SUPPORTING INFORMATION

Evolution of fumarolic anhydrous copper sulfate minerals during successive hydration/dehydration

Oleg I. Siidra, *,1 Artem S. Borisov,1 Dmitri O. Charkin,2

Wulf Depmeier,³ Natalia V. Platonova⁴

¹ Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia

² Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 199992 Russia

³ Institut für Geowissenschaften der Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

⁴ X-ray Diffraction Resource Center, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia

* E-mail: o.siidra@spbu.ru

Mineral	Formula	Sp. group	<i>a</i> (Å), α (°)	<i>b</i> (Å), β (°)	<i>c</i> (Å), γ (°)	$V(\text{\AA}^3), R_1$	Mol. mass	I_G	$I_{G.total}$	Ref
Chalcocyanite	Cu(SO ₄)	Pnma	8.412	6.704	4.830	272.41	159.602	2.252	54.039	[1]
						0.021				
Dolerophanite	$Cu_2O(SO_4)$	C2/m	9.370	6.319	7.639	382.10	239.147	2.750	44.000	[2]
				122.34		0.035				
Alumoklyuchevskite	$K_3Cu_3AlO_2(SO_4)_4$	$P\overline{1}$	4.952	11.978	14.626	836.30	767.135	4.892	283.763	[3,4]
			87.12	80.25	78.07	0.049				
Itelmenite	$Na_2CuMg_2(SO_4)_4$	Pbca	9.568	8.790	28.715	2415.0	542.36	4.644	928.771	[5]
						0.034				
Euchlorine	KNaCu ₃ O(SO ₄) ₃	C2/c	18.131	9.386	14.353	2245.0	556.893	4.440	372.955	[6]
				113.22		0.046				

Table S1. Crystallographic parameters, molar masses and structural complexity values of the fumarolic minerals used in hydration/dehydration experiments.

Table S2. Crystallographic parameters, molar masses and structural complexity values of the hydrated offsprings observed during the hydration experiments and anhydrous products obtained during successive dehydration experiments.

Mineral phase	Formula	Sp. group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	Mol. mass	I_G	$I_{G. total}$	Ref
			α (°)	β (°)	γ (°)	R_1				
			H	ydrated species						
«poitevinite»	$Cu(SO_4) \cdot H_2O$	$P\overline{1}$	5.040	5.157	7.569	175.19	177.617	3.281	59.059	[7]
			108.39	108.99	90.40	0.034				
«bonattite»	$Cu(SO_4) \cdot 3H_2O$	Cc	5.592	13.029	7.341	530.81	213.647	3.907	117.207	[8]
				97.05		0.069				
«chalcanthite»	$Cu(SO_4) \cdot 5H_2O$	$P\overline{1}$	6.14	10.7360	5.986	366.36	249.677	4.440	186.477	[9]
			82.27	107.43	102.67	0.037				
«kobyashevite»	$Cu_5(SO_4)_2(OH)_6 \cdot 4H_2O$	$P\overline{1}$	6.073	11.060	5.509	359.87	683.944	4.362	170.13	[10]
			102.88	92.35	92.60	0.040				
«antlerite»	$Cu_3(SO_4)(OH)_4$	Pnma	8.244	6.043	11.987	597.17	354.722	3.500	224.00	[11]
						0.031				
«cyanochroite»	$K_2Cu(SO_4)_2 \cdot 6H_2O$	$P2_{1}/a$	9.085	12.130	6.167	658.17	441.944	3.986	247.160	[12]
				104.45		0.030				
«kröhnkite»	$Na_2Cu(SO_4)_2 \cdot 2H_2O$	$P2_{1}/c$	5.807	12.656	5.517	384.91	337.668	3.301	125.421	[13]
				108.32		0.031				
«kaliochalcite-	$(K,Na)Cu_2(SO_4)_2(OH) \cdot H_2O$	C2/m	8.935/8.809	6.252/6.187	7.602/7.509	377.30/358.83	377.216/	3.059	55.059	[14,15]
natrochalcite»				117.318/118.74		0.100/0.038	393.324			
«brochantite»	$Cu_4(SO_4)(OH)_6$	$P2_{1}/n$	12.776	9.869	6.026	759.79	452.282	4.392	368.955	[16]
		_	90.15			0.049				
«pentahydrite»	$Mg(SO_4) \cdot 5H_2O$	$P\overline{1}$	6.314	10.565	6.030	364.42	210.436	4.440	186.477	[17]
			81.12	109.82	105.08	0.057				
«starkeyite»	$Mg(SO_4) \cdot 4H_2O$	$P2_{1}/n$	5.922	13.604	7.905	636.78	192.421	4.170	300.235	[18]
				90.85		0.078				
«sanderite»	$Mg(SO_4) \cdot 2H_2O$	$P2_{1}2_{1}2_{1}$	8.893	8.488	12.440	939.06	156.391	4.000	256.000	[19]
						0.019				
«brucite»	Mg(OH) ₂	P-3m	3.042		4.283	34.32	58.319	1.522	7.610	[20]
«hexahydrite»	$Mg(SO_4) \cdot 6H_2O$	C2/c	10.110	7.212	24.410	1761.17	228.451	4.627	444.156	[21]
				98.30	10.000	0.115				
«alpersite»	$(Mg,Cu)(SO_4) \cdot 7H_2O$	$P2_{1}/c$	14.166	6.534	10.838	964.69	266.087	3.777	196.423	[22]
		~ ~ ~ ~		105.922						
«epsomite»	$Mg(SO_4) \cdot 7H_2O$	$P2_12_12_1$	11.887	12.013	6.861	979.74	246.466	4.755	513.528	[23]
						0.030				
«konyaite»	$Na_2Mg(SO_4)_2 \cdot 5H_2O$	$P2_{1}/c$	5.769	23.951	8.046	1106.76	352.472	4.807	538.424	[22]
a				95.43	< 0.00 F	0.033			104 155	5003
«Cu-pentahydrite»	$(Mg_{0.4}, Cu_{0.6})(SO_4) \cdot 5H_2O$	P1	6.2470	10.5995	6.0395	364.23	233.981	4.440	186.477	[22]
			82.530	109.408	104.794					

