data_shelxl _audit_creation_method SHELXL-97 _chemical_name_systematic copper tellurite dihydrate ; ? ; _chemical_name_common millsite _chemical_melting_point ? _chemical_formula_moiety CuTeO3.2H2O _chemical_formula_sum 'H4 Cu O5 Te' _chemical_formula_weight 275.17 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Te' 'Te' -0.5308 1.6751 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting ? _symmetry_space_group_name_H-M ? loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 7.4049(2) _cell_length_b 7.78733(16) _cell_length_c 8.5217(2) _cell_angle_alpha 90.00 _cell_angle_beta 110.203(3) _cell_angle_gamma 90.00 _cell_volume 461.17(2) _cell_formula_units_Z 4 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 4980 _cell_measurement_theta_min 3.1439 _cell_measurement_theta_max 32.3059 _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max '0.07 mm' _exptl_crystal_size_mid '0.04 mm' _exptl_crystal_size_min '0.03 mm' _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 3.963 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 500 _exptl_absorpt_coefficient_mu 10.846 _exptl_absorpt_correction_T_min 0.88946 _exptl_absorpt_correction_T_max 1.00000 _exptl_absorpt_correction_type 'multi-scan' _exptl_absorpt_process_details ; CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. ; _diffrn_radiation_wavelength 0.7107 _diffrn_radiation_type 'Mo K\a' _diffrn_radiation_source 'Enhance (Mo) X-ray Source' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Xcalibur, Eos' _diffrn_detector_area_resol_mean 16.0869 _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_reflns_number 9248 _diffrn_reflns_av_R_equivalents 0.0328 _diffrn_reflns_av_sigmaI/netI 0.0227 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 3.65 _diffrn_reflns_theta_max 32.38 _reflns_number_total 1572 _reflns_number_gt 1444 _reflns_threshold_expression >2sigma(I) _computing_data_collection ? _computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0143P)^2^+0.1876P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1572 _refine_ls_number_parameters 76 _refine_ls_number_restraints 4 _refine_ls_R_factor_all 0.0198 _refine_ls_R_factor_gt 0.0162 _refine_ls_wR_factor_ref 0.0359 _refine_ls_wR_factor_gt 0.0349 _refine_ls_goodness_of_fit_ref 1.052 _refine_ls_restrained_S_all 1.055 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Te1 Te 0.40974(2) 0.190715(17) 0.144047(17) 0.01078(5) Uani 1 1 d . . . Cu2 Cu 0.72766(4) 0.03306(3) 0.57939(3) 0.01163(6) Uani 1 1 d . . . O1 O 0.4057(2) 0.1586(2) 0.3615(2) 0.0148(3) Uani 1 1 d . . . O2 O 0.2426(2) 0.1198(2) 0.5943(2) 0.0143(3) Uani 1 1 d . . . O3 O 0.6444(2) 0.1944(2) 0.7159(2) 0.0163(3) Uani 1 1 d . . . O4 O 0.8690(2) 0.2173(2) 0.5086(2) 0.0138(3) Uani 1 1 d D . . H1 H 0.811(4) 0.256(4) 0.410(2) 0.017 Uiso 1 1 d D . . H2 H 0.985(3) 0.196(3) 0.515(4) 0.017 Uiso 1 1 d D . . O5 O 0.0334(3) 0.0135(3) 0.7975(3) 0.0274(4) Uani 1 1 d D . . H3 H 0.123(4) 0.051(4) 0.760(4) 0.033 Uiso 1 1 d D . . H4 H 0.071(4) -0.081(3) 0.853(3) 0.033 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Te1 0.01141(7) 0.01078(7) 0.01130(7) 0.00050(5) 0.00540(5) -0.00006(5) Cu2 0.01288(13) 0.01158(12) 0.01298(13) -0.00171(9) 0.00772(11) -0.00161(9) O1 0.0199(8) 0.0151(7) 0.0119(7) 0.0009(6) 0.0085(7) -0.0037(6) O2 0.0128(8) 0.0155(7) 0.0177(8) -0.0049(6) 0.0093(7) -0.0038(6) O3 0.0109(8) 0.0226(8) 0.0156(8) -0.0069(6) 0.0046(7) 0.0029(6) O4 0.0114(8) 0.0174(8) 0.0129(7) 0.0019(6) 0.0045(7) -0.0010(6) O5 0.0222(10) 0.0307(10) 0.0311(11) 0.0155(9) 0.0114(9) 0.0071(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Te1 O3 1.8605(16) 4_565 ? Te1 O2 1.8779(15) 4_565 ? Te1 O1 1.8806(15) . ? Cu2 O1 1.9490(15) 3_656 ? Cu2 O3 1.9509(16) . ? Cu2 O2 1.9698(16) 3_656 ? Cu2 O4 1.9883(16) . ? Cu2 O5 2.387(2) 1_655 ? O1 Cu2 1.9490(15) 3_656 ? O1 H1 2.98(3) . ? O2 Te1 1.8779(15) 4_566 ? O2 Cu2 1.9698(16) 3_656 ? O2 H3 1.98(2) . ? O2 H2 5.794(19) . ? O3 Te1 1.8605(16) 4_566 ? O3 H4 5.24(3) . ? O4 H1 0.854(17) . ? O4 H2 0.855(17) . ? O5 H4 0.866(18) . ? O5 H3 0.881(18) . ? O5 Cu2 2.387(2) 1_455 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O3 Te1 O2 99.44(7) 4_565 4_565 ? O3 Te1 O1 94.05(7) 4_565 . ? O2 Te1 O1 95.38(7) 4_565 . ? O1 Cu2 O3 92.65(7) 3_656 . ? O1 Cu2 O2 85.96(7) 3_656 3_656 ? O3 Cu2 O2 167.76(7) . 3_656 ? O1 Cu2 O4 175.96(7) 3_656 . ? O3 Cu2 O4 91.38(7) . . ? O2 Cu2 O4 90.05(7) 3_656 . ? O1 Cu2 O5 100.32(7) 3_656 1_655 ? O3 Cu2 O5 89.25(7) . 1_655 ? O2 Cu2 O5 102.97(7) 3_656 1_655 ? O4 Cu2 O5 79.93(7) . 1_655 ? Te1 O1 Cu2 122.58(8) . 3_656 ? Te1 O1 H1 75.3(4) . . ? Cu2 O1 H1 137.3(5) 3_656 . ? Te1 O2 Cu2 114.12(8) 4_566 3_656 ? Te1 O2 H3 118.1(9) 4_566 . ? Cu2 O2 H3 124.5(9) 3_656 . ? Te1 O2 H2 50.8(3) 4_566 . ? Cu2 O2 H2 67.5(3) 3_656 . ? H3 O2 H2 141.7(9) . . ? Te1 O3 Cu2 124.41(9) 4_566 . ? Te1 O3 H4 62.1(2) 4_566 . ? Cu2 O3 H4 108.5(3) . . ? H1 O4 H2 107(3) . . ? H1 O4 Cu2 114(2) . . ? H2 O4 Cu2 117.7(18) . . ? H4 O5 H3 110(3) . . ? H4 O5 Cu2 121(2) . 1_455 ? H3 O5 Cu2 109(2) . 1_455 ? _diffrn_measured_fraction_theta_max 0.952 _diffrn_reflns_theta_full 30.00 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.570 _refine_diff_density_min -0.629 _refine_diff_density_rms 0.141