stable  size  distribution  and  the  size-specific  reproductive  value,  respectively  (Easterling  et  al.,
2000). The projected stable size distribution, which is the abundance of plants whose vital rates do
not change with time (Caswell, 2001), was extracted and compared with the observed distributions. 

Stochastic population growth rates (λS) were calculated by randomly selecting one of three annual
matrices with equal probability for each of 1000 model iterations, and taking the geometric mean of
the  obtained  annual  growth  rates  (Caswell,  2001;  Morris  &  Doak,  2002).  Then,  to  estimate
sampling errors in λs, resampled the data, a bootstrap vector of the same sample size was generated,
and λ and bias-corrected 95% confidence intervals (CI) were calculated (Schleuning & Matthies,
2009). Stochastic lambdas provide a more conservative risk assessment than those estimated from
mean matrices for species in fluctuating environments (Menges, 2000).

The main outputs of matrix population models and integral projection models are summarized in
Table 1. Deterministic population growth rate (λ) extracted from matrix population models was
higher in the first transition year (1.03) compared to the second (0.92). Growth rates calculated
considering  only  the  continuous  stage  (excluding  the  discrete  seed  bank  stage;  λcontinuous)  were
slightly lesser from those including the seed bank (λ). Stochastic growth rate (λS) did not differ from
the deterministic rate of the mean matrix (λM). The two projected matrices show how large adult
plants gave the major contribution to fecundity, while the proportion of plants along the diagonal is
greater than others. The mean projected transition matrix is displayed in Supplementary Fig. 2,
represented as a life cycle diagram, which represent the mean transitions between the five different
life stages observed in the study population. 
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SUPPLEMENTARY TABLE 1  Parameters  extracted  from  matrix  population  models  and  integral
projection models of  H. caput-felis for the 2-year transitions:  projected deterministic population
growth rate excluding the seed bank (λcontinuous), projected deterministic population growth rate (λ)
with confidence intervals at 95%, damping ratio (dr), deterministic population growth rate of the
mean projected matrix (λM), and stochastic population growth rate (λS).

 Matrix population model Integral projection model
 2013–2014 2014–2015 2013–2014 2014–2015
λcontinuou
s

1.01 0.81 1.02 0.92

λ
[CI]

1.03 
[1.002 - 1.054]

0.92 
[0.891 - 0.951]

1.08 
[1.067 -1.107]

0.92 
[0.918 -
0.926]

dr 1.39 1.38 1.35 1.30

λM 0.98 1.01

λS 0.97 [0.9729 - 0.9755] 1.00 [-]

SUPPLEMENTARY FIG. 2 Loop analysis of the life cycle of  H. caput-felis. Values correspond to P
and F values of the mean projected matrix. The black arrows represent survival/growth and the
accompanying rates give the proportion of individuals that survive and move to a particular class.
The blue arrows involve production (via seeds) of new individuals after 1 year. The projected λ of
the mean matrix is 0.98, projecting a decrease in population size of 2% per year.

Extinction risk estimation

To calculate the quasi-extinction risk for the population of H. caput-felis the size-structured matrix
model was used. Although integral projection models better perform data of species with restricted
range and small demographic data sets (< 300 individuals; Ramula et al., 2009; Sulis, 2016), the R
package  IPMpack does  not  permit  calculation  of  the  quasi-extinction  risk  probability;  for  this
reason, matrix projection models (matrix population models) were run using the package  popbio
(Stubben & Milligan, 2007).

As a first step, two additional population traits requested for the quasi-extinction risk calculation,
were extracted  both by the matrix  population model  and the integral  projection  model: the net
reproductive  rate  (R0)  and  the  generation  time  (T).  The  R0 represents  the  average  number  of
offspring produced by an individual over its lifespan (Metcalf et al., 2014), and it represents the
global population growth rate per generation (not per unit of time), in which population growth is
positive if, and only if,  R0 > 1 (Caswell, 2011). The generation time (T), considered as the time
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required by the population to increase by a factor of R0 (Caswell, 2001; Williams et al., 2011) and
representing also a measure of the typical  age at  which offspring are produced, was calculated
according to the formula:

nt +1=A nt
The mean generation time (T) values were calculated both with the integral projection model and
matrix population model, to carry out an accurate extinction risk analysis. The net reproductive rate
(R0) was >1 in 2013–2014 and <1 in 2014–2015, in  both models. The mean generation time (T)
from the matrix population model was 28.44 years, whereas from the integral projection model  was
15.97 years.

Extinction  Probability  (Pe)  was  calculated  for  t  =  100  years  as  the  proportion  of  500  model
iterations  where  the  quasi-extinction  threshold  was  reached  (Van  der  Meer  et  al.,  2014).  We
calculated mean value of this parameter over 95% confidence intervals by taking the 2.5th and the
97.5th  percentile  of  the  simulated  distribution  (e.g.  Shryock  et  al.,  2014;  Belaid  et  al.,  2018).
Matrices  were  selected  at  random  with  replacement  (each  matrix  had  an  equal  probability  of
selection;  Morris  &  Doak,  2002).  The  number  of  monitored  plants  in  2013  (i.e.  the  global
population  in  this  study) was used as the population  vector  (sensu Morris  & Doak,  2002) and
consisted of 40 seedlings, 186 juveniles, 210 small adults and 209 large adults. A quasi-extinction
threshold  of  20  mature  individuals  was  designated  a  priori,  to  help  minimize  demographic
stochasticity associated with small population size (Morris & Doak, 2002).

The  estimation  of  quasi-extinction  risk  was  calculated  using  the  popbio package  (Stubben  &
Milligan, 2007), based upon methods described in Caswell (2001) and Morris & Doak (2002), in R
(R Core Team, 2014).

The probability of reaching a quasi-extinction threshold (20 individuals) based on 500 iterations of
population growth over 100 years highlighted that small populations will be extinct in a period
ranging from 10 to 16 years and, more generally, all populations with <100 individuals achieve the
100% quasi–risk extinction probability before 100 years (67 years on average; Supplementary Fig.
3).  Only populations  with >100 mature plants face no high risk of extinction according to this
models because they will not reach populations sizes of 20 (or fewer) individuals in the next 100
years.
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SUPPLEMENTARY FIG. 3 Simulated cumulative distribution functions for the time to reach a quasi-
extinction threshold of 20 individuals for small populations (< 100 individuals; a: three generations;
b: five generations; c: three generations based on generation time calculated with matrix population
model) and medium/large populations (>100 individuals).
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