Mineral phase	Formula	Sp. group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	Mol. mass	I_G	I _{G. total}	Ref
			α (°)	β (°)	γ (°)	R_1				
Anhydrous species										
«tenorite»	CuO	<i>C</i> 2/c	4.683	3.421	5.129	81.03	79.545	1.000	4.000	[24]
				99.57		0.070				
	$K_2Cu(SO_4)_2$						333.854			[25]
«wulffite»	K 3NaCu4O2(SO4)4	$Pn2_1a$	14 281	4 948	24 113	1703 79	810 69	4 907	588 827	[26]
	1131 (4004 0 2(2004)4	1	101		2	0.075	01010)		000027	[=0]
	$Mg(SO_4)$	Cmcm	5.182	7.893	6.506	266.11	120.361	1.918	23.020	[27]
	MgO	$P6_3mc$	3.279		4.874	45.37	40.304	1.000	4.000	[28]
«metathenardite»	$Na_2(SO_4)$	P6 ₃ /mmc	5.394		7.247	182.56	142.036	2.156	34.490	[29]
						0.045				
«vanthoffite»	$Na_6Mg(SO_4)_4$	$P2_{1}/c$	9.797	9.217	8.199	678.96	546.469	3.792	204.764	[30]
	- · · ·			113.50		0.064				

- Siidra O.I., Lukina E.A., Nazarchuk E.V., Depmeier W., Bubnova R.S., Agakhanov A.A., Avdontseva E.Yu., Filatov S.K. and Kovrugin V.M. (2018a) Saranchinaite, Na₂Cu(SO₄)₂, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na₂Cu(SO₄)₂(H₂O)₂. *Mineralogical Magazine*, **82**, 257–274.
- Effenberger H. (1985) Cu₂O(SO₄), Dolerophanite: refinement of the crystal structure with a comparison of [OCu(II)₄] tetrahedra in inorganic compounds. *Monatshefte für Chemie*, **116**, 927-931.
- Gorskaya M.G., Vergasova L.P., Filatov S.K., Rolich D.V. and Ananiev V.V. (1995) Alumoklyuchevskite, K₃Cu₃AlO₂(SO₄)₄, a new oxysulfate of K, Cu, and Al from volcanic exhalations, Kamchatka, Russia. *Zapiski Rossiiskogo Mineralogicheskogo Obshchestva*, **124**, 95-100.
- Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Lukina E.A., Avdontseva E.Yu., Vergasova L.P., Vlasenko N.S., Filatov S.K., Turner R. and Karpov G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik Volcano: Puninite, Na₂Cu₃O(SO₄)₃ a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. *European Journal of Mineralogy*, 29, 499 510.
- 5. Nazarchuk E.V., Siidra O.I., Agakhanov A.A., Lukina E.A., Avdontseva E.Yu. and Karpov G.A. (2018) Itelmenite, Na₂CuMg₂(SO₄)₄, a New anhydrous sulfate mineral from the Tolbachik Volcano. *Mineralogical Magazine*, **82**, 1233-1241.

