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SUPPLEMENTARY MATERIAL 1 Parameterization and implementation of spatial capture–
recapture models

Spatial capture–recapture models assume that each individual in the study population, i, has 
an activity (or home range) centre, si, and that the encounter rate of individual i at a given 
camera-trap j, λij, declines with increasing distance to si, dij. We can model this decline in 
encounter rate using a half-normal function, which has two parameters: λ0 is the baseline 
encounter rate at dij = 0 (the expected encounter rate at a hypothetical trap located at an 
individual’s home range centre), and σ is the scale parameter, which is related to home range 
radius and governs how quickly the encounter rate declines with dij. 

Abundance is defined as the number of activity centres si in the state-space S, which is an area
including the trapping array that is chosen to be large enough that it contains all individuals 
that could have potentially been exposed to trapping. We defined S by buffering the outermost
trap coordinates of each trap array by 13 km. We estimated abundance using data 
augmentation (Royle & Dorazio, 2012), where the observed encounter histories are 
augmented with a large number of all-zero encounter histories. We then introduce an 
individual covariate, zi, which is modelled as a Bernoulli random variable that takes on the 
value of 1 if an animal is part of the population, and 0 if it is not:

zi Bernoulli (ψ ) ,

where ψ is the probability than an individual is part of the population. N is the sum over all s, 
and density D can be derived by dividing N by the area of S, (A(S)).

Two of the four surveys (Bungo and Ipuh) in the present study lasted 8 and 7 months, 
respectively (Table 1). To approximate population closure we subdivided these surveys and 
considered the data sets for the resulting shorter time intervals as independent; i.e. we do not 
keep track of whether individuals from survey 1 appear again in survey 2, treating the two sets
of individuals as independent from each other. We assumed, however, that, density remained 
constant across these sub-surveys. This approach allows turnover in individuals, as well as 
changes/shifts in activity centres in the population without introducing an additional density 
parameter. Such a model can be implemented by jointly analysing data from both shorter time
intervals, augmenting data sets to the same size M and having them share a single inclusion 
probability parameter ψ. Note that this approach keeps the expected value of density (defined 
as ψ * M/A(S)) constant, but realized densities (N/A(S)) may still differ slightly. A single 
combined density estimate for both intervals can be calculated as the mean of both estimates 
of realized density. 

We implemented the model in a Bayesian framework using JAGS (Plummer, 2003) accessed 
through R v. 3.0.1 (R Core Team, 2013), running three parallel Markov chains with 50,000 
iterations, following a burn-in of 200 iterations. We checked for chain convergence using the 
Gelman–Rubin statistic (Gelman et al., 2004); values < 1.1 indicate convergence, and all 
parameters in the present model had a value < 1.1.