- 6. Siidra O.I., Borisov A.S., Lukina E.A., Depmeier W., Platonova N.V., Colmont M. and Nekrasova D.O. (2019a) Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu₃O(SO₄)₃. *Physics and Chemistry of Minerals*, **46**, 403–416.
- 7. Ting V.P., Henry P.F., Schmidtmann M., Wilson C.C. and Weller M.T. (2009) In situ neutron powder diffraction and structure determination in controlled humidities. *Chemical Communications*, 7527–7529.
- Zahrobsky R.F. and Baur W.H. (1968) On the crystal chemistry of salt hydrates. V. The determination of the crystal structure of CuSO₄·3H₂O (bonattite). *Acta Crystallographica*, **B24**, 508-513.
- 9. Bacon G.E. and Titterton D.H. (1975) Neutron-diffraction studies of CuSO₄·5(H₂O) and CuSO₄·5(D₂O). Zeitschrift für Kristallographie, **141**, 330-341.
- Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Chukanov N.V., Kasatkin A.V., Kuznetsov A.M. and Pushcharovsky D.Y. (2013) Kobyashevite, Cu₅(SO₄)₂(OH)₆·4H₂O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. *Mineralogy and Petrology*, 107, 201-210.
- 11. Hawthorne F.C., Groat L.A. and Eby R.K. (1989) Antlerite, Cu₃SO₄(OH)₄, a heteropolyhedral wallpaper structure. *Canadian Mineralogist*, 27, 205-209.
- Bosi F., Belardi G. and Ballirano P. (2009) Structural features in Tutton's salts K₂[M²⁺(H₂O)₆](SO₄)₂, with M²⁺= Mg, Fe, Co, Ni, Cu, and Zn. *American Mineralogist*, 94, 74-82.
- 13. Hawthorne F.C. and Ferguson R.B. (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallographica, B31, 1753-1755.
- Pekov I.V., Siidra O.I., Chukanov N.V., Yapaskurt V.O., Belakovskiy D.I., Murashko M.N. and Sidorov E.G. (2014) Kaliochalcite, KCu₂(SO₄)₂[(OH)(H₂O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. *European Journal of Mineralogy*, 26, 597-604.
- 15. Giester G. and Zemann J. (1987) The crystal structure of the natrochalcite-type compounds Me⁺Cu₂(OH)(zO₄)₂·H₂O [Me⁺=Na,K,Rb; z=S,Se], with special reference to the hydrogen bonds. *Zeitschrift für Kristallographie*, **179**, 431-442.
- Merlino S., Perchiazzi N. and Franco D. (2003) Brochantite, Cu₄SO₄(OH)₆: OD character, polytypism and crystal structures. *European Journal of Mineralogy*, 15, 267-275.
- 17. Baur W.H. and Rolin J.L. (1972) Salt hydrates. IX. The comparison of the crystal structure of magnesium sulfate pentahydrate with copper sulfate pentahydrate and magnesium chromate pentahydrate. *Acta Crystallographica*, **B28**, 1448-1455.
- Baur W.H. (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstrukturen von MgSO₄·4(H₂O) (Leonhardtit) und FeSO₄·4(H₂O) (Rozenit). *Acta Crystallographica*, 15, 815-826.

- 19. Ma H., Bish D.L., Wang H.W. and Chipera S.J. (2009) Determination of the crystal structure of sanderite, MgSO₄·2H₂O, by X-ray powder diffraction and the charge flipping method. *American Mineralogist*, **94**, 622-625.
- 20. Mitev P.D., Gajewski G. and Hermansson K. (2009) Anharmonic OH vibrations in brucite: small pressure-induced redshift in the range 0 22 GPa. *American Mineralogist*, **94**, 1687-1697.
- Zalkin A., Ruben H. and Templeton D.H. (1964) The crystal structure and hydrogen bonding of magnesium sulfate hexahydrate. *Acta Crystallographica*, 17, 235-240.
- 22. Mills S.J., Wilson S.A., Dipple G.M. and Raudsepp M. (2010) The decomposition of konyaite: Importance in CO₂ in mine tailings. *Mineralogical Magazine*, **74**, 903–917.
- 23. Calleri M., Gavetti A., Ivaldi G. and Rubbo M. (1984) Synthetic epsomite, MgSO₄(H₂O)₇: absolute configuration and surface features of the complementary {111} forms. *Acta Crystallographica*, **B40**, 218-222.
- 24. Brese N.E., O'Keeffe M., Ramakrishna B.L. and Von Dreele R.B. (1990) Low-temperature structures of CuO and AgO and their relationships to those of MgO and PdO. *Journal of Solid State Chemistry*, **89**, 184-190.
- 25. Kohler K. and Franke W. (1965) Mineralogisches Institut, Freie Universitat Berlin, Germany. Private Communication.
- 26. Pekov I.V., Zubkova N.V., Yapaskurt V.O., Belakovskiy D.I., Chukanov N.V., Lykova I.S., Savelyev D.P., Sidorov E.G. and Pushcharovsky D.Y. (2014) Wulffite, K₃NaCu₄O₂(SO₄)₄, and parawulffite, K₅Na₃Cu₈O₄(SO₄)₈, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. *Canadian Mineralogist*, **52**, 699-716.
- 27. Rentzeperis P.J. and Soldatos C.T. (1958) The crystal structure of the anhydrous magnesium sulphate. Acta Crystallographica, 11, 686-688.
- 28. Fan X.-F., Sun H.-D., Shen Z.-X., Kuo J.-L. and Lu Y.-M. (2008) A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure A_xZn_{1-x}O alloys (A= Ca, Cd, Mg). *Journal of Physics: Condensed Matter*, **20**, 235221.
- 29. Rasmussen S.E., Jorgensen J.E. and Lundtoft B. (1996) Structures and phase transitions of Na₂SO₄. Journal of Applied Crystallography, 29, 42-47.
- 30. Fischer W. and Hellner E. (1964) Ueber die Struktur des Vanthoffits. Acta Crystallographica, 17, 1613-1613